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Preface

This book is an introduction to statistical physics aimed at undergraduate students
in physics and engineering. It may also serve as a reference for graduate students
and researchers. The fact that thermodynamics and statistical physics have a very
wide domain of relevance and validity, as well as a very long tradition, often leads
to abstract and axiomatic presentations even for beginners. We have chosen the
opposite direction, namely to discuss the key ideas and methods through concrete
representative systems, and to treat general ideas as casual by-products. This choice
is expressed already in the structure of the book, consisting of five parts: (I) The
Kinetic Theory of Gases; (II) Statistical Physics with Paramagnets; (III) Statistical
Physics and Thermodynamics, which deals with the Einstein solid and monoatomic
ideal gases; (IV) From Ideal Gas to Photon Gas, which covers also equilibrium of
chemical reactions and the Debye model; (V) Of Fermions and Bosons.

This approach runs the pedagogical risk that a casual reader may form the im-
pression that he is facing a limited set of special cases. We confront this pitfall
technically, by introducing explicit remarks about the generality of results at ap-
propriate places; methodologically, by accumulating enough applications for every
major idea to make its validity and generality stand out; and philosophically, ob-
serving that physics moves forward most of its ideas by analogies to cleverly chosen
simple systems for which profound intuitions have been formed.

Originally this text was the backbone of a course in statistical physics at the
Open University of Israel, which is a university for education at a distance. As such,
it is vital to provide the student with a text that not only presents the material
clearly, but also stimulates him or her to a higher state of active participation,
to replace frontal study. This is achieved by inserting a large number of tasks
(exercises) into the body of the text. They are aimed at maintaining contact with
the experience of the student, either by numerical examples or by rederiving a result
in a new way. They are also intended to reduce the amount of inattentive reading, by
systematic insertions of break-points. Exercises of a second type serve as corollary
applications of newly introduced methods and techniques. A third type fills the
gaps left (intentionally) in the process of many derivations. In some places we have
preferred not to break the flow of reasoning, introducing first the result and only
then the corresponding exercise which calls for the reader to complete the details.
Thus, a little patience is required at least at the outset.

In order to raise further the level of active involvement, each part is followed by
several “self-assessment” exercises which are generally more extensive and of higher
level than the ones in the text. They require frequently an ability to integrate ideas
and methods from several parts of the course. The last — and very important —
component is the detailed solutions to all exercises of all types, at the end of each
part, which should contribute significantly to a successful study.

xi



xii Preface

After the first Hebrew edition was used for about ten years, a second edition was
published and is still in use by the Open University. It is this revised and extended
version that we now make available to a wider audience. This volume is mainly a
translation of the second Hebrew edition, but includes further revisions, additions
and updates and should be considered a third edition of the text.

The material of this text corresponds to a semester’s course, preferably in a sec-
ond year. It assumes a prior acquaintance with calculus, basic mechanics, electricity
and magnetism and modern physics, as well as some familiarity with thermodynamic
concepts. Usually, a statistical physics course is taken after thermodynamics. How-
ever, we felt that the text would be more self-contained if a brief compendium of
thermodynamic concepts and methods was introduced for coherence with the rest
of the text. This led to Chap. 0 of Part II.

A final word concerning notation and units. We have adopted the convention of
bold letters for vectors and italics for their absolute value or other scalars. Thus we
write, for example, |v| = v. As for units we follow the increasing tendency towards
the SI (International System), based on the metric system. However, this convention
is used in moderation and we allow, from time to time, other commonly used units,
like electron volt (eV) as an energy scale for atomic systems or atmosphere for
pressure. The deviations from the SI are particularly pronounced in dealing with
magnetic systems. In that case we have chosen to avoid the confusion caused by
attributing different units to the magnetic quantities B,H andM, and have adhered
to the cgs system.

This book has benefited from the many fruitful suggestions and comments by col-
leagues, students and reviewers associated with the three editions, including Daniel
Bar, David J. Bergman, Rachel Danor, Yossef Dothan, Ofer Eyal, Aharon Kapit-
ulnik, Yoram Kirsh, Ora Maor-Bareket, Guy Sella, Yonathan Shapir, Haim Shinar
and Shmuel Weiss. The book would not have taken its present form without their
help.

Daniel Amit and Yosef Verbin
Rome and Tel-Aviv, June 1999
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Introduction

The theoretical transition from mechanics to the properties of matter is complex as

well as technically difficult. Major parts of it are ever-expanding research subjects.

In principle, given the laws of dynamics - classical or quantum-mechanical -

and a model of the forces acting between the constituent parts of the material, we

can determine all that is fit to be determined about the system. Its properties,

i.e. material properties, are subject to computation - if the initial conditions are

given as well, of course.

However, a moment’s reflection is sufficient to make one realize that this is not

the right approach. The attempt to characterize initial conditions for a macroscopic

system, such as 1O23electrons in a cubic centimeter of metal, or to solve  dif-

ferential equations, is bound to convince one that this is technically impossible. A

more profound reason for abandoning this approach is the fact that the duration

of a typical experiment (or measurement) on a macroscopic system is very long

compared to times during which the system changes on a microscopic scale.

For example, let us calculate the average number of collisions of a gas molecule

in an experiment that lasts  s. Suppose that the density of the gas is  

and that it is maintained at a relatively low temperature, 100 K. If we assume that

the mass of the molecule is about  kg, then its typical speed is about  m 

At the given density the typical distance between molecules is  m, so that a

molecule will collide approximately once every  s. Hence, the ratio between

the duration of the experiment and the average time between collisions is of order

That is to say, during the experiment the system passes over a huge number

of states. What is measured in the experiment is, actually, an average of all these

states. The detailed dynamical transitions from one state to another are not only

technically difficult to follow, but also uninteresting.

Classical thermodynamics demonstrates the above consideration in its extreme

form. Not only is the detailed dynamical evolution of the system discarded, but the

3



4 Introduction

entire dynamical model.  here stems the vast power of thermodynamics, and

also the source of its weakness. Its power lies in its generality, which has withstood

to date the upheavals of dynamics  particles, continuum, fields, relativity and

quantum mechanics. Its weakness is the lack of detail and its restriction to equilib-

rium states (or to near equilibrium states; the thermodynamics of states that are

far from equilibrium is an important research subject  however, it is still in its

infancy).

The most detailed level for the treatment of phenomena in systems with many

particles (or degrees of freedom) is statistical mechanics, at which we will arrive in

the coming parts of this book. A sort of intermediate level between thermodynamics

and statistical mechanics is found in the kinetic theory of gases, which we discuss

in detail in this part.

 The degrees of  freedom of  a  system are a  col lect ion of  independent  variables ,  required to character-
ize the system. Thus,  for  instance,  the degrees of  freedom of  a  gas,  in  a  thermodynamic description,
are its volume and pressure (or a pair of other variables). The degrees of freedom of a system of
part ic les  are  the  col lect ion of  the  coordinates  and the  veloci t ies  of  a l l  the  part ic les .

This theory, whose development we owe to such giants as Maxwell, Boltzmann

and Gibbs, was of crucial importance for the conceptual development of physics

in the second half of the 19th century. The successes of the theory, such as the

calculation of the dependence of the viscosity upon pressure and temperature and

its measurement, which was carried out by Maxwell (see Chapter 3 of this part),

contributed to the establishment of the particle description of matter, and thus

also to the unifying outlook in physics, i.e. to the strengthening of the relationship

between the Newtonian dynamics and the macroscopic properties. On the other

hand, kinetic theory has provided the hints which led Willard Gibbs to formulate

statistical mechanics, at the beginning of this century, in the form which is still

commonly accepted today.

In this and the subsequent parts we will discuss, among other things, topics

which may be familiar to the reader from previous study. In most cases such topics

constitute tests of the more detailed level of our discussion: each treatment at a

detailed level must stand an uncompromising test -  it must reproduce the results

that are known at the less detailed level. Thus, for instance, results derived from

the kinetic theory must be compatible with the laws of thermodynamics; statistical

mechanics must agree with the kinetic theory as well as with thermodynamics.

In some cases the recurring subjects will appear in a logical order different from

before, and from a different standpoint. This does not disqualify, or cast doubt on,

the preceding approach. Different approaches make different assumptions and the

scope of their results varies: different approaches usually emphasize different aspects

more experimental or more formal. Contemplating and confronting different

approaches widens and deepens the understanding of the results and of the deductive

process in the physical theory.



Introduction

Here we approach the kinetic theory of gases in its status as an intermediate

level. On the one hand, we will view it as a tool for the calculation of important

quantities  such as transport coefficient  and for the development of physical

intuition in complex cases. On the other hand, we will try to view it as a corridor

for ideas and methods of statistical mechanics, with which we deal in the coming

parts.

 Transport coefficients are quantities that characterize the rate at which a system approaches
equilibrium when there is a slight deviation from a state of equilibrium. (See Chapter 3 of this
part  



Chapter 1

Velocity and Position Distributions

of Molecules in a Gas

1.1 Avogadro’s law, or the equation of state of an
ideal gas

The equation of state of ideal gases and its connection with the Boltzmann
distribution can be introduced in at least three different ways. One way
is to postulate the Boltzmann distribution as the fundamental principle
of statistical mechanics, from which the equation of state of an ideal gas
can be derived. We opted for the opposite way. We will derive the ideal
gas equation of state from a few very simple fundamental considerations.
This will serve as a first step towards the introduction of the Boltzmann
distribution toward the end of this chapter. You will get to know a third
approach for reaching the same point in Part III. Before deriving the equa-
tion of state of an ideal gas, which depends on the concept of temperature,
we discuss Avogadro’s law:

At equal pressure and temperature, equal volumes of gases contain an equalAvogadro’s
law number of molecules.

Avogadro deduced this law from an empirical rule in chemistry: if two
gases, at the same temperature and pressure, combine in a chemical reac-
tion without leftover constituents, their volumes stand in simple integral
proportions. For example, if H2 and O2, at the same temperature and
pressure, combine to give H2O, with no leftovers of oxygen or hydrogen,
the corresponding volumes must be in a ratio of 2:1. We would say that
two H2 molecules are needed to combine with every O2 molecule. Here we
will show that Avogadro’s law is a direct consequence of Newton’s laws.

A microscopic description of a dilute gas begins with the clarification
of the concept of pressure. In order to keep things simple we will only
consider a gas whose molecules all have the same mass. The pressure
of a gas is the force which the gas exerts on a unit area. This pressure
is measured by the force which must be applied on a piston in order to

6



1.1 Avogadro’s law, or the equation of state of an ideal gas 7

keep it stationary. The force which the gas exerts on the piston is due to

the momentum imparted by the gas molecules which collide with it. For
example, if a molecule undergoes an elastic collision with the piston, the

magnitude of the component of the momentum that is perpendicular to
the piston is conserved, but its sign is reversed; the component parallel to

the piston does not change (see Fig. 1.1.1).

➤

➤

➤

➤

➤

➤

➤

➤

py

px

x

y

p'y

p'x piston

Fig. 1.1.1 A gas molecule colliding with the piston.

Therefore, in such a collision the amount of momentum imparted to the
piston is

∆px = 2px = 2mvx .

The number of molecules with a velocity component vx, along the x axis,
that will hit the piston, of area A, during a very short time interval ∆t,

is equal to the number of molecules with such a velocity, inside a cylinder
of area A and length vx∆t. This number is given by the product of the

volume Avx∆t and the density. The amount of momentum, transferred

to the piston during the time ∆t, by this type of molecules (with velocity
vx along x) is

∆px = 2mvx · vx∆tA · n(vx) , (1.1.1)

where n(vx) is the number of molecules per unit volume with velocity
component vx.

The force exerted on the piston is given by the amount of the momen-
tum transferred to the piston per unit time; this force per unit area is the

pressure.

Note that this is where Newton’s laws enter.

Therefore, the contribution of molecules with a velocity component vx
to the pressure is

P (vx) = 2 ·mv2xn(vx) . (1.1.2)

Clearly, not all of the gas molecules have the same velocity component

along x, and we must sum over all the possible values of vx. If we carry

out this summation in Eq. (1.1.2) we find, for the total pressure exerted
on the piston,

P = n · 〈mv2x〉 , (1.1.3)
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where n denotes the total number of molecules per unit volume, and the

angular brackets denote an average.

Note that the number of molecules per unit volume is

n =
∑

n(vx) ,

where the sum is over all values of vx and the average of v2x is

〈v2x〉 =
1

n

∑
n(vx)v2x .

Exercise 1.1

(a) Prove that in a state of equilibrium the sum of (1.1.2) is indeed equal

to (1.1.3). Where did the 2 disappear?

(b) What would the formulation of (1.1.1)–(1.1.3) be if you were to treat

the velocity as a continuous variable?

Solution on page 74

In a state of equilibrium the averages of v2x, v
2
y and v2z will be equal,

so in this case we can write (1.1.3) as

P =
1

3
nm〈v2〉 = 2

3

N

V

〈
1

2
mv2

〉
=

2

3

E

V
. (1.1.4)

〈v2〉 = 〈v2〉 = 〈v2x〉+ 〈v2y〉+ 〈v2z〉.

E is the total kinetic energy of the gas, N is the total number of molecules

and V is its volume. Note that the energies used in calculating E are the

kinetic energies of the centers of mass of the molecules (or of the atoms,

in the case of a monoatomic gas).

Equation (1.1.4) is a very impressive result (even though it was simple

to derive!). It states that two gases kept at the same pressure, and whose

molecules have the same average kinetic energies (independent of mass,

structure and color), will occupy equal volumes, if they contain the same

number of molecules. And all this from the direct use of the atomic

assumption, Newton’s laws and nothing more.

This, however, is not exactly Avogadro’s law, but it is not far from

it. That is, if we try to identify “temperature” with “average kinetic

energy” of a molecule — up to a constant factor, which will take care of

the units — we obtain on the one hand Avogadro’s law, and on the other

the equation of state of an ideal gas. The constant mentioned, k, will beequation of
state chosen such that 〈

1

2
mv2

〉
=

3

2
kT (1.1.5)

and T is the temperature.



1.2 Temperature and thermal equilibrium 9

From (1.1.4) we obtain

PV =
2

3
E = NkT . (1.1.6)

The manner in which we identified the average kinetic energy with the
absolute temperature may seem arbitrary. Nevertheless, arbitrary identi-
fication is characteristic and necessary when one is passing from one level
of description onto another. As we will see later on — for example in
the identification of the laws of thermodynamics within the framework of
statistical mechanics (Part III) — in transitions of this sort one has to
identify within a broader framework (Newtonian dynamics, in the case
we discussed) concepts that are defined naturally in the less detailed de-
scription (the temperature, in thermodynamics). But the identification is
not as arbitrary as it may appear at this stage. It must undergo many
consistency tests of additional results derived from it.

Another way of looking at Eq. (1.1.6) is to say: “But is this not the
familiar gas law we have always cherished?” Of course it is! And this is
an alternative way of validating our interpretation of (1.1.5) as defining
temperature.

Exercise 1.2

It is possible to treat electromagnetic radiation in a container, whose walls
are mirrors, as a gas of particles (photons) with a constant speed c and
whose energy is related to their momentum, p, which is directed parallel
to their velocity, by ε(p) = pc.

Show that if the container in Fig. 1.1.1 is full of radiation, the equation
of state will be

PV =
1

3
E . (1.1.7)

Solution on page 75

Finally, we note that once the temperature has been identified, it is
possible to express the partition of the average kinetic energy as follows:
with every direction of motion of a molecule we associate an average energy
of 1

2kT . Instead of “direction of motion” the accepted term is “degree of
freedom”; it generalizes the term “direction of motion” also to rotations degrees of

freedomand internal vibrations. We have seen, therefore, that a molecule in an
ideal gas has three degrees of freedom.

1.2 Temperature and thermal equilibrium

If we adopt the identification (1.1.5), we obtain the ideal gas equation of
state, in which we know how to identify the constant k. This is, of course,
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the Boltzmann constant:

k = 1.38 × 10−23 J K−1 .

If we express the number of molecules in terms of the number of moles

ν and Avogadro’s number N0 : N = N0ν, then Eq. (1.1.6) will take the

form

PV = νRT , (1.1.8)

where

R = N0k = (6.02 × 1023) · (1.38 × 10−23) J K−1 = 8.3 J K−1 .

Exercise 1.3

Calculate the average kinetic energy per gas molecule at room tempera-

ture.

Solution on page 76

As mentioned in the previous section, the identification of the tem-

perature requires many additional tests. The temperature has many

properties, which are known from our daily experience and from ther-

modynamics. Central among these is the role the temperature plays in

determining the equilibrium between systems, which interact thermally

as well as mechanically.

Let us consider a volume in which there is a mixture of two gases. In

a state of equilibrium, the number of molecules with a certain velocity v

is independent of direction. This statement deserves additional reflection,

since the argument that leads to it is very typical in the framework of

the kinetic theory of gases. Indeed, the molecules collide with each other

at a high rate. In collisions, even if they are elastic, the directions of

the velocities change. Suppose there were a preferred direction, i.e. there

were more molecules moving in that direction than in others. Then more

molecules moving in the preferred direction would scatter to other (less

preferred) directions than the other way around. Therefore, the state of

the system would change with time, and this would not be a state of

equilibrium. Only if the distribution of the velocity is independent of

direction is a state of equilibrium possible. This is a necessary condition.

This condition immediately implies that 〈vx〉 = 〈vy〉 = 〈vz〉 = 0, and

therefore

〈a · v〉 = 0 (1.1.9)

for every constant vector a.

We will now prove that in a state of equilibrium, the average kinetic

energy per molecule, in a mixture of two gases, is equal. To this end let
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us consider pairs of molecules that include one molecule of each type of

gas. Let v1 and v2 denote the velocities of the two molecules of the pair.

Each of the gases satisfies Eq. (1.1.9), separately.

In addition, v1 and v2 are independent of one another, so the average

of their product equals the product of the separate averages, both of which

vanish in equilibrium. Hence

〈v1 · v2〉 = 0 , (1.1.10)

where the averaging is over both types of molecules.

We now note that instead of describing the motion of the molecules

by the velocities v1 and v2, it is possible to describe it using the velocity

of the center of mass, vcm, and the relative velocity, vrel. center of
mass

Reminder:

vcm = 1
m1+m2

(m1v1 + m2v2) ,

vrel = v1 − v2 .

If the distributions of v1 and v2 are independent so are those of vcm
and vrel. In equilibrium, these distributions will also be independent of

direction. Consequently, in a state of equilibrium,

〈vcm · vrel〉 = 0 . (1.1.11)

From Eqs. (1.1.10) and (1.1.11) we obtain

〈
1

2
m1v

2
1

〉
=

〈
1

2
m2v

2
2

〉
. (1.1.12)

Exercise 1.4

Deduce the equality in (1.1.12) from Eqs. (1.1.10) and (1.1.11).

Solution on page 76

The conclusion is that if the system is in equilibrium, the average

kinetic energy per molecule is equal in the two gases. This means that the

identification we made [Eq. (1.1.5)] is in accord with the fact that if the

two gases are in equilibrium, their temperatures are equal. In the language

of mechanics we can say that in a state of equilibrium the distribution of

molecules in the heavy gas will tend toward the slower molecules. This

means that there will be more slow molecules in the heavy gas than in the

lighter gas, and fewer fast molecules (see Fig. 1.1.2).
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2kT
m2

2kT
m1

|v|

n(|v|)

m2

m1

Fig. 1.1.2 A qualitative description of the distribution of the absolute value of the
velocity in a gas for two mass values: m1 < m2 . In order to make the picture clearer
we have also chosen a state with more light molecules. Concerning the values along the
horizontal axis, see self-assessment exercise 2b.

Exercise 1.5

Dalton’s law states that the pressure of a mixture of gases is equal to theDalton’s law

sum of pressures that the gases would exert if each of them were separately

in the same conditions as the mixture.

Deduce this law from similar reasoning to that we used to obtain

(1.1.5).

Solution on page 77

Without going into too many complications, we will treat somewhat

superficially, openly so, the case where a piston, of negligible friction,

separates two gases inside a cylinder (Fig. 1.1.3). We ask: When will this

system be in a state of equilibrium?

First, from mechanics we conclude that the forces (or pressures) ex-

erted on the two sides of the piston must be equal. Equation (1.1.4)

implies therefore that

N1

V1

〈
1

2
m1v

2
1

〉
=
N2

V2

〈
1

2
m2v

2
2

〉
. (1.1.13)

But this condition is not sufficient, if energy is allowed to pass from

side to side, via the piston. That is, if there are very energetic molecules
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1 2

Fig. 1.1.3 Two gases in a container separated by a piston.

on one side, by hitting the piston they will impart the energy to the other

side, so that the energy (or velocity) distribution on both sides will change.

The balance in (1.1.13) will be violated, and the piston will go over to a

new state, in which it will attempt to balance the pressures, and so on

and so forth.

If we apply the argument which led to (1.1.12) to a molecule of one

of the gases and to the piston (as a single molecule of the other gas),

the conclusion will be that in a state of equilibrium the average kinetic

energy of the piston, in its small hops left and right, must be equal to

that of a gas molecule. The same argument applies to both sides of the

piston. Hence, the average kinetic energies on the two sides must be equal

in a state of equilibrium. We find again a property that corresponds to a

familiar characteristic of temperature.

Exercise 1.6

Show that if in the cylinder of Fig. 1.1.3, the average kinetic energy on

the two sides of the piston is equal, and if the total energy in the cylinder

is a constant of magnitude E, and the number of molecules (N1, N2) of

each gas is also constant, then the position of the piston is determined in

a state of equilibrium.

What will be the value of the average energy per molecule in this state?

Solution on page 78

1.3 Equipartition of energy per molecule and its
constituent parts — a fundamental problem

Till now we have treated molecules as rigid objects devoid of internal

structure, which exchange momentum via elastic collisions. We found that

the average kinetic energy per molecule in any gas at a given temperature

(i.e. in a gas that is in thermal equilibrium with a given system) is constant

and is given by Eq. (1.1.5),

〈
1

2
mv2

〉
=

3

2
kT ,
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and the total energy of the gas is given by the product of the number of

molecules and 3
2kT . This is an adequate description for a monoatomic

gas.

But, what happens if the gas molecules are made up of several atoms

so that their internal structure comes into play? This question has several

components:

(a) What is the average kinetic energy of each atom in a molecule?

(b) What is the average kinetic energy of the center of mass of a

molecule?

(c) What is the connection between the answers to (a) and (b)?

(d) How is the gas law affected?

Question (a) arises since inside the molecule there are forces acting

between the atoms. Therefore, it seems as if the kinetic energy exchanges

in collisions, the same energy exchanges that are responsible for the equi-

librium, will not be so free. The answer to (a) is that every atom in the

molecule has an average kinetic energy of 3
2kT as in Eq. (1.1.5). This is

a conclusion from the equipartition theorem, which will be presented inequipartition
theorem Part III.

Although the atoms in the molecule are bound to one another, they

move inside it in all directions. When one of the atoms in the molecule

collides with another atom of a different molecule, the only important fac-

tors are the velocities of the two atoms, immediately prior to the collision.

When an atom in the molecule changes its velocity in a collision, the only

effect of the forces will be that the internal motion in the molecule will be

rearranged. The collision itself takes place as if the atoms were free.

However, if every atom in a diatomic molecule, for example, has an

average kinetic energy 3
2kT , then question (b) arises: What is the ki-

netic energy of the center of mass of the whole molecule? The answer is

surprising: 3
2kT , as for a monoatomic gas.

One way to obtain this result is to view the system at a lower reso-

lution, so that we see only molecules and not atoms, and to go over the

preceding arguments. The molecules will be seen to be moving to and

fro at different velocities. They will be seen to collide and as a result to

change their velocities, which are the velocities of their centers of mass.

At equilibrium we will find that the average kinetic energy is 3
2kT . But

this conclusion leaves question (c) open.

In order to answer this question, we calculate the average kinetic en-

ergy of the center of mass, in a diatomic molecule, under the assumption

that both parts of the molecule — atoms 1 and 2 — have an average
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energy, as implied by (a): 3
2kT . The average kinetic energy of the center

of mass will be

〈Ecm
k 〉 =

〈
1

2
(m1 +m2)

(
m1v1 +m2v2
m1 +m2

)2〉

=
1

m1 +m2

[〈
1

2
m2

1v
2
1

〉
+

〈
1

2
m2

2v
2
2

〉
+m1m2〈v1 · v2〉

]
. (1.1.14)

According to our answer to (a), the first two terms in the sum are equal

to 3
2kTm1 and 3

2kTm2, respectively. Therefore

〈Ecm
k 〉 =

3

2
kT +

m1m2

m1 +m2
〈v1 · v2〉 . (1.1.15)

The question is therefore: What is the value of the average 〈v1 · v2〉
between the two parts of the molecule?

It seems as if there is a correlation between the velocities of the two

parts. Nevertheless, it is clear that there is no correlation between the

direction of the center of mass velocity vcm of the molecule and the relative

velocity vrel of the two parts. Therefore,

〈vcm · vrel〉 = 0 , (1.1.16)

precisely as occurs for two different molecules. But this relation, together

with the fact that the average kinetic energy of each part is 3
2kT , implies

that

〈v1 · v2〉 = 0 (1.1.17)

and thus

〈Ecm
k 〉 =

3

2
kT . (1.1.18)

Exercise 1.7

Prove that in fact 〈v1 · v2〉 = 0.

Solution on page 79

As to question (d), we must remember that the pressure of the gas

is related to the momentum imparted to the piston, and the question is:

What is the amount of imparted momentum when the molecule collides

elastically with the wall? By elastic collision we mean that there is no

change in the internal state of the colliding systems.

Of course this is an idealization, but in a state of equilibrium it does not introduce
any error.
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Therefore, the motion of the center of mass of the molecule is the decisive

factor, and the gas law remains the same [Eq. (1.1.6)]:

PV = NkT ,

where N is, of course, the number of molecules.

The average kinetic energy per molecule can be calculated from two

points of view: as the sum of the kinetic energies of all the atoms of the

molecule or as the sum of the energy of the center of mass and the energy

of the internal motions of the molecule.

Since the average kinetic energy is shared equally between the three

directions of the velocity of the atom (three degrees of freedom per atom),

and is also shared equally between all the atoms of the molecule, a

molecule of r atoms has an average kinetic energy of

〈Emol
k 〉 = r ·

(
3

2
kT

)
=

3r

2
kT . (1.1.19)

This means that every molecule has 3r degrees of freedom related to its

kinetic energy. If we choose the second viewpoint, we should note that
3
2kT of this energy is carried by the center of mass, so that (r− 1) · (32kT )
is the average kinetic energy of the internal motions of the molecule.

These motions may be rotations and vibrations of the atoms relative to

each other (see Fig. 1.1.4). Here as well we may speak of degrees of freedom

that will now be rotational degrees of freedom and degrees of freedom of

atomic vibrations. The triatomic molecule depicted in Fig. 1.1.4 has an

average kinetic energy of 9
2kT (nine degrees of freedom): 3

2kT of them

related to the center of mass (three degrees of freedom), 3
2kT to the three

➤

↔

↔

↔

➤

➤

Fig. 1.1.4 Rotations and vibrations of a triatomic molecule.
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different vibrations (another three degrees of freedom), and 3
2kT to the

three possible rotations (another three degrees of freedom). The origin of

the internal partition will be clarified in the coming chapters.

3r
2

kT is not the total energy of an r-atomic molecule, since it does not include the
potential energy of the forces between the atoms. The above discussion has disregarded
these forces.

The conclusion is that the right hand side of the gas equation is not
2
3E, with E the total kinetic energy as in Eq. (1.1.6) for a monoatomic

gas, but

PV =
2

3r
E , (1.1.20)

and if we define

γ = 1 +
2

3r
(1.1.21)

we obtain

PV = (γ − 1)E . (1.1.22)

For the case of a monoatomic gas, for example, γ = 5/3.

Exercise 1.8

Deduce Eq. (1.1.20) from Eq. (1.1.6).

Solution on page 79

A classical physicist of the nineteenth century could have said, there-

fore, that the thermodynamic measurement of the curves of adiabatic

expansion will provide him with γ, and hence r — which is the answer to

the question: What is the number of the fundamental building blocks in

familiar molecules? On the other hand, a contemporary physicist would

state that r must be huge, as atoms are made up of a large number of

electrons, protons and neutrons, and the latter are themselves made up

of quarks and antiquarks, and maybe even the latter are not fundamen-

tal. This is a formulation from a modern viewpoint of the “heat capacity

problem,” here discussed in the context of adiabatic expansion. It was

one of the most troubling open problems of physics, and was eventually

resolved only within the framework of quantum mechanics, as we shall see

below.
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Classical mechanics allows continuous energy changes, and therefore

the momentum exchanges that bring about the equilibrium state can take

place separately with each of the molecule’s constituents. Every collision

with the molecule that is not limited to a change in the motion of the cen-

ter of mass, causes an internal excitation in the molecule of a vibrational,

or rotational, type. Since classical mechanics allows vibrations and rota-

tions of arbitrarily small energies, even a very slow particle can exchange

momentum with each part of the molecule separately.

In quantum theory the situation is totally different. In quantum the-

ory internal excitations are allowed only between certain levels which are

separated from each other by discrete energy differences. Exciting an in-

ternal motion is impossible, for example, if in the collision the energy

passed on to the molecule is below a certain threshold, which depends on

Planck’s constant. Very slow particles, which are the most abundant at

low temperatures, will not be able to exchange momentum with molecular

parts, since they are unable to excite internal motions. Their collisions

will always be elastic as those of rigid bodies.

We can ask, of course: What are low temperatures and what are

large energy intervals? The answer is clear: if the average kinetic energy,

whose magnitude is about kT , is small compared to the distance between

two energy levels of internal excitations, the molecule will behave as if

it had less than 3r degrees of freedom. In order to make this clearer we

redefine the number of degrees of freedom per molecule f , as the number

of portions of 1
2kT that are contained by the average kinetic energy of the

molecule:

〈Emol
k 〉 =

f

2
kT . (1.1.23)

In this sense f is the effective number of degrees of freedom. We obtain

instead of (1.1.20)

PV =
2

f
E , (1.1.24)

and if we define

γ = 1 +
2

f
(1.1.25)

Eq. (1.1.22) remains valid. The quantization of energy finds expression in

values of f that are smaller than expected according to classical mechanics,

or by values of γ that are too large.
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Exercise 1.9

The difference between electronic states in the atom is measured in eV.

The difference between nuclear states is measured in MeV = 106 eV.

Subnuclear energies are are measured in GeV = 109 eV.

At what temperature will the electronic, nuclear and subnuclear

(quark) degrees of freedom come into play in the calculation of γ?

Solution on page 80

In its original formulation, the “heat capacity problem” focused on try-

ing to predict the value of the constant γ theoretically. For a monoatomic

gas γ = 5/3 [Eq. (1.1.21) with r = 1 or (1.1.25) with f = 3]. Indeed,

the result of the calculation for the rare gases fits the experimental results

nicely, even at low temperatures.

The experimental result for He at 100K (−173◦C) is γ = 1.660; on the

other hand, for diatomic molecules, such as H2 and O2, the situation is

quite bad. Theory — Eq. (1.1.21) or (1.1.25) — gives γ = 4/3. The ex-

perimental result at 100◦C is γ = 1.4. This result implies that effectively

there are fewer than six degrees of freedom. It seems as if the number is

five. Attempts to solve this problem by taking into account internal forces

were counterproductive, since it was found that internal forces add poten-

tial energies and by so doing increase the number of degrees of freedom

and decrease the value of γ. In a more quantitative language, we may say

that (1.1.23) is replaced by 〈Emol〉 = f
2kT , where E

mol is the total energy

of a molecule and f is (therefore) larger than 3r and represents all the

degrees of freedom of the molecule. This replacement keeps Eqs. (1.1.24)

and (1.1.25) intact. In a diatomic gas, for example, the number of degrees

of freedom including the internal forces is 7, so that γ = 9/7 only (see

Sec. 1.4, Part IV). Classical mechanics is unable to provide any mecha-

nism that can increase γ (or decrease f) beyond the value that is obtained

from calculating the kinetic energies. The solution is found, as already

mentioned, in quantum theory, which is able to explain why the internal

vibrations of a diatomic molecule do not come into play at a temperature

of 100◦C (i.e. become “frozen”). The answer is, of course, that the energy

difference of adjacent levels of the internal vibrations is too large, and an

energy of kT (T = 100◦C) is not sufficient to excite them, so the number

of degrees of freedom does in fact decrease to five. On the other hand,

this explanation implies that increasing the temperature will eventually

cause an “unfreezing” of the inactive degrees of freedom of the internal

vibration, leading to a decrease in γ. Indeed, at high temperatures —

2000◦C — the value of γ for the diatomic gases decreases to 1.286, which
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is very close to 9/7. We revisit all these questions, at a much deeper level,

in Chap. 1 of Part IV.

To summarize:
(a) At equilibrium, at a temperature T , each particle has an average

kinetic energy of 1
2kT for every possible direction of the velocity.

(b) In a molecule of r atoms each atom has an average kinetic energy

of 3
2kT .

(c) The average kinetic energy of the center of mass is also 3
2kT .

(d) Internal forces increase the number of degrees of freedom, i.e. the

number of portions of 1
2kT per molecule.

(e) Experiment at moderate temperatures indicates that the number of

degrees of freedom is smaller than the number obtained from kinetic

energy arguments.

(f) The heat capacity (adiabatic expansion) problem does not have a so-

lution in the framework of classical mechanics. Quantum mechanics

provides the solution to this problem.

1.4 The density in an isothermal atmosphere — the
Boltzmann factor in the potential energy

How are molecules distributed in a force field? As a special case of this

question we will consider the gravitational case. A typical example for

this situation is an isothermal atmosphere, namely a volume of gas at a

uniform temperature T , in a closed cylinder, as depicted in Fig. 1.1.5.

We ask: What is the density of the gas as a function of the height z, at

thermal equilibrium? We divide the volume of the cylinder into layers,

such that each layer will have a very small thickness compared to the

distance that characterizes the rate of change of the force, but is still

very large compared to the intermolecular distances. In order to convince

yourself that this can really be done, solve the following exercise.

➤

➤

➤

➤

➤

z

P(z)

P(z+dz)
g

}∆z

Fig. 1.1.5 Gas inside a container residing in a gravitational field.
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Exercise 1.10

Calculate the change in height at the earth’s surface that will cause the

gravitational field to change by a thousandth of a percent.

What is the ratio between this distance and the average intermolecular

distance in a gas at standard conditions?

Solution on page 81

Thermal equilibrium guarantees that the velocity distribution is iden-

tical in all the layers; however, due to the gravitational force the pressure

differs at each height, since the pressure of the gas is determined by the

weight of the gas above it. Hence, the density of the gas changes with

height.

The requirement that the thickness of the layers should be small (com-

pared to the earth’s radius, for example) allows us to assume that all the

molecules of one layer experience an identical gravitational force. More-

over, we can attribute a constant density to the gas contained in a given

layer. The requirement that the thickness should be very large com-

pared to the intermolecular distance, allows us to attribute thermody-

namic properties to the small volume, as the number of molecules in it

will still be very large.

In order to demonstrate the principle of the calculation we will make

a further simplifying assumption and neglect the variation of the grav-

itational force with height. We are discussing, therefore, an isothermal

atmosphere in a uniform gravitational field.

If the area of the base of the cylinder is A, the volume of the layer will

be A ·∆z (see Fig. 1.1.5), and the force exerted upon it by gravity is

∆F = mg · n(z)∆z ·A , (1.1.26a)

where m is the mass of a molecule, n(z) is the density at height z, and

g is the gravitational free fall acceleration. In a state of equilibrium, this

force is balanced by the difference in pressure beneath the layer and above

it, and hence

[P (z) − P (z +∆z)]A = ∆F , (1.1.26b)

so that

dP (z)

dz
= −mg · n(z) . (1.1.27)

Since our layer is thick enough, we can attribute an equation of state of

the type (1.1.6) to it. Namely

P (z) = n(z)kT . (1.1.28)
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We assumed that T is independent of z, so we substitute (1.1.28) into

(1.1.27), and obtain a differential equation for n(z). The equation is

dn(z)

dz
= −mg

kT
n(z) (1.1.29)

and its solution

n(z) = n(0) exp

(
−mgz
kT

)
. (1.1.30)

Check that this is in fact the solution to the equation.

n(0) is the value of the density at the point z = 0. This value is related to

the total number of molecules N , since if the total height of the container

is h, then

N

A
= n(0)

∫ h

0
exp

(
−mgz
kT

)
dz =

n(0)kT

mg

[
1− exp

(
−mgh
kT

)]
, (1.1.31)

so that in a container in which N is constant, the density at its bottom

is determined by

n(0) =
Nmg

AkT

[
1− exp

(
−mgh
kT

)]−1
.

Equation (1.1.30) states that the density of molecules decreases with

height; however, the extent of variation depends on the temperature. The

higher the temperature, the less significant are the variations in height

(see Fig. 1.1.6). The decisive factor in determining the decrease in den-

sity between two points whose altitudes differ by ∆z is the ratio of the

difference in their potential energies mg∆z to kT . This is a dimensionless

quantity, of course. If the temperature becomes very low, all the particles

concentrate at the bottom of the cylinder. The thermal energy is not large

enough to overcome the increase in potential.

Actually, we use the term potential here instead of potential energy. This is common
practice in the literature and it is always possible to identify the meaning from the
context.

Now we can go back and remove the simplifying assumption about the

uniformity of the force field acting on the molecules. This we do in the

following exercise:
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T1

2T1

4T1

n(z)

z

➤

➤

Fig. 1.1.6 The dependence of the density on height in an isothermal atmosphere at
three different temperatures. Note: n(0) also depends on T .

Exercise 1.11

Prove that for a gas in a force field that is derived from the potential U(r),

n(r) = n(r0) exp

[
−U(r)
kT

]
. (1.1.32)

Solution on page 82

Since our aim is to arrive at statistical mechanics via the kinetic theory,

we will describe the result in Eq. (1.1.32) in a slightly different language.

Our system contains many molecules. Thus, we can treat n(r) or, more

precisely, n(r)/N as the probability for a molecule to be in an infinitesimal

volume dV around the point r, where N is the total number of molecules.

Notice that from here to the end of this chapter P denotes the probability and not
the pressure.

In other words

P (r)dV =
1

N
n(r)dV (1.1.33)

is the probability that a particle will be in the volume dV around r.

It is important to remember that although the volume element dV is

“tiny,” the number of molecules inside it is very large, and in every such

volume there exists a velocity distribution. However, as we mentioned,

around each point r there is exactly the same velocity distribution, since

the system is at thermal equilibrium.
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Exercise 1.12

Calculate the dimensions of P (r). Is it normalized?

Solution on page 83

Now we want to ask a different question: Not what is the probability

of finding any particle at a certain place, but what is the probability of

a given configuration of the system, i.e. what is the probability that N

particles will be in the volumes dV1, . . . , dVN around the points r1, . . . , rN ,

respectively, in a space with a potential field U(r)?

In the present context a configuration is a list of all the coordinates of the particles.
Such a collection characterizes a state of the system, and every state of the system is
described by an appropriate configuration.

Since the positions of the different particles are independent (ideal

gas), the probability is a product of the individual probabilities, i.e.

PN (r1, r2, . . . , rN )dV1 . . . dVN

= P (r1)dV1P (r2)dV2 . . . P (rN )dVN

=

[
n(r0)

N

]N
exp

[
− 1

kT

N∑
i=1

U(ri)

]
dV1 . . . dVN . (1.1.34)

Multiparticle probability distributions are discussed at length in the following parts.
Note though that if we integrate over N−1 of the coordinates, we obtain the probability
distribution of the Nth particle.

∑
U(ri) is just the total potential energy of the N particles of the gas.

Hence, the conclusion is that the probability density for a certain con-

figuration of the system of particles is proportional to the exponential of

minus the total potential energy of the configuration, where the potential

energy is measured in units of kT .

1.5 The Maxwell–Boltzmann distribution

As already mentioned, n(r), which is the particle density in a small vol-

ume dV around the point r, is made up of particles that are moving at

different velocities. The distribution of the velocities is independent of

r, just as the coordinate distribution P (r) is independent of v. We now

enquire how many of the particles in a volume element dV , around the

point r, i.e. out of n(r)dV , have a velocity inside the volume element

dvxdvydvz(≡ dτ) in velocity space around v (see Fig. 1.1.7). We denote

the probability for a particle to have a velocity v in that velocity volume
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Fig. 1.1.7 A volume element in velocity space.

by f(v)dτ , so that with the help of Eq. (1.1.33),

n(r)dV f(v)dτ = NP (r)f(v)dτdV (1.1.35)

is the number of molecules with a velocity in a region dτ around the

velocity v, that are located in a volume dV around the location r.

Just as the dimensions of P are length to the minus three, [L]−3, so
the dimensions of f(v) are velocity to the minus three, i.e. dimensions of

length over time, to the minus three [LT−1]−3.
As mentioned above, f(v) is the probability per unit velocity volume

for a molecule to have a velocity near v. The form of this probability

function, named after Maxwell, will be derived next.

Many authors obtain the form of f(v) as a special case of the general assertion of
the Boltzmann distribution. Here we take the opposite way. Maxwell’s result for the
velocity distribution is much more fundamental, and provides a clue to the form of the
general distribution. Moreover, the simple argument leading to this distribution is so
nice that it merits presentation even if one has no bias concerning the direction of the
progress of knowledge.

Actually the Maxwell distribution is obtained from two very reasonable

and very simple assumptions:

(a) In a state of equilibrium there is no preferred direction.

(b) Orthogonal motions are independent of one another.

The first assumption, whose reasonableness was considered on the way to

Eq. (1.1.9), states that f(v) must be a function of v2 only:

f(v) = h(v2) . (1.1.36)

The second assumption implies that f(v) must be a product of the form

f(v) = g(v2x)g(v
2
y)g(v

2
z ) . (1.1.37)
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The fact that we wrote the functions g as functions of the squares of the

components of v again follows from (a), since a dependence on the sign of

the component is impossible. The conclusion from (a) and (b) together is

h(v2x + v2y + v2z) = g(v2x)g(v
2
y)g(v

2
z ) . (1.1.38)

This is a functional equation that determines the forms of h and g.

Before solving Eq. (1.1.38) we note that we already know one possible

simple solution: h and g are exponential functions g(v2) = eλv
2
. We want

to show that this is the only solution and to this end we will solve the

equation. In order to do this simply we rename our variables and define

v2x = ξ, v2y = η, v2z = ζ , (1.1.39)

ρ = ξ + η + ζ . (1.1.40)

We want, therefore, to solve the equation

h(ρ) = g(ξ)g(η)g(ζ) . (1.1.41)

Note that h depends on ξ, η, ζ only through the variable ρ. In order to

solve Eq. (1.1.41) we differentiate both sides with respect to ξ. On the left

hand side we make use of the chain rule and of the fact that ∂ρ/∂ξ = 1

to obtain

dh

dρ
=
dg

dξ
g(η)g(ζ) . (1.1.42)

We now divide both sides of this equation by Eq. (1.1.41), obtaining

1

h

dh

dρ
=

1

g

dg

dξ
. (1.1.43)

Note that the left hand side can in principle depend on all three vari-

ables ξ, η, ζ through ρ. However, the right hand side depends only on ξ.

Therefore, the function h−1dh/dρ cannot depend on η and ζ. However,

if we differentiate Eq. (1.1.41), this time with respect to η, and repeat

the arguments, we will reach the conclusion that the function h−1dh/dρ
cannot depend on ξ or ζ. The conclusion is that h−1dh/dρ is a constant

function. If we denote its value by λ, then we obtain

dh

dρ
= λh . (1.1.44)

The general solution to this equation is of course

h = Ceλρ = Ceλv
2
, (1.1.45)
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where C is a constant. From here we obtain, with the help of (1.1.36),

f(v) = h(v2) = Ceλv
2
. (1.1.46)

Since fdτ is a probability, f is positive, and its integral over all possible

vectors v must be 1. Hence, we must have C > 0 and λ < 0. If we denote

the negative constant λ by −A, we can write

f(v) = Ce−Av
2
. (1.1.47)

This is the Maxwell velocity distribution. The arguments we have used

do not provide the constant A. However, C is determined as a function

of A from the normalization condition.

Exercise 1.13

Show that

C =

(
A

π

)3/2
.

Solution on page 83

In order to obtain A some physics must enter our arguments. What is

needed is to note that given the distribution f(v) we are able to compute

the average of any function of v. In particular we can compute 〈12mv2〉,
obtaining 〈

1

2
mv2

〉
=

3m

4A
; (1.1.48)

however, this average is known to us from the discussion of the ideal gas

where it was seen to be equal to 3
2kT . Hence, we can express A in terms

of the temperature and the molecular mass. The result is

f(v)dτ =

(
m

2πkT

)3/2
exp

(
−mv

2

2kT

)
dτ (1.1.49)

for the probability in velocity space.

Exercise 1.14

Prove that (1.1.49) is the only determination of C and A in (1.1.47) which

gives a normalized f(v) and the correct average kinetic energy.

Solution on page 84

Now, just as we derived from the coordinate distribution of N parti-

cles (1.1.33) the probability for a certain configuration (1.1.34), we want
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to derive from the velocity distribution (1.1.49) the probability for a

given configuration of the coordinates and the velocities of the particles,

namely the probability for N particles to be in volumes dV1, . . . , dVN
around the points r1, . . . , rN , respectively, as well as in the velocity region

dτ1, . . . , dτN around the respective velocities v1, . . . ,vN . The configura-

tion of the coordinates and velocities characterizes the state of the (clas-

sical) system completely. It is possible to think of such a configuration as

a point in a space of 6N dimensions (six dimensions per molecule).

Note that here the term “configuration” signifies the list of the coordinates and
velocities of all the molecules.

The probability for a molecule to be near r, and for its velocity to be

near v, is, as already stated,

P (r)dV f(v)dτ .

In an ideal gas with N molecules, the coordinates and velocities of each

molecule are independent of the coordinates and velocities of every other

molecule. There is, of course, no dependence between the position of a

molecule and its velocity. Hence, the probability for a configuration where

molecule No. 1 is near location r1 and has a velocity near v1; molecule

No. 2, near r2 and v2; and so on, is

P (r1) . . . P (rN )dV1 . . . dVNf(v1) . . . f(vN )dτ1 . . . dτN

= C exp

{
− 1

kT

N∑
i=1

[
1

2
miv

2
i + U(ri)

]}
dV1 . . . dVNdτ1 . . . dτN . (1.1.50)

We found, therefore, that given a complete description of the state

of the system, the probability of finding such a state is proportional to

the exponential of minus the total energy of the system in this state,

in units of kT . This distribution is called the Maxwell–BoltzmannMaxwell–
Boltzmann
distribution

distribution.

1.6 Averages and distributions

In the preceding two paragraphs we developed expressions for the density

distribution resulting from the presence of a potential — Eq. (1.1.32) —

and the distribution of molecules in velocity space — Eq. (1.1.49). Given

these distributions we can compute averages of any function that depends

on the coordinates and/or the velocities.
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We can, for example, calculate the average height of a molecule in the

isothermal atmosphere whose density is given by Eq. (1.1.30) with the

help of the one-dimensional version of Eq. (1.1.33):

〈z〉 =
∫ ∞
0

zP (z)dz =
∫ ∞
0

zn(z)dz

/∫ ∞
0

n(z)dz

=

∫ ∞
0

z exp

(
−mgz
kT

)
dz

/∫ ∞
0

exp

(
−mgz
kT

)
dz , (1.1.51)

where zero height denotes the bottom of the cyclinder containing the

gas.

In the present case it is possible to evaluate the integrals explicitly. It

is, however, unnecessary. 〈z〉 can be calculated using a trick that is widely

used in statistical mechanics: first we note that we can rewrite it as

〈z〉 = − d

dα
lnZ(α) , (1.1.52)

where Z(α) stands for the integral in the denominator of (1.1.51) and

α stands for mg/kT . The dimensions of α can be evaluated either di-

rectly from the explicit expression or from the knowledge that zα, the

exponent in (1.1.51), must be dimensionless. The results are, of course,

identical:

[α] = [length]−1 = [L]−1 .

Since the integral Z(α) has the dimensions of length, and as there is

no other variable with dimensions of length in the problem, it must be

proportional to 1/α.

If we write Z(α) = K/α, whereK is a constant, we immediately obtain

the average height of a molecule from (1.1.52):

〈z〉 = 1

α
=
kT

mg
. (1.1.53)

Exercise 1.15

Show that the average square deviation (the variance) of the height of the

molecules is given by

(∆z)2 ≡ 〈(z − 〈z〉)2〉 = d2

dα2
lnZ(α) . (1.1.54)

Solution on page 85
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Exercise 1.16

Assume that in Eq. (1.1.32) the potential is given by

U(z) = U0z
n .

Using only dimensional arguments calculate 〈zn〉 and 〈U(z)〉.
Solution on page 86

In a similar manner the Maxwell distribution, Eq. (1.1.49), determines

the averages of functions of the velocity. Now we can calculate the averages

of different powers of the velocity — called moments of the distribution

— with the help of dimensional arguments.

First of all it is clear that the average of v, in the distribution (1.1.49),

is zero. The average of 〈|v|2〉 in this distribution, which is also the average

square deviation, is given by

〈|v|2〉 = − d

dα
lnZ(α) , (1.1.55)

where this time

Z(α) =

∫
e−α|v|

2
dτ (1.1.56)

and

α =
m

2kT
. (1.1.57)

Dimensional analysis gives

[α] = [velocity]−2 ,

[Z(α)] = [velocity]3 .

Since the only dimensional quantity in Z(α) is α, it must be that

Z(α) = Cα−3/2 , (1.1.58)

and substituting this into Eq. (1.1.55) we obtain

〈|v|2〉 = 3

2α
=

3kT

m
, (1.1.59)

which is equivalent to (1.1.5). See also (1.1.48).
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Exercise 1.17

(a) How does 〈|v|2〉 vary with the dimensionality of space?

(b) If a gas is placed in a three-dimensional harmonic potential,

U(r) =
1

2
C|r|2 ,

what is the average square separation (the average square distance)

of a molecule from the center of force?

(c) Under the conditions of (b), show that the average potential energy

per molecule in the gas is

〈U(r)〉 = 1

2
DkT , (1.1.60)

where D is the dimensionality of space.

Solution on page 87



Chapter 2

Brownian Motion

2.1 Historical background

The fact that each degree of freedom of a particle which is in equilibrium

with gas molecules has an average kinetic energy equal to that of a degree

of freedom of the gas molecules, i.e. 1
2kT , has far-reaching consequences.

The possibility of explaining the motion of small specks, hovering in a

gas or in a liquid, within the framework of the kinetic theory was, from a

historical point of view, the most important of these consequences, due to

its contribution to the resolution of the ideological struggle for and against

the atomic structure of matter. This titanic struggle went on during

the second half of the nineteenth century and involved the prominent

physicists of that era. We can learn of its acuteness from the fact that

even in the beginning of this century one of the pillars of physics — Ernst

Mach — could be heard to say:

“If the belief in the existence of atoms is so crucial in your eyes, I

hereby withdraw from the physicist’s way of thought. . . ”

An even stronger evidence for the heat of the debate is the fact that

the sharp criticism that was aimed at Ludwig Boltzmann seems to have

contributed to his suicide in 1906.

The experiment by the botanist Robert Brown, concerning the drifting

of specks with radii on the order of micrometers (1µm = 10−6 m) in

liquids and in gases, had been known since 1827. However, only in 1905

did Einstein explain the phenomenon. Within his explanation, which was

based on the kinetic theory, Einstein connected in a quantitative manner

the Brownian motion and quantities that appear in the kinetic theory —

such as the coefficients of mobility and viscosity — and he brought the

debate to a conclusion in a very short time.

But the importance of the subject far transcends the resolution of

the heated debate about atomism. This subject is also of great practical

32
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importance: understanding the effect of the thermal motions of atoms

on sensitive instruments that are not too heavy and are in equilibrium

with their surroundings, is very important for understanding the limits

on the sensitivity of very accurate measuring instruments. Among these

are the galvanometers, which are based on the deviations of a small mir-

ror hanging from a thin thread, and the voltage variations in sensitive

electric circuitry containing resistors. The random motion, which is due

to the equipartition of thermal energy, is a source of “noise” in many

systems. The theoretical treatment of Brownian motion is a workshop for

the understanding of such phenomena. Moreover, the treatment of this

subject begins to shed some light on the deep and important problem of

the connection between thermal fluctuations and the “erosion of energy” energy
dissipation(dissipation), or frictional phenomena.

2.2 Characteristic scales of Brownian motion

The sort of phenomenon we are about to treat is schematically as follows:

a large body hovers in a crowd of tiny particles — as a giant bear floats in

a huge crowd of bees (see Winnie the Pooh, Chapter 1).

The tiny particles are moving to and fro. In this process they make

many fast knocks against the large body. The knocks are random and

each has a very small effect on the body, since the ratio of the mass of the

body to that of the particle is very large.

The hovering particles that Robert Brown was able to see under his

microscope have a diameter of a few micrometers. To acquaint ourselves

with the data of the problem described in Fig. 1.2.1, we suppose that

the body is hovering in a gas under standard conditions. The density of

such a gas is n ≈ 1026 m−3. The thermal energy of a particle at room

temperature is

ε ≈ kT ≈ 5× 10−21 J

(k is the Boltzmann constant). We are interested only in orders of mag-

nitude, so the factor 3/2 was omitted. We will assume that the density

of the body is a tenth of a gram per cm3. Its mass will therefore be

M ≈ 10−16 kg.

From the assumption that the body is in thermal equilibrium with

the gas, we can deduce that its typical velocity is 10−2 m s−1 (check

this). Similarly, if we take a typical value of 10−26 kg for the mass of the

surrounding molecules, the molecular velocities will be 103 m s−1.
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1µm

1Å

➤➤

➤

➤

Fig. 1.2.1 A body executing Brownian motion.

Exercise 2.1

Calculate, for the above data, the velocity which a molecule of typical

velocity can impart to the body in a head-on elastic collision.

Solution on page 88

Another scale that characterizes the situation is the distance that the

body can traverse between two collisions. This distance is called the mean

free path, or simply the free path (see also Chap. 3). In order to find themean free
path orders of magnitude of the free path, we apply the following consideration:

if the body were to move, parallel to itself, a distance L (Fig. 1.2.2), it

would bump into N = n · (S · L) molecules, where n is the gas density

and S is the cross section area of the body. In order to bump into one

molecule the body must traverse, typically, a distance L such that N = 1.

Namely

L =
1

nS
. (1.2.1)

L
➤➤

➤

S cross section

Fig. 1.2.2 Motion of a body in gas.
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Under the conditions of our problem L ≈ 10−14 m (do check), so

that even using a very advanced microscope we are unable to discern

isolated events: the motion will seem continuous and smooth, but lacking

a preferred direction.

Along with the free path, L, it is possible to define the correspond-

ing time scale, mean free time, which, as indicated by its name, is the mean free
timetime it takes for a particle to traverse a distance L. In our case τ ≈

10−12 s, which means that the body gets hit by 1012 molecules per

second!

2.3 Random walk

If we follow the motions of different bodies from an initial time t = 0, we

see that each body follows a different trajectory, reflecting the randomness

of the collisions. The average over many trajectories of the displacement,

R, of each body from its initial position gives zero. However, the average

square distance is not zero. Experiments show that it grows linearly with

time. Namely

〈R2〉 = αt . (1.2.2)

Thus if, for example, at time t = 0 all the bodies were at the same location,

they would gradually move from their initial location so that most of them

would be found near a sphere of radius proportional to t1/2. The major

achievement in Einstein’s work, as already mentioned, was that the atomic

assumption and the use of the kinetic theory enabled him to express α in

terms of other quantities of the kinetic theory. How this can be done will

be shown in the following paragraphs.

First we inquire whether Eq. (1.2.2) fits a simple intuitive picture of

the nature of the process. We assume, for the sake of simplicity, that the

collisions of the body with the molecules cause it to move as in a random

walk. A two-dimensional example of such a walk is shown in Fig. 1.2.3.

The sketched walk consists of 36 steps. The characteristic of such a walk, a

drunk’s walk from a bar, is a series of steps of more or less constant length,

that are randomly directed, in the corresponding space — two-dimensional

for the drunk, three-dimensional for the hovering body. Obviously, every

drunk will reach a specific point, in a given series of steps. We cannot say

where every particular walk will arrive; however, we will have something

to say about the average location of a group of drunks who leave the bar

together. You may be surprised to find that we do not need to compute

the probability of reaching every location. We can get along with a few

very general considerations.
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B

A

Fig. 1.2.3 Thirty-six steps in the walk of a drunk.

We will assume that the length of a step is L, that after N steps the

drunk has reached the point RN , and that his next step will be in the

direction n (n is the unit vector, which determines the direction of the

next step). After N + 1 steps the position of the drunk will be RN+1:

RN+1 = RN + Ln . (1.2.3a)

First, clearly, the average position of the drunks remains at the bar,

since each one of them moves in a different direction, 〈RN 〉 = 0 (see also

Exercise 2.2). We can learn about the extent of the scattering of the

drunks from the square distance from the initial position, which is given

by

R2
N+1 = (RN + Ln)2 = R2

N + L2 + 2Ln ·RN . (1.2.3b)

(Note that we used the fact that n2 = 1.)

We apply the randomness argument to Eq. (1.2.3b) in the following

manner: we average both sides of the equation. The fact that the direction

of n is random with respect to RN leads to a zero average for the last

term on the right hand side [cf. (1.1.9)]. The conclusion is that

〈R2
N+1〉 = 〈R2

N 〉+ L2 , (1.2.4)

from which it is immediately inferred that

〈R2
N 〉 = NL2 . (1.2.5)
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L2 is constant and N is the number of steps, which is proportional to the

duration of the walk, so that the result of Eq. (1.2.5), is not different from

that of Eq. (1.2.2).

Finally, we note that exactly the same results can be obtained if we

interpret the averages in Eqs. (1.2.4) and (1.2.5) as averages over time for

a single drunk, in the following manner:

We observe a certain drunk over a very long period of time — a large

number of steps. Every point along the drunk’s path can be considered as

an initial point (assuming that the effect of the liquor does not diminish).

Every such point can be considered as the origin of a coordinate system.

For every such choice it is possible to find the point that is reached by the

drunk after N additional steps. In a coordinate system whose origin is at

that initial point the drunk will be at RN .

After reaching RN the drunk will take his next step in a random

fashion (for if it were not so he would not be drunk); this means that for

every choice of an initial point Ln will point in a different direction. The

averaging over all the choices of the initial point is the averaging from the

second point of view.

Exercise 2.2

Prove that for both points of view 〈RN 〉 = 0.

Solution on page 89

2.4 Brownian motion, random force and friction:
the Langevin equation

The treatment we use below is not exactly the same as that formulated

by Einstein in 1905, but is similar to the formulation by his close friend,

Pierre Langevin, a short while later (1908).

We describe the center of mass motion of a body in a gas as it evolves

under an external force Fe and friction, i.e. a restraining force. The equa-

tion of motion is

M r̈+ µṙ = Fe . (1.2.6)

A simple example of the appearance of a restraining force that is proportional to the
velocity can be found in Self-Assessment Exercise 6 of this part.

µṙ is the restraining force, proportional to the velocity — this is a typical

description of a frictional force. µ is a friction coefficient and is connected,

as will be mentioned later, to the viscosity. First, let us elucidate the role

of the friction term in Eq. (1.2.6). We do this by way of the following

exercises:
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Exercise 2.3

(a) Calculate the dimensions of µ.

(b) Show that in the absence of an external force the velocity of the body

tends to zero for long times, even if its initial value is different from

zero, i.e. the friction restores the system to equilibrium.

Solution on page 89

We will not enter here into an involved discussion of the connection

between µ and the viscosity. We will limit ourselves to the following

description: The viscosity describes an internal friction between different

layers of the fluid (see also Sec. 3.6 below). A body in motion through

a liquid drags along nearby liquid layers, giving rise to friction between

successive liquid layers. This friction is expressed as a restraining force

that acts on the body and is proportional to its velocity. If the body is

a ball of radius a then the proportionality coefficient is especially simple,

as was found by Stokes: F = 6πaηv. η is called the viscosity coefficient.

Its dimensions are [M ][L]−1[T ]−1, i.e. mass divided by length and time,viscosity

and its units in cgs are poise, P. (1P = 10−1 kg m−1 s−1.) For a gas, η is

about 10−4 P; it is 10−2 P for water and 8.5 P for glycerine.

Exercise 2.4

The one-dimensional system (1.2.6) with Fe = mg describes a sky diver

in a gravitational field in air. Solve the equation, and verify that for long

times the velocity of the sky diver is constant. What are long times?

Solution on page 90

The solution to Exercise 2.4 indicates a way of measuring µ directly.

The method is the same as that used for measuring the viscosity. Namely,

bodies are dropped in a gravitational field in a certain medium and their

final speed is measured. Its absolute value is Mg/µ.

From the fact that the frictional force causes the sky diver of Exer-

cise 2.4 to accelerate at a slower rate than in a free fall, it follows that its

total energy decreases with time.

Exercise 2.5

Show that if Fe is a force derived from a potential, then the rate of change

of the total energy of a body whose motion is described by Eq. (1.2.6) is

dE

dt
= −µṙ2 .

This is the rate of energy dissipation.
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Reminder: the connection between the force and the potential is given by F = −∇U ,
where U is the potential energy.

Solution on page 91

We have seen, therefore, that due to the friction µṙ the particle can

lose energy with time. Where does the friction come from and where does

the energy go to?

The friction that restores the body to equilibrium originates of course

from the numerous fast collisions with the gas molecules. These collisions

also give rise to the Brownian motion of the body. The connection between

µ and microscopic factors will be considered in the next chapter. Here

we note that µṙ is part of the effect of the momentum exchange between

the gas molecules and the body, due to collisions. In these momentum

exchanges the body transfers more energy to the gas molecules than it

receives from them, due to the fact that in the direction of motion the

body makes more frequent and harder collisions than it makes in the

opposite direction. In other words, the energy of the body dissipates.

Beyond the damping effect of the collisions with the molecules, these

fast momentum exchanges contribute a sort of random force, Fe, that acts

on the body in the absence of any external force.

We make here two remarks:

(a) The randomness of the force Fe is expressed by the fact that, if

we average over many particles (averaging over an ensemble), or ensemble

over different initial times, we get

〈Fe〉 = 0 (1.2.7)

as well as

〈r · Fe〉 = 0 . (1.2.8)

Compare this with the discussion in Sec. 2.3. Figure 1.2.4 shows a

series of graphs that describes the behavior with time of a random

force. The series can be read as an ensemble of different systems,

or as different time intervals in the behavior of the same system

along the time axis.

The effect of a random force acting on one system can be

substituted by random forces acting on many systems. The as-

sumption that these two approaches lead to the same result, an

assumption that seems so natural, is called the ergodic hypoth-

esis. The generality of its validity is still the subject of active

research.

(b) It is especially important to note that, if we were to assume that

the entire effect of the collisions amounts to the appearance of
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a random force, i.e. µ = 0 in Eq. (1.2.6), the result would have

been that the body could maintain a constant average velocity,

without re-equilibrating with its surroundings. The fact that the

average velocity is conserved, in the absence of friction, is inferred

from the observation that the average of a random force is zero

— Eq. (1.2.7). Hence, if we substitute µ = 0 in Eq. (1.2.6) and

average both sides we obtain

d

dt
〈ṙ〉 = 0 .

system 1

system 2

system k

➤

➤

➤

➤

➤

➤ t1

F1

F2

Fk
t2

t

t

t

Fig. 1.2.4 Random forces.

Exercise 2.6

Show that the above result is an immediate consequence of Eq. (1.2.6).

Solution on page 92

The practical summary of the discussion above is, therefore, that the

effect of the collisions can be written (following Langevin) as a sum of two

contributing forces: one gives rise to the friction term and is proportional

to the velocity, while the other is the random force that we called Fe.

Equation (1.2.6) with a random force Fe is the Langevin equation.
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2.5 Solving the Langevin equation: approximations
and orders of magnitude

Let us suppose that the force Fe in the Langevin equation (1.2.6) is the

random force due to collisions with the gas molecules only, and attempt to

deduce the time variation of the average square displacement of the body,

〈r2〉. Our aim is to show that this system, described by Eq. (1.2.6), has

a solution that describes Brownian motion. We expect, therefore, 〈r2〉 to
be proportional to the time.

Since the solution involves analytic arguments along with statistical

arguments, we shall discuss it in detail. As we are interested in the change

of the magnitude 〈r2〉, we first obtain an equation for r2:

1

2
M
d2r2

dt2
+

1

2
µ
dr2

dt
−M ṙ2 = r · Fe . (1.2.9)

Note that Eq. (1.2.9) goes beyond the familiar context of differential

equations. Beside functions of t and their derivatives, it contains a random

element corresponding to some temporal sequence of the force, Fe, as those

exemplified in Fig. 1.2.4. It is a stochastic differential equation. Here we stochastic
differential
equation

will restrict ourselves to a few comments concerning such equations:

(a) To any given sequence, Fe, corresponds a particular solution;

(b) The solution corresponding to any particular sequence of the random

force is of little interest;

(c) A quantity can be significant only if it is not strongly dependent on

the particular sequence;

(d) Such a quantity can be calculated by averaging over all “acceptable”

sequences, just because it is insensitive.

(e) The “acceptable” set of sequences, the ensemble, has to be specified.

The transition from Eq. (1.2.6) to Eq. (1.2.9) is obtained by taking

the scalar product of Eq. (1.2.6) with r and using the identities

d

dt
r2 = 2r · dr

dt
,

(1.2.10)
d2

dt2
r2 = 2r · d

2r

dt2
+ 2ṙ2 .

Exercise 2.7

Complete the deduction of Eq. (1.2.9).

Solution on page 92

The next step is to average both sides of Eq. (1.2.9) over the ensemble,

simplifying the right hand side with the help of Eq. (1.2.8). In this manner
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we obtain a differential equation for 〈r2〉:
1

2
M
d2

dt2
〈r2〉+ 1

2
µ
d

dt
〈r2〉 − 2

〈
1

2
Mv2

〉
= 0 ,

where v was substituted for ṙ.

The last average on the left hand side can be evaluated, at equilibrium,

by the equipartition principle. Every degree of freedom, for each dimen-

sion of space, is assigned an energy of 1
2kT . The last term is therefore

DkT , where D denotes the number of dimensions of space.

Thus the equation becomes

Mü+ µu̇ = 2DkT , (1.2.11)

where we denoted 〈r2〉 by u. This equation can be fully solved. The

initial conditions are chosen to be r(t = 0) = 0, namely the origin of the

coordinate system of each body in the ensemble is chosen as its position

at t = 0. In this case u(t = 0) = u̇(t = 0) = 0, and

u(t) =
2DkT

µ

[
t+ θ(e−t/θ − 1)

]
, (1.2.12)

where

θ =
M

µ
. (1.2.13)

Exercise 2.8

Check that Eq. (1.2.12) is in fact the solution to Eq. (1.2.11), satisfying

the initial conditions, and that the parameter θ has the dimensions of

time.

Solution on page 93

Let us inquire what happens to the body a very short and a very

long time after the initiation of its motion, and compare to our physical

intuition. Short and long times must be measured with respect to a char-

acteristic time appearing in the problem. In our case this characteristic

time is θ. That is, at short times t 	 θ, it is possible to expand the

exponential in Eq. (1.2.12):

u(t) = 〈r2〉 ≈ DkT

M
t2 . (1.2.14)

ex = 1 + x + x2

2! + x3

3! + · · · .

Putting it simply, at very short times, relative to times between col-

lisions, the body moves as a free particle with constant velocity. The
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constant velocity is the thermal velocity as determined at equilibrium,

i.e. vT = (DkT/M)1/2. Notice that although we considered short times

we have not ignored the body’s previous collisions (before t = 0), which

allowed it to acquire thermal velocity. Otherwise our entire discussion

of short times is invalid, since without thermal velocity we cannot use

Eq. (1.2.11).

For long times t 
 θ, the exponential decays away, and θ can be

neglected, in this limit, compared to t. So

u(t) = 〈r2〉 ∼ 2DkT

µ
t . (1.2.15)

This result is the same as Eq. (1.2.2), with a bonus of a relation between

the coefficient α and the macroscopic characteristics of the problem:

α =
2DkT

µ
. (1.2.16)

To obtain an idea of the orders of magnitude of the times for which the

two approximations are valid, we compute the magnitude of the time θ.

To this end, let us assume that our Brownian particles are spherical. This

will allow us to use Stokes’ law for a sphere: µ = 6πηa. We further assume

that the small sphere is floating in water, whose viscosity is η = 10−2 P.

The particle’s mass, whose radius is about one micrometer and whose

specific weight is close to that of water, will be about 5× 10−12 g, so that

M

µ
≈ 2× 10−7 s .

This means that in any reasonable experiment, lasting more than

10−3 s, we will not notice the region t 	 θ but only the region t 
 θ.

Hence, the average square distance of the body from its initial position,

will be linear with time.

We further remark on the role of D — the dimensionality of space —

in Eq. (1.2.16). In experiment 〈r2〉 is usually measured in a space whose

dimensionality is less than that of the space in which the body actually

moves. This happens, for example, when we measure the projection of

the position of the body on the focal plane of the microscope lens. In this

case D = 2, though the body’s real motion is in three-dimensional space.

As already mentioned, µ and η can be measured directly. With the

help of the Brownian motion, i.e. with the help of Eq. (1.2.16) it is pos-

sible to measure the Boltzmann constant k. Combining this with the

gas equation which gives R, it is possible to obtain Avogadro’s number.

Indeed, this is how J. Perrin obtained the first precise determination of

Avogadro’s number in 1908.
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2.6 Applications and implications

The Brownian behavior — the fluctuations that are induced in the motion

of a fine system as a result of the thermal agitation of the surroundings

with which the system is in equilibrium — appears in different contexts.

We shall here elaborate on the two cases that were mentioned in Sec. 2.1.

But before doing that let us broaden the discussion in Secs. 2.4 and

2.5, even if in a somewhat artificial manner. Let us assume that the

floating body is attached to a spring connected at the origin. In this case

Eq. (1.2.6) will take the form

M r̈+ µṙ+ Cr = Fe . (1.2.17)

The last term on the left hand side originates, of course, from the work

required in order to stretch the spring ( 12Cr
2). Since it is quadratic in r,

the thermal average of 1
2Cr

2 is given by the equipartition principle, and is

identical to that of the kinetic energy, as in Eq. (1.1.60) of Sec. 1.6. That

is, at thermal equilibrium (and only then)〈
1

2
Cr2

〉
=

〈
1

2
M ṙ2

〉
=

1

2
DkT . (1.2.18)

If we perform on (1.2.17) the same operations that brought us from

Eq. (1.2.6) to Eq. (1.2.9) and to Eq. (1.2.11), we obtain for u = 〈r2〉 the
equation

Mü+ µu̇+ 2Cu = 2DkT . (1.2.19)

Exercise 2.9

Derive the above equation.

Solution on page 93

Equation (1.2.19) appears exactly like the one-dimensional version of

Eq. (1.2.17), except that instead of the random external force a constant

force is acting. Alternatively, it is possible to transfer the “force” 2DkT

to the left hand side, and to imagine that u describes the displacement of

the spring not from a loose state but from a state in which it is stretched

on average according to 2Cu = 2DkT . Thus, if we define a new variable

v = u − DkT/C we obtain an equation that is identical to the equation

of a damped harmonic oscillator:

Mv̈ + µv̇ + 2Cv = 0 . (1.2.20)

The solution to Eq. (1.2.20) includes an exponentially decaying factor,

as for the case C = 0, in addition to a restoring force (2Cv) producing
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vibrations around v = 0. Thus, even without investigating the solution

in detail we can reach the conclusion that at long times v tends to its

equilibrium value, i.e. zero, and that u tends to its equilibrium value,

DkT/C, as inferred from Eq. (1.2.18).

If we search for a solution of the form e−γt, we find that the substitu-

tion in Eq. (1.2.19) gives two possible values (both positive) for γ:

γ1,2 =
1

2θ

(
1±

√
1− 8CM

µ2

)
, γ2 > γ1 . (1.2.21)

And the solution corresponding to the initial conditions u(t = 0) =

u̇(t = 0) = 0 is

〈r2〉 = u(t) =
DkT

C

(
1− γ2e

−γ1t − γ1e−γ2t
γ2 − γ1

)
. (1.2.22)

Indeed, for long times 〈r2〉 tends to its equilibrium value. (See also

Fig. 1.2.5.)

DkT
C

t

<r2>

Fig. 1.2.5 A graphic representation of Eq. (1.2.22).

Finally, we note that when the square root in Eq. (1.2.21) becomes

imaginary, i.e. when the damping is small, the exponential solution be-

comes a solution of damped oscillations. This solution also tends to

DkT/C at long times.

Exercise 2.10

Obtain Eq. (1.2.22), and check its short time behavior. When is u(t) a

linear function of time?

Solution on page 93

Notice that the behavior at times which are not too long resembles

that of ordinary Brownian motion without an elastic force. At first u
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grows quadratically with time, when the effect of the collisions and of the

elastic force are still negligible. Later, when the effect of the collisions

starts to be significant, but the elastic force is still negligible, the body

does indeed move as in Brownian motion. In contrast, at long times the

elastic force dominates and does not allow further separation beyond the

limit set by the temperature. This situation does not describe a group

of drunk people who move freely from the moment they leave the bar,

but rather a group of drunk horses that are tied by flexible straps at the

entrance to the bar.

A more physical example for this state of affairs is the galvanome-

ter. This instrument is used to measure very small currents, by means of

the very small angles of rotation of a quartz whisker that these currents

induce. We shall not halt here to explain how the currents induce the

rotations of the whisker, but rather concentrate on the way these rota-

tions are measured. A tiny mirror is connected to the whisker. Light

is projected on the mirror and the angle of rotation φ of the whisker is

measured by registering the angle into which light is reflected from the

mirror, on a scale (see Fig. 1.2.6).

➤

➤

lightφ deflection
angle

Fig. 1.2.6 Measurement of the angle of reflection in a galvanometer.

Here as well, the mirror and the quartz whisker are in thermal equi-

librium with the surrounding gas. The rotations of the whisker have a

kinetic energy that depends on the moment of inertia of the system, i.e.
1
2Iφ̇

2, and a potential energy U = 1
2aφ

2, where −aφ is the restoring force

of the whisker. In this case the temporal behavior of φ(t) is determined

by Eq. (1.2.17), with the following substitutions:

dimensionality D = 1 , C → a , M → I , r→ φ .

Here, too, there exists a random force or torque, originating from the

collisions of the whisker and the mirror with the gas molecules, that gives
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a friction term µφ̇, which restores equilibrium, as well as the force Fe,

whose average vanishes.

The result is that even in the absence of a current, deviations will ap-

pear due to thermal fluctuations. The average square angular deviations

will be given by Eq. (1.2.22) in terms of the parameters of the galvanome-

ter. For long times one finds

〈φ2〉 = kT

a
,

which is appropriately dimensionless. This is a noise that limits the pre-

cision of the instrument. In order to reduce it, the instrument has to be

cooled. But where? The answer can be found in Sec. 2.4. The fluctuations

that give rise to 〈φ2〉 are the ones that produce the friction, and therefore

the part in which friction is created has to be cooled. This can be, for

example, the mirror which suffers collisions with the gas molecules. In

this case the gas has to be cooled.

Exercise 2.11

How can we measure the restoring force constant a of the whisker?

Solution on page 94

In Sec. 2.5 we saw that the characteristic time for Brownian motion

θ = M/µ is very short — 10−7 s. Thus, it is impossible to observe in

an experiment on Brownian motion the exponential decay to the linear

region. Here, on the other hand, θ = I/µ, but µ can be reduced by

reducing the pressure of the gas, making it possible to increase θ up to

measurable magnitudes and to check the predictions of the theory in great

detail, as was done by Kappler in 1931.

Finally, we mention another analogous instance — the Johnson noise, Johnson
noisecaused by the fluctuations in a resistor, of a resonating circuit with a

high Q factor (see Fig. 1.2.7). The thermal fluctuations, caused by the

collisions of electrons, which form the current I, with the atoms in the quality
factorresistor, produce also here the double effect — resistance R, which damps

the system and drags it towards equilibrium at zero current, and a random

induction

resistor

L

C

R

capacitor

Fig. 1.2.7 A resonating circuit. A high Q value means that the circuit amplifies
significantly only in a very narrow band around the resonant frequency ω = 1/

√
LC.
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(electromotive) force. The equation of the circuit determines the charge

on the capacitor q:

Lq̈ +Rq̇ +
q

C
= Ve . (1.2.23)

Here C is the capacitance, L the induction and Ve the random electro-

motive force originating from the fluctuations in the resistor. This is the

Langevin equation, analogous to Eq. (1.2.17), with the substitutions

D = 1 , Fe → Ve , C → 1

C
, µ→ R , M → L , r→ q .

We are of course interested not in the solution to Eq. (1.2.23), but in

the solution to the equation that determines the time dependence of 〈q2〉
or of the directly measurable quantity 〈V 2〉, where V = q

C is the voltage

across the capacitor. The equation obtained for 〈V 2〉 has the same form

as Eq. (1.2.19), which was solved in detail.

But even without solving the equation we can reach the following

conclusions: the first term of Eq. (1.2.23) comes about from the “kinetic

energy” term, 1
2LI

2, while the last term originates in a “potential energy”

term, q2

2C . Therefore, at equilibrium we obtain an equation that resembles

Eq. (1.2.18): 〈
q2

2C

〉
=

〈
1

2
LI2

〉
=

1

2
kT . (1.2.24)

Since there are charge fluctuations, there will also be voltage fluctuations

(Johnson noise), which are

〈V 2〉 = kT

C
(1.2.25)

or

〈V 2〉 = ω2LkT , (1.2.26)

where ω is the resonant frequency of the circuit.



Chapter 3

Transport Coefficients

3.1 Introduction

One of the strong objections against the kinetic theory of Maxwell and

Boltzmann was known as “slow diffusion.” In simple words, according diffusion

to the kinetic theory, the average (thermal) velocities in gases in stan-

dard conditions are about 103 m s−1. Hence, if a gas is inserted at one

end of an empty container, the molecules should appear at its other end

within a fraction of a second. However, this is not what is observed in

experiment.

In order to cope with this observation Clausius introduced (in 1889)

the concepts of mean free path and mean free time. He asserted that

it is true that the average distance between molecules in a gas is large

compared to the size of the molecules, but because of the high speeds the

molecules collide very frequently, changing their direction of motion, so

that the gas moves in a given direction at a speed that is much lower than

the thermal speed — it moves at the diffusion speed.

The concept of a mean free path, the average distance traversed by mean free
patha molecule in the gas between two collisions, is a very central concept of

the kinetic theory (it was mentioned in Sec. 2.2 in connection with the

Brownian particle). Directly connected with the mean free path is the

mean free time, which is the average time between consecutive collisions mean free
timein the gas. In other words, this is the average time during which the

molecule moves as a free particle.

The clarification of the concept of a mean free path and its quantitative

evaluation opened the way for the calculation of many important quanti-

ties, transport coefficients, amongst which we find the mobility, diffusion

coefficients of sorts, the viscosity, thermal conductivity and more.

The transport coefficients describe the behavior of the system when

there is a slight deviation from an equilibrium state. Such a deviation can

be caused by the application of an external force (in the cases of mobility

49
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and viscosity) or by creating concentration gradients (in the case of diffu-

sion) or temperature gradients (in the case of thermal conductivity). Such

deviations from equilibrium create currents, which drive the system back

to equilibrium. The ratios between the currents and the disturbances that

create them are the transport coefficients. All of these will be treated in

this chapter.

3.2 The mean free path and mean free time

The problem at hand is the calculation of an average distance, <, for which

an average gas molecule will collide at least once — this is the mean free

path. For the sake of simplicity we will suppose that the molecules are

rigid balls, of radius a, so that their trajectories change only when there

is direct contact between them. This is a reasonable approximation for

the noble gases.

If we will know <, as a function of the characteristic parameters of the

gas (temperature, density, molecular radii, etc.), we will be able to obtain

the mean free time from

τ · v̄ = < , (1.3.1)

where v̄ is the average velocity of the molecules.

➤ ➤

π(2a)2

➤➤
L

Fig. 1.3.1 Collision cross section of a rigid ball of radius a.

We start with a very rough calculation, in the spirit of Sec. 2.2, and

proceed to a more sophisticated and complicated calculation, which ex-

poses some of the approximations made in the rough calculation, and of

their precision. Figure 1.3.1 visualizes the fact that a molecule moving in

a straight line will collide with every molecule whose center is found in

a cylinder along its directon of motion whose radius is twice the radius

of the molecule. The number of molecules in a cylinder of this radius

and length L is (4πa2L)n, where n is the density. The average distance

traversed by a molecule until the first collision is the distance in which
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the average number of molecules in this cylinder is 1. Hence

< =
1

4πa2n
. (1.3.2)

We will make a few remarks on this simple expression. First, clearly, the

true meaning of the size 4πa2 is: the cross section for the collision of two

molecules. cross section

Scattering cross section: the area normal to the direction of motion, such that every
molecule that passes through it is bound to collide with the target. In our case this is
a circle whose radius is twice the radius of a molecule.

Second, the properties of <, as reflected from Eq. (1.3.2), correspond

nicely with intuition. As the density of molecules or their cross section

areas increase, < must decrease.

Exercise 3.1

Is the dependence on n and a, together with a dimensional analysis, suf-

ficient to lead to the expression (1.3.2) for <?

Solution on page 95

Third, the arguments we used are very rough, and may be criticized in

many respects. Some of the implicit assumptions in this calculation will

remain even in the more detailed calculation that will be made below.

Exercise 3.2

What are the implicit assumptions of the above calculation?

Solution on page 95

We now want to calculate the mean free path and the average time

between collisions, namely the mean free time, in a more precise fashion,

while still retaining two simplifying assumptions:

(a) The gas is dilute so that collisions occur only between pairs of

molecules.

(b) The molecules behave as rigid balls of radius a.

Before turning to the calculation of the mean free time we calculate a

simpler quantity that will be useful later on, that is the average rate at

which the molecules beat against a unit area of the side of the container.



52 Ch. 3 Transport Coefficients

➤

➤

–z

v

A
θ

Fig. 1.3.2 A molecule with velocity v will strike an area A of the side of the container.

Actually we almost calculated this quantity on our way to Eq. (1.1.3).

The number of molecules striking an area A during time ∆t and whose

velocity component normal to the surface is vz, was found in Sec. 1.1 to

be

∆N(vz) = vz∆tAn(vz) , (1.3.3)

where n(vz) is the density of molecules of velocity vz.

Notice that what we called the x direction in Sec. 1.1 we here call z.

In order to find the total number of molecules that strike the surface,

we have to sum over all the values of the velocity vz such that vz > 0,

since molecules for which vz < 0 are moving away from the surface and

will not strike it. We have

∆N = A∆t
∫ ∞
0

vzn(vz)dvz . (1.3.4)

The distribution of the velocity component vz is given by the one-

dimensional Maxwell distribution obtained from the integration of f( v)

[see Eq. (1.1.49)] with respect to all values of vx and vy:

n(vz) =
N

V

∫
f(v)dvxdvy . (1.3.5)

Substituting this into Eq. (1.3.4) we obtain

∆N = A∆t
N

V

∫
vz>0

vzf(v)dvxdvydvz . (1.3.6)

Now, because the velocity distribution is isotropic (there is no pre-

ferred direction for the velocities) f(v) depends, actually, only on the

absolute value of the velocity, v, as is seen on the right hand side of

Eq. (1.1.49). Thus, we can perform the integration over all possible an-

gles separately from the integration over v. Because vz = v cos θ and

dvxdvydvz = v2 sin θdvdθdφ, we find that

∆N = A∆t
N

V
2π

∫ ∞
0

v3f(v)dv

∫ π/2

0
cos θ sin θdθ . (1.3.7)
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Note that θ can vary only up to π/2 — reflecting the fact that we are

only taking into account molecules that are approaching the side (vz > 0).

The second integral is simple to evaluate and its value is 1/2. A closer

look at the first integral reveals that it is proportional to the average of

the absolute value of the molecular velocity, v̄, since

v̄ = 〈|v|〉 =
∫
f(v)|v|dvxdvydvz = 4π

∫ ∞
0

f(v)v3dv . (1.3.8)

We have found, therefore, without making any assumptions about the

form of the velocity distribution apart from the assumption of isotropy,

that the rate at which molecules strike a unit area of a side, ν, is

ν =
1

4
nv̄ . (1.3.9)

If the velocity distribution is given explicitly it is possible to express v̄

in terms of the characteristic quantities of the gas. For example, if the

velocity distribution is Maxwellian we find

ν = n

√
kT

2πm
. (1.3.10)

Exercise 3.3

(a) Derive Eq. (1.3.10).

(b) Calculate the escape rate of the gas molecules from a container with

a small hole of area A at its side.

Solution on page 96

Next we calculate the average time between two consecutive collisions

of a given molecule. We apply considerations of the type introduced in

computing the mean free path. As we said there, for a given molecule to

encounter another, it must travel a distance 1
4πa2n . If one molecule is sta-

tionary and the other is moving, this distance is crossed in a time 1
4πa2nv̄ ,

on the average. But since both molecules are moving, v̄ should be replaced

by the average relative velocity at equilibrium, v̄rel. In Exercise 3.4 we

show that

v̄rel =
√
2 v̄ . (1.3.11)

Exercise 3.4

Prove Eq. (1.3.11).

Solution on page 96
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Hence we find that the mean free time τ is

τ =
1√

2 4πa2nv̄
. (1.3.12)

Our first inclination would be to substitute this expression for τ in

Eq. (1.3.1), and to calculate the mean free path <. If we do this we

obtain a result that is closer to the truth than Eq. (1.3.2), yet not totally

accurate:

< ≈ 1√
2
· 1

4πa2n
= 0.707

1

4πa2n
. (1.3.13)

The reason for this inaccuracy is the fact that the mean free time

for a given molecule depends, as indicated by Eq. (1.3.12), on its veloc-

ity. Thus, the accurate way of calculating < will be to first calculate the

mean free path for a molecule that moves at a given velocity, and then

to average over all the velocities using the Maxwellian distribution func-

tion. The result of this calculation, which will not be performed here, will

be the replacement of the factor of 0.707 in Eq. (1.3.13) by a factor of

0.677.

Exercise 3.5

Show that in a gas under standard conditions the ratio between < and the

intermolecular distance is 103, while the ratio of < and a is 104.

Solution on page 97

Exercise 3.6

Oxygen fills a cubic container with a side of 5 cm, at a temperature of

100◦C.
At what pressure will the mean free path be equal to the size of the

container? What will the mean free time then be?

Solution on page 98

Exercise 3.7

Use the simple argument for calculating the mean free path to obtain the

mean free path in a mixture of gases of densities n1 and n2 and molecular

radii a1 and a2, respectively.

Solution on page 99
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Fig. 1.3.3 The number of molecules that cover a distance s without colliding.

Clearly not all molecules traverse an equal distance between collisions,

and not all of them remain a time τ without collisions. What is, there-

fore, the distribution of the free distances, i.e. the probability of finding

molecules that have traversed a distance s without experiencing a colli-

sion. Actually it is better to think here in terms of numbers of molecules

and to ask how many of the molecules travel a given distance without

colliding. Let us suppose that N0 molecules leave the last collision, and

denote by N(s) the number among them that traveled a distance s with-

out colliding. The number of collisions per unit length is 1/<. Hence, the

average number of molecules that will collide, when the distance grows

from s to s+ ds, is N(s)ds/<, i.e. the product of the number of molecules

that went a distance s without colliding, and the ratio between the extra

distance ds and the distance < required for one more collision.

However, this number is also the reduction in N(s), namely N(s) −
N(s+ ds), where N(s+ ds) is the number of molecules that traveled the

distance s+ ds without colliding. Hence

dN = −1

<
N(s)ds (1.3.14)

and from here

N(s) = N0e
−s/� . (1.3.15)

The actual probability we set out to find is P (s) = 1
� e
−s/�.

Note the difference between:

(a) The probability that the distance traveled by a molecule between two collisions
is exactly s.

(b) The probability that the distance traveled by a molecule between two collisions
is at least s.
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Actually, we mentioned only the distribution corresponding to (b). It is possible
to show that distribution (a) is also exponential.

Exercise 3.8

Prove that the average distance traversed by a molecule without experi-

encing any collisions, with the distribution (1.3.15), is <.

Solution on page 99

Exercise 3.9

Show that the distribution of times between collisions is

N(t) = N0e
−t/τ . (1.3.16)

Solution on page 100

3.3 Self-diffusion

The common diffusion problem deals with a mixture of two materials

(gases in our case), whose relative density changes from place to place.

Thus, without the application of an external force, currents of the two

materials flow — currents that drive the system towards a state of equi-

librium, namely to a spatial uniformity.

The current J is related to the density of the particles n and to their velocities by
J = nv. Sometimes J is called the current density, while the term “current” is used tocurrent

density refer to the product of J and a given area perpendicular to the flow, as is done in the
definition of the electric current.

We will here treat a simpler problem, yet it contains the main ideas.

We will discuss a problem in which the gas is composed of molecules, of

equal mass and equal size, that belong to two distinguishable types. An

approximation to this situation can be found in a mixture of N2O and

CO2 (both with molecular mass of 44), or in a mixture of two isotopes.

The total density is uniform in the container, but the densities of the

constituents vary.

We shall concentrate on one of the constituents and assume, for sim-

plicity, that its density n1 varies in one direction only, which we choose

to be the direction of the z axis. Experiments establish that the current

— the number of particles of the type considered, which cross a unit area

in the xy plane per unit time — is proportional to the derivative of the

density:

Jz = −D∂n1
∂z

. (1.3.17)
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The minus sign signifies that the current flows from high density to low

density

The derivative is partial since n1 depends on time as well.

D is called the diffusion coefficient. Its dimensions are [L]2[T ]−1, and
its units are m2 s−1. As will be seen later on, it is closely connected with

the coefficient α in Eq. (1.2.2), which can also be expressed in terms of

the frictional coefficient and the temperature [see Eq. (1.2.16)].

Note that from now on the letter D stands for the diffusion coefficient and not for
the dimensionality of the system as in (1.2.16).

Typical values for gases, in these units, are 10−5–10−4. For liquids the
typical values are a million times smaller.

The origin of the current and its connection with the density variation

are quite obvious. Because the temperature in the gas is uniform, the

molecules have equal velocity distributions in all directions at every point.

As a result molecules move from place to place at a rate that is equal to

the product of the velocity and the density. This rate is the number

of molecules that will cross a unit area in unit time. Therefore, more

molecules will cross per unit time from a location of high density to a

location of low density than in the opposite direction, since the velocity

distributions are identical at both locations.

This simple argument will now be turned into a quantitative relation-

ship between D and the characteristics of the gas. This will be done in

two ways: the first is simplified, and the second (which appears in the

appendix) is more complex and will indicate the sort of arguments that

need to be made for a more careful calculation.

Simple calculation. The idea is that the molecules that pass through

the plane z = 0 will come on average from a distance which is the mean

free path, above this plane or below it. On average 1/6 of the molecules

have a velocity along +z or −z (1/3 for the choice of a given axis and

1/2 for the choice of direction). The net current density flowing up across

z = 0 is

Jz ≈ 1

6
v̄[n1(−<)− n1(<)] , (1.3.18)

as is depicted, schematically, in Fig. 1.3.4.

If the density n1(z) varies slowly — on a scale of the mean free path

— we can expand the right hand side of Eq. (1.3.18) in powers of <. If we

keep only the linear term, we obtain

Jz ≈ −1

3
v̄<
∂n1
∂z

. (1.3.19)
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Fig. 1.3.4 Pictorial description of Eq. (1.3.18).

A comparison with Eq. (1.3.17) yields

D ≈ 1

3
v̄< . (1.3.20)

Exercise 3.10

Show that at constant temperature the dependence of D on P is given by

D ∝ 1

P
,

and that at a constant pressure

D ∝ T 3/2 .

Solution on page 100

We now draw a few conclusions. First, Eq. (1.3.17) can be generalized

to the case where n1 varies along an arbitrary direction. The generaliza-

tion is simple and can be deduced from geometrical arguments: since the

current is a vector, the right hand side must also be a vector. The vector

that can be created from first derivatives is the gradient, so that

J = −D∇n1 . (1.3.21)

Since the gradient of n1 is directed along the direction of the fastest vari-

ation of n1, it is natural for this to be the direction of the current.

The meaning of Eq. (1.3.21) in terms of components is

Jx = −D
∂n1

∂x
, Jy = −D

∂n1

∂y
, Jz = −D

∂n1

∂z
.

In order to see that ∇n1 is directed along the direction of the fastest variation in n1,
we write the change in n1 between the initial point r and a nearby point r+ ∆r:

∆n1 ≈ ∂n1

∂x
∆x +

∂n1

∂y
∆y +

∂n1

∂z
∆z = (∇n1) ·∆r ,

and it is clear that ∆n1 will be maximal when the angle between ∇n1 and ∆r is zero,
namely when ∆r is in the direction of the gradient.
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left inside:

flow in:

➤ ➤
➤

∆t

(∆n1)∆x∆y∆z

= [n1(t+∆t)–n1(t)]∆x∆y∆z

Jz(z+∆z)∆x∆y∆t

Jz(z)∆x∆y∆t

z

z+∆z

∆x

∆y

flow out:

Fig. 1.3.5 The balance of currents in the region around z.

Second, the number of particles of every type is conserved. This means

that each type of particle satisfies a continuity equation, expressing the continuity
equationfact that the density changes must come from the balance of the current

entering the region around a given point and the current that is leaving

it. For particles of type 1, for example, Fig. 1.3.5 is a pictorial derivation

of the continuity equation

∂n1
∂t

= −∂Jz
∂z

. (1.3.22)

Exercise 3.11

What is the generalization of Eq. (1.3.22) to the three-dimensional case?

Use geometrical arguments.

Solution on page 101

If we substitute Eq. (1.3.17) into Eq. (1.3.22), we obtain the celebrated

diffusion equation diffusion
equation∂n1

∂t
= D

∂2n1
∂z2

. (1.3.23)

For the one-dimensional case, n1 is a function only of z and t. A typical

solution to this equation, with an initial condition that at the time t = 0
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all the particles of type 1 are concentrated at z = 0, is

n1(z, t) =
C√
Dt
e−z

2/4Dt , (1.3.24)

where C = N1/
√
4π is a normalization factor (see Exercise 3.12). The av-

erage square displacement of the particles of type 1 can also be computed

in terms of the solution (1.3.24):

〈z2〉 = 2Dt . (1.3.25)

Exercise 3.12

(a) Verify that Eq. (1.3.24) is in fact a solution to Eq. (1.3.23).

(b) Show that the total number of particles of type 1 does not depend

on time and clarify the meaning of the constant C.

(c) Plot n1(z, t) as a function of t, at a given value of z �= 0.

(d) Prove Eq. (1.3.25) and find the relation between the time needed

for a molecule to traverse a certain distance by diffusion, and the

time it needs to traverse the same distance by free motion at the

thermal velocity.

Solution on page 101

Finally, we note that in the more realistic case of a three-dimensional

system the diffusion equation will take the form

∂n1
∂t

= D

(
∂2n1
∂x2

+
∂2n1
∂y2

+
∂2n1
∂z2

)
(1.3.26)

and the analog of the solution (1.3.24) will be

n1 =
N1

(4πDt)3/2
e−r

2/4Dt , (1.3.27)

where N1 is the total number of particles of type 1: N1 =
∫
n1dV . The

average square distance will in this case be

〈r2〉 = 6Dt . (1.3.28)

A comparison of Eq. (1.3.28) with Eq. (1.2.2) clarifies immediately that

α and D are one and the same apart from a numerical factor, i.e. α = 6

in this case.
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3.4 The mobility coefficient

In our discussion concerning diffusion we saw that a small deviation from

a state of equilibrium, in the form of an induced density gradient in the

gas, gives rise to a current. Another way to create currents is by applying

an external force.

When a particle moves freely, exertion of a force causes it to accelerate

and the acceleration, according to Newton, is proportional to the force.

As already mentioned, with respect to Brownian motion, a particle that

is moving in the gas is exposed to damping and its velocity is proportional

to the exerted force. That is, if a constant force is acting on a special

particle in the gas (different charge, different mass), then its velocity, the

drift velocity, will be

vd = KF . (1.3.29)

K is called the mobility coefficient. Its dimensions are mobility

[K] = [M ]−1[T ] .

It is possible to understand Eq. (1.3.29) and to express K with the help

of the parameters of the gas using a very simple argument: between two

collisions the particle which feels the force is accelerated according to

Newton’s law,

a =
F

m
, (1.3.30)

where a is the acceleration and m is the mass of the particle, so that its

velocity at time t after a given collision is

v = v0 +
F

m
t , (1.3.31)

where v0 is the velocity of the particle immediately after the collision.

If we now calculate the average of v over many collisions along its path,

the average of v0 will be zero, since the velocities that particles have

immediately after a collision are completely random.

Thus, the average velocity of the accelerated particles will be equal

to the acceleration times the average time 〈t〉 elapsed since the previous

collision, which is the same as the average time between collisions τ (see

the calculation of 〈t〉 in Solution 3.13). Namely

vd = 〈v〉 = F

m
τ , (1.3.32)

Comparing with Eq. (1.3.29) one obtains the mobility as a function of

quantities from the kinetic theory:

K =
τ

m
. (1.3.33)
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The drift velocity vd is therefore the “effective” velocity at which the

particle advances (along the direction of the force), in spite of the random

collisions with the molecules of the gas. The external force “drags” the

particle in a specific direction, and in its absence the drift velocity is zero.

Note the difference between the drift velocity and the average thermal velocity v̄.
These are two different averages!

Exercise 3.13

We can try to calculate K in the following way. The distance d that is

covered by the particle during the mean free time is

d =
1

2

F

m
τ2 .

The average velocity is the ratio of this distance to the average time. The

result is that K is two times smaller than in Eq. (1.3.33). Which result is

correct? What happened here?

Hint: calculate v and d with the help of the distribution (1.3.16).

Solution on page 103

The argument given above as a derivation of Eq. (1.3.29) is actually

a paraphrase of the description of a body executing Brownian motion in

Chap. 2 (Secs. 2.4 and 2.5). In that case the numerous collisions with

the molecules of the gas were expressed as a viscosity. The difference

with respect to our discussion here is that here an additional constant

external force with nonzero average is acting on the body. Hence, a direct

averaging of Eq. (1.2.6) yields

m
d〈v〉
dt

+ µ〈v〉 = 〈Fe〉 . (1.3.34)

Since, as we have seen, the characteristic time m/µ is about 10−7 s

(Sec. 2.5), the average acceleration of the body vanishes almost imme-

diately, and we obtain

vd = µ−1F . (1.3.35)

This means that, in addition to the Brownian motion around its original

position, the particle drifts along the direction of the force at a velocity

vd.

If we compare this equation with Eq. (1.3.32), we find that the mobility

is none other than

K =
1

µ
. (1.3.36)
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So far we have been talking of the mobility of a special particle in the gas.

However, it is possible to repeat the arguments for one of the particles of

the gas itself when an external force acts on all or some of them. Examples

for this situation are the motion of ions in a gas or in a solution when an

electric field is applied, the motion of particles in a centrifuge or in a

gravitational field, and so on.

In Part V we will apply the same methods to the electric conductivity of metals.

In this situation Eq. (1.3.32) describes the average velocity of one

of the particles on which the force is acting. But because there is a

macroscopic number of such particles, we can use the ergodic hypothesis

to interpret vd also as the average velocity of all the particles at a given

time. Equation (1.3.32) describes, therefore, a flow of particles in which,

in addition to their random motion, there is an ordered (small) velocity

component moving them in the direction of the force.

3.5 The connection between the diffusion
coefficient and the mobility

Comparison of Eqs. (1.2.15) and (1.3.28) leads to the relation

D =
kT

µ
, (1.3.37)

keeping in mind that in the first D is the number of dimensions, while

in (1.3.28) it is the diffusion coefficient. On the other hand, we have

established that K = µ−1, so that in three dimensions

D

K
= kT . (1.3.38)

This is a very impressive result: the ratio of two very different quan-

tities depends solely on the temperature, and in a very simple manner.

However, the impression is spoiled by the observation that the ratio was

obtained by using Langevin’s equation, which describes the motion of

a Brownian particle. The validity of this equation for the motion of

molecules or ions is by no means obvious. We will now see, following

Feynman’s Lecture Notes in Physics, that the relation (1.3.38) is indeed

very general.

We assume that n1 is the number of molecules of type 1 per unit

volume, as in Sec. 3.3. These are the labeled molecules. If a force F is

acting on them, their drift velocity is [Eq. (1.3.29)]

v = KF ,
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so that a current of particles of type 1 is created, which is

JM = n1v = n1KF . (1.3.39)

On the other hand, a diffusion current of molecules of type 1 will develop

[Eq. (1.3.21)], which we will denote by JD:

JD = −D∇n1 . (1.3.40)

In a state of equilibrium,

JD + JM = 0 , (1.3.41)

and so F satisfies

n1KF = D∇n1 . (1.3.42)

But from the discussion of the isothermal atmosphere (Sec. 1.4) we know

that a relationship exists between a force (or potential) field and the den-

sity. If the force F is derived from a potential U , i.e. F = −∇U , then the

presence of F corresponds to a spatial distribution or density distribution,

Eq. (1.1.32):

n1 = Ce−U/kT ,

and the corresponding density gradient is

∇n1 = − 1

kT
n1∇U =

1

kT
n1F . (1.3.43)

For this density gradient to satisfy the equilibrium conditions, Eq. (1.3.42),

the relation (1.3.38) must hold. That is, the possibility of exerting a

force and maintaining a density gradient (even in a thought experiment)

requires that the diffusion current be canceled by the drift current, from

which D/K = kT .

And if the result (1.3.38) seemed impressive at first, then the way it

was deduced here is even more impressive, and worth a second and a third

reflection.

3.6 Viscosity and thermal conductivity

Viscosity

An experimental situation in which the viscosity will appear under simple

conditions is the following:

A container with parallel plane walls is filled with gas. One of the

walls, to which the large arrow is attached in Fig. 1.3.6, is moving at a

constant velocity u.
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z

Fig. 1.3.6 A typical situation in which viscosity appears.

A velocity gradient appears in the gas. Each layer in the gas, parallel

to the xy plane, advances at a different speed, ux(z), along the x direction.

It turns out that in order to maintain the speed ux(z), a constant force

must be exerted on the moving plane along the x direction, which is

proportional to the area in motion and to the speed gradient in the gas

dux/dz. The force, i.e. the viscosity force, acts to stop the motion of the

plane. The gas exerts, therefore, a force σxz per unit area on the moving

plane, which is written as

σxz = −ηdux
dz

. (1.3.44)

The label xz signifies that a force is exerted in the x direction as a result

of the variation of the speed in the z direction.

Actually, in more complex situations there can be other components, such as σxy , σyz,
in which case the derivative in Eq. (1.3.44) is replaced by a partial derivative.

Maxwell was the first to analyze the viscosity in the framework of the

kinetic theory. The idea is rather simple. Actually each layer of the gas

that is parallel to the xy plane (in the case described in Fig. 1.3.6) ex-

erts a force on every other layer. The reason is that due to the existence

of a velocity gradient the molecules in two different layers have differ-

ent speeds, ux. This speed exists in addition to the thermal velocities.

Thus in two different layers the molecules have different momenta, which
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on average are different from zero. But the thermal motion transfers

molecules from one layer to another. The result is that a certain amount

of net momentum is transferred between the layers per unit time per unit

area, and this is the force of viscosity. We will perform the calculation of

η at the same level that we calculated D, in the previous section. (It is

possible, of course, to perform the calculation at the level of the appendix,

and it is a worthwhile effort.)

Consider Fig. 1.3.4 in the present context and focus on a layer at

z = 0. As before, molecules that are crossing the z = 0 plane arrive on

average from a distance of one mean free path < above or below it. The

density of the gas is uniform, and so is the temperature. Again, 1/6 of the

molecules are moving on average at a speed v̄ in a direction perpendicular

toward the z = 0 plane, and the current passing through the plane is a

momentum current. Let us stress that this momentum is along x!

In a unit of time the amount of momentum passing through a unit

area of the z = 0 plane is 1
6nv̄mux(<) from above down, and 1

6nv̄mux(−<)
from beneath up. If ux(z) is an increasing function of z, more momentum

is transferred downwards than upwards. The balance is the force that is

acting in the x direction per unit area of the moving layer:

σxz ≈ 1

6
nv̄m[ux(−<)− ux(<)] . (1.3.45)

To first order in < this is

σxz ≈ −1

3
nv̄m<

dux
dz

, (1.3.46)

which is Eq. (1.3.44) with

η ≈ 1

3
mv̄<n . (1.3.47)

Exercise 3.14

(a) How will the coefficient of viscosity change with the mass of the

gas molecule at a constant temperature?

(b) Show that at a constant temperature η is independent of the

pressure.

(c) How does η change with temperature?

Solution on page 104
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Thermal conductivity

When the gas is contained between two parallel planes (parallel to the xy

plane), kept at different temperatures, heat flows through the gas. If the

heat transferred by convection (when parts of the gas move with respect to

one another) is negligible, then the amount of heat that has to be supplied

per unit time per unit area, in order to maintain the temperature gradient,

is experimentally found to be

Qz = −K̄ dT
dz

. (1.3.48)

Q is called the energy current or the energy current density or the energy flux density,
and it is the amount of energy that is transferred per unit time across a unit area.

This time the role of the kinetic theory is to calculate K̄ — the thermal

conductivity.

The conditions are: the density is uniform in the container, and the

average velocity is zero everywhere. But the temperature changes, so that

the average energy per molecule ε̄ changes from one layer to another along

the z direction. The amount of heat passing through a unit area in unit

time, along the z direction, is

Qz ≈ 1

6
nv̄ [ε̄(−<)− ε̄(<)] , (1.3.49)

and to first order in <, when the temperature gradient is not too large,

Qz ≈ −1

3
nv̄<

dε̄

dT

dT

dz
. (1.3.50)

Exercise 3.15

Explain the transition to the last equation.

Solution on page 105

We have therefore obtained Eq. (1.3.48), and found that the thermal

conductivity is

K̄ ≈ 1

3
nv̄<c , (1.3.51)

where

c =
dε̄

dT
,

is the specific heat (at constant volume) per molecule.



68 Ch. 3 Transport Coefficients

Exercise 3.16

Show that the thermal conductivity of an ideal gas does not depend on

the pressure, and varies as T 1/2.

Solution on page 105

3.7 Appendix: a more detailed calculation of the
diffusion coefficient

Among the prominent flaws in the calculation of the diffusion coefficient,

as presented in Sec. 3.3, are the following:

(a) Not all of the molecules have the same velocity — in magnitude

or direction.

(b) The molecules do not all start from a distance <.

Let us calculate, therefore, the number of molecules that are crossing

an element of area, dA, which was chosen in Fig. 1.3.7 to be in the xy plane

surrounding the origin. We are still assuming that the particle density n1
depends only on z.

➤

➤

➤

x

y

z
dV

dA

r

θ

θ

Fig. 1.3.7 The geometric quantities that appear in a diffusion problem.

We start by calculating the number of molecules that are in a volume

dV around the point whose coordinates are (x, y, z), and whose velocities

are between v and v + dv. The number of molecules in the volume is

n1(z)dV , which can be approximated, when the gradients are small, by

(
n1(0) + z

∂n1
∂z

)
dV . (1.3.52)
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This number has to be multiplied by the probability for a molecule to

have a velocity (in absolute value) between v and v + dv, given by the

Maxwell–Boltzmann distribution (see Sec. 1.5), namely

4πv2f(v)dv . (1.3.53)

The directions of the velocities of the molecules are random, so that the

probability of finding molecules with velocities in the direction of our unit

area is equal to the ratio between the solid angle, spanned by the unit area

towards dV , and 4π, or between the effective area of dA and the surface

area of the entire sphere of radius r, i.e.

dA cos θ

4πr2
. (1.3.54)

According to (1.3.15) the fraction of molecules that will arrive from a

distance r without colliding is e−r/� and the corresponding probability is

e−r/�/<. This should be multiplied by v to obtain the fraction per unit

time per unit area.

As an intermediate result we find that the number of molecules in dV

that will begin to move towards the unit area in unit time, with a velocity

between v and v + dv, is[(
n1(0) + z

∂n1
∂z

)
dV

]
· [4πv2f(v)dv] ·

[
dA cos θ

4πr2

]
. (1.3.55)

The total number of molecules passing downwards through the unit area

in unit time is obtained inserting the survival probability and dividing by

dA. The result is

J↓ =
∫ (

n1(0) + z
∂n1
∂z

)
cos θ

4πr2
e−r/�dV

∫ ∞
0

4π

<
v3f(v)dv

=
v̄

<

∫ π/2

0

∫ ∞
0

(
n1 +

∂n1
∂z

r cos θ

)
sin θ cos θ

e−r/�

2
drdθ . (1.3.56)

In the first line the second integral is proportional to v̄ [see Eq. (1.3.8)],

while in the first integral, apart from the product of all the factors, we

substituted z = r cos θ and dV = r2 sin θdrdθdφ and integrated over the

variable φ between 0 and 2π.

The current passing upwards is given by an almost identical expression.

The only difference is a minus sign before the factor ∂n1/∂z, due to the

fact that the density entering from below is n1(−z). The net current is

Jz = J↑ − J↓ = −1

3
v̄<
∂n1
∂z

. (1.3.57)
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Exercise 3.17

Carry out the integrations in the expression for Jz.

Solution on page 105

We, therefore, rederived Eq. (1.3.19). The result is to be considered

still an intermediate result that takes into account only some of the factors

which determine the diffusion coefficient.
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Exercise 1 Solution on page 107

A gas of molecules of mass m is in thermodynamic equilibrium at tem-

perature T . The velocity of a gas molecule is v = (vx, vy, vz). Compute

the following averages:

(a) 〈vx〉
(b) 〈v2x〉
(c) 〈v2xvy〉
(d) 〈|v|2vz〉
(e) 〈(vx + bvy)

2〉
(f) 〈v2xv2y〉

Exercise 2 Solution on page 109

A gas of molecules of mass m is in thermal equilibrium at temperature

T .

(a) Calculate the average 〈1/|v|〉, and compare it to the quantity

1/〈|v|〉.
(b) Calculate the most probable value for the energy of a molecule

in the ensemble, Em, and compare it to 1
2mv

2
m, where vm is the

most probable velocity.

Exercise 3 Solution on page 111

A gas of molecules is in a central potential, given by

U(r) = C|r|n ,

where |r| is the distance from the origin.

Calculate the average potential energy per molecule.

71
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Exercise 4 Solution on page 112

Molecules of a monoatomic ideal gas are leaking from a container, which

is at a constant temperature T , through a small hole in the container’s

wall.

(a) From physical considerations (without any calculation!), would

you expect that the average energy 〈E0〉 of a molecule in the

leaking beam will be larger than, equal to, or smaller than the

average energy 〈Ei〉 of a molecule in the container?

(b) Calculate 〈E0〉. Express your answer terms of 〈Ei〉.

Exercise 5 Solution on page 113

Consider a gas at constant temperature T in a container of volume V .

The gas is leaking out slowly through a small hole of cross section area A.

The pressure outside the container is low enough, so that it is possible to

neglect the leak into the container.

Find the time in which the pressure inside the container will decrease

to 1/e of its initial value. Express your answer in terms of A, V and the

average velocity v̄ of a molecule in the gas.

Exercise 6 Solution on page 114

A satellite of mass M , in the form of a cube of edge L, is moving in outer

space in a direction parallel to one of its edges, at a velocity V . The dilute

gas in which the satellite is moving is made up of molecules of mass m

and their number per unit volume is n. The temperature of the gas, T ,

is such that the thermal velocity of the molecules, v̄, is much larger than

the velocity of the satellite.

(a) Assuming that the collisions of the molecules with the satellite are

elastic, calculate the average slowing force exerted on the satellite

by the interstellar gas.

(b) No other external force is acting on the satellite. Calculate the

time in which the velocity reaches half its initial value.

Exercise 7 Solution on page 115

Assume a general situation where the temperature T of a material depends

on the time t and the position z. The density of the material is ρ, its

specific heat per molecule c and its thermal conductivity K̄.

Using considerations similar to those that led to Eq. (1.3.23), obtain

the differential equation governing the temperature distribution T (t, z) in
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a one-dimensional system:

∂T

∂t
=

(
K̄

cn

)
∂2T

∂z2
.

This is the Fourier equation.

Exercise 8 Solution on page 116

Aluminum grains whose diameter is one micrometer are floating in water

at room temperature. The density of aluminum is 3.26 g/cm3, and the

viscosity of water is 1× 10−2 P.

Find the steady precipitation rate of the aluminum due to gravitation.

Exercise 9 Solution on page 117

The viscosity coefficient of gaseous helium at atmospheric pressure and a

temperature of 273 K is η1 = 1.87 × 10−4 P. The viscosity coefficient of

gaseous argon under these conditions is η2 = 2.105 × 10−4 P. The atomic

masses of the two gases are, respectively, µ1 = 4 amu and µ2 = 40 amu.

(a) Find the ratio <2/<1 of the mean free paths of the two gases, and

the approximate values of <1 and <2.

(b) Calculate the ratio K̄2/K̄1 of the thermal conductivities of the

two gases.

(c) Calculate the ratio D2/D1 of the respective diffusion coefficients.
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Solution 1.1 Exercise on page 8

(a) The contribution of the molecules, with a velocity component vx,

to the pressure is

P (vx) = 2 ·mv2x · n(vx) . (i)

In order to obtain the pressure exerted on the piston, we have to

sum over all possible values of vx. Only molecules with a positive

component vx will hit the piston (molecules with negative vx will

move away from the piston; see Fig. 1.1.1). Thus

P =
∑
vx>0

2 ·mv2x · n(vx) . (ii)

In a state of equilibrium we expect molecular “chaos,” i.e. if there

is no external factor forcing the molecules to move in a certain

direction, then they will move in all directions with equal prob-

ability. Hence, the density of molecules of velocity vx should be

equal to the density of molecules of velocity −vx:
n(vx) = n(−vx) . (iii)

We can write

v2xn(vx) =
1

2
[v2xn(vx) + (−vx)2n(−vx)]

and replace the summation over vx > 0 in Eq. (ii) by a summation

over all the values of vx:

P =
∑
vx

mv2x · n(vx) . (iv)

The right hand side of Eq. (iv) is almost the average of mv2x. The

difference is that the average is calculated using the probability

74
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of finding a molecule with a velocity vx and not in terms of the

density of molecules which have a velocity vx. However, the prob-

ability that a molecule will have velocity vx is n(vx)/n, where n

is the number of molecules per unit volume which is constant in

a state of equilibrium.

We therefore write Eq. (iv) in the form

P = n
∑
vx

mv2x
n(vx)

n
= nm

∑
vx

v2x
n(vx)

n
. (v)

The sum on the right hand side of Eq. (v) is the average of v2x.

Since m is constant, we find that

P = n〈mv2x〉 .

(b) When we attribute to vx a continuous distribution, we must re-

place the summations of section (a) by an integral. Namely

P =

∫ ∞
0

2mv2xn(vx)dvx . (ii)′

The conditions (iii) holds here as well, so

P =

∫ ∞
−∞

mv2xn(vx)dvx = n〈mv2x〉 . (iv)′

Notice that in (a) n(vx) has the dimensions of number per unit volume,

whereas in (b) it has the dimensions of number per unit volume per unit

velocity!

Solution 1.2 Exercise on page 9

In discussing radiation, it is photons that are colliding with the “piston,”

which is acting as an ideal mirror. The relation between the energy and

the momentum, in the case of photons, is

ε(p) = pc , (i)

where p is the momentum of the photon, ε its energy, and c the speed of

light. Since the momentum is parallel to the velocity,

p · v = pc . (ii)

We can repeat the derivation that we made in Solution 1.1. A photon that

is reflected from the piston imparts to it a momentum amounting to 2px.

All of the photons have the same speed, the speed of light, but there exists
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a distribution of directions, so that there will again be a distribution of

vx. Equation (1.1.2) can be rewritten as

P (vx) = 2pxvx · n(vx) . (iii)

We must sum (iii) over all positive vx, in order to obtain the total pressure:

P =
∑
vx>0

2pxvx · n(vx) . (iv)

As in Solution 1.1, we get

P = n〈pxvx〉 , (v)

where n is the photon density in the container.

In a state of equilibrium, the averages of pxvx, pyvy and pzvz will be

equal, i.e.

〈pxvx〉 = 〈pyvy〉 = 〈pzvz〉 = 1

3
〈p · v〉 = 1

3
〈ε〉 , (vi)

where in the last equality we have made use of Eqs. (i) and (ii). Substi-

tuting in Eq. (v) we obtain the required result:

P = n
1

3
〈ε〉 = 1

3

N

V
〈ε〉 = 1

3

E

V
.

Solution 1.3 Exercise on page 10

Room temperature is 300 K. Substitution in Eq. (1.1.5) yields

〈
1

2
mv2

〉
= 6.21 × 10−21 J = 0.039 eV .

Solution 1.4 Exercise on page 11

Substituting vcm and vrel, by their definitions, in the average 〈vcm · vrel〉
we obtain

〈vcm · vrel〉 = 1

m1 +m2
〈(m1v1 +m2v2) · (v1 − v2)〉

=
1

m1 +m2

[〈
m1v

2
1

2

〉
−
〈
m2v

2
2

2

〉]
+
m2 −m1

m1 +m2
〈v1 · v2〉 .
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Equations (1.1.10) and (1.1.11) imply, therefore, that

〈
m1v

2
1

2

〉
−
〈
m2v

2
2

2

〉
= 0 ,

which is (1.1.12).

Solution 1.5 Exercise on page 12

The proof of Dalton’s law uses mainly the concept of molecular (or atomic)

“chaos,” and the fact that there is no interaction between the molecules

of the gas.

We suppose for simplicity that the mixture is composed of two gases of

N1 andN2 molecules, respectively (the derivation can easily be generalized

to any number of gases). The two gases occupy the same volume V and

the total number of molecules N(= N1 +N2) is constant. The number of

molecules N1 and N2 are not necessarily equal.

Since the gases are at thermal equilibrium, their average kinetic ener-

gies are equal: 〈
1

2
m1v

2
1

〉
=

〈
1

2
m2v

2
2

〉
.

According to Eq. (1.1.4), if each of the gases were to occupy by itself the

same volume V at the same temperature, the partial pressures P1 and P2
would have been

P1 =
2

3

N1

V

〈
1

2
m1v

2
1

〉
,

P2 =
2

3

N2

V

〈
1

2
m2v

2
2

〉
.

The partial pressure of a gas in a mixture is the pressure it would have if it were to
occupy all the volume by itself.

However, the total pressure of the mixture is

P =
2

3

N

V

(
average energy
per molecule

)
=

2

3

N1 +N2

V

(
average energy
per molecule

)

=
2

3

N1

V

〈
1

2
m1v

2
1

〉
+

2

3

N2

V

〈
1

2
m2v

2
2

〉
= P1 + P2 .
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Solution 1.6 Exercise on page 13

We are given the total volume V , the number of molecules N1 and N2 on

both sides of the piston, and the total energy. All these are constants.

The average kinetic energy on both sides of the piston is equal (there

are no temperature differences). Hence, from Eq. (1.1.4) or Eq. (1.1.6) it

follows that
P1V1
N1

=
P2V2
N2

. (i)

where V1 and V2 are the volumes on the two sides of the piston.

At equilibrium, the pressure on the two sides must equalize (otherwise

a force will act, and the piston will move). Therefore, Eq. (i) implies

that
V1
V2

=
L1

L2
=
N1

N2
, (ii)

where L1 and L2 are the lengths of V1 and V2, respectively. (See figure.)

However,

V1 + V2 = V ⇒ L1 + L2 = L , (iii)

and we obtain from Eqs. (ii) and (iii)

V1 =
N1

N1 +N2
V , V2 =

N2

N1 +N2
V ,

L1 =
N1

N1 +N2
L , L2 =

N2

N1 +N2
L .

(iv)

L1
➤➤➤ ➤

L2

N1 N2

P1 P2

A

L
➤➤

The variables defining the problem.

Now we can calculate the average kinetic energy at equilibrium — as

the pressure becomes uniform: The total energy is given by

3

2
P1V1 +

3

2
P2V2 =

3

2
PV = E , (v)

and the pressure at equilibrium is consequently

P =
2

3

E

V
. (vi)
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The average kinetic energy per molecule to the right of the piston is〈
1

2
mv2

〉
=

3

2

P1V1
N1

=
3

2
P
V1
N1

. (vii)

Using Eqs. (iv) and (vi) we obtain〈
1

2
mv2

〉
=

3

2

(
2

3

E

V

)(
V

N1 +N2

)
=

E

N1 +N2
. (viii)

Since the result in (viii) is independent of any quantity specific to the

gas on the right of the piston, the same result must apply to the average

kinetic energy to the left of the piston.

Solution 1.7 Exercise on page 15

The assertion

〈vcm · vrel〉 = 0

implies that

〈(m1v1 +m2v2) · (v1 − v2)〉
= 〈m1v

2
1〉 − 〈m2v

2
2〉+ 〈(m2 −m1)v1 · v2〉 .

But the two parts of the molecule have the same average kinetic energy,

i.e. 〈
m1v

2
1

2

〉
=

〈
m2v

2
2

2

〉
=

3

2
kT ,

and so

〈(m2 −m1)v1 · v2〉 = 0 .

m2 −m1 can be taken out of the averaging sign, and since in a generic

case m1 �= m2, we obtain

〈v1 · v2〉 = 0 .

If m1 = m2, this argument cannot be used. But in this case the velocity

distributions of the two atoms in the molecule will also be identical. Thus,

calculating 〈v1 · v2〉 is the same as calculating the average of the product

of v1 at time t = t1 and v1 at time t = t2:

〈v1 · v2〉 = 〈v1(t1) · v1(t2)〉 .
Since the collisions are random there is no correlation between v1 at two

different times and the average is zero again.

Solution 1.8 Exercise on page 17

(a) The total kinetic energy is given by

E = N
3

2
rkT .
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However, only the center of mass energy produces the pressure in the gas,

and so

PV = NkT =
2

3r
E .

(b) Equation (1.1.22) implies that

PdV + V dP = (γ − 1)dE . (i)

For an adiabatic process we have as well

dE = −PdV , (ii)

and substituting this relation into Eq. (i) we obtain

γPdV + V dP = 0 , (iii)

and from here

γ
dV

V
= −dP

P
, (iv)

Integrating both sides we obtain

lnV γ + lnP = K , (v)

where K is a constant. From here of course

PV γ = const .

(c) The heat capacity is the quantity of heat required per unit temperature

change. At constant volume the heat is equal to the energy change of the

gas. Hence

CV =
∂E

∂T
. (vi)

For a mole of monoatomic ideal gas, E = 3
2N0kT and

CV =
3

2
N0k =

3

2
R = 12.45 J K−1 . (vii)

Solution 1.9 Exercise on page 19

A degree of freedom will become relevant if its energy intervals, e.g. its ex-

citation energies, are of the order of the equipartition energy kT available

at temperature T .

The electronic degrees of freedom in the atom will be excited when

kTe ≈ 1 eV ,
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but

1 eV = 1.6 × 10−19 J

so that

Te ≈ 1.6 × 10−19

1.4 × 10−23
≈ 104 K .

The nuclear degrees of freedom, whose energies are of the order of MeV,

will come into play when

kTN ≈ 106 eV or TN ≈ 1010 K .

The quark degrees of freedom, which signify the intranuclear excitations,

will affect the specific heat when

kTQ ≈ 109 eV or TQ ≈ 1013 K .

Solution 1.10 Exercise on page 21

The earth’s gravitational field EG at the point r, where r is the distance

from the earth’s center, is given by

EG =
α

r2
, (i)

where α is a constant.

The change in the gravitational field, owing to a small change in r,

∆r, is

∆EG = −2α

r3
∆r . (ii)

The relative change of the gravitational field is obtained from Eqs. (i) and

(ii): ∣∣∣∣∆EG

EG

∣∣∣∣ ≈ ∆r

RE
, (iii)

where RE is the radius of the earth (RE ≈ 6.4 × 106 m).

In order to change the gravitational field by a thousandth of a percent,

we have to change the height by

∆r ≈ 10−5RE ≈ 100 m . (iv)

Under standard conditions the intermolecular distance l is given by

l ≈
(
P

kT

)−1/3
≈
(

105

1.4 × 10−23 × 300

)−1/3
≈ 3.5 × 10−9 m , (v)

where we substituted a pressure of one atmosphere and a temperature of

300 K. From (iv) and (v) we obtain the ratio

l

∆r
≈ 3.5× 10−9

102
≈ 10−11 	 1 .
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That is, the changes in the gravitational field are negligible when one

is considering distances on the order of the intermolecular distance, and

therefore it is possible to choose a region in space small enough so that

the gravitational field within it is constant, and large enough so that we

can consider it as a macroscopic system.

Solution 1.11 Exercise on page 23

The density of the gas in a force field that is derived from a potential,

F(r) = −∇U(r) , (i)

can be obtained as in the one-dimensional case, replacing everywhere z

with r, and the derivative d/dz with the gradient ∇. Equation (i) gives

the force that is acting on a gas molecule at point r.

When U is the gravitational potential, U = mgz, Eq. (i) reduces to

F = −dU
dz
ẑ = −mgẑ .

The equation for the pressure is obtained by generalizing Eq. (1.1.27) to

∇P (r) = F(r)n(r) . (ii)

Applying the same arguments as in Sec. 1.4, we attribute to the gas a

local equation of state [cf. Eq. (1.1.28)] in a small volume around r:

P (r) = n(r)kT . (iii)

Since T is independent of r, we obtain from Eqs. (i)–(iii) an equation for

n(r),

kT∇n(r) = −n(r)∇U(r) , (iv)

corresponding to Eq. (1.1.29), with ∇U replacing mg.

Equation (iv) can be written in the form

∇n(r)
n(r)

= − 1

kT
∇U(r) or ∇ lnn(r) = ∇

[
−U(r)
kT

]
. (v)

The solution to this equation is

lnn(r) = −U(r)
kT

+ C ,

where C is a constant, or

n(r) = n(r0)e
−U(r)/kT , (vi)

where n(r0) is the density at the point where the potential U(r) vanishes.
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Notice what happens in the case when the potential is the gravitational

potential as of a planet. In this case Eq. (iv) implies that very far from

the planet the gas density does not vanish but remains constant. This is

of course impossible, since the number of molecules, although very large,

is finite. It means that a gas cannot be in a state of thermodynamic

equilibrium at constant T in a Newtonian gravitational field.

Solution 1.12 Exercise on page 24

P (r)dV is a probability, and therefore dimensionless. dV is a volume

element, so

[dV ] = [L]3 ,

and hence

[P (r)] = [dV ]−1 = [L]−3 ,

which means that the dimensions of P (r) are (volume)−1.
P (r) is indeed normalized, since the integration of n(r) yields the total

number of molecules, N , which appears in the denominator of Eq. (1.1.33).

Solution 1.13 Exercise on page 27

The constant C in the Maxwell–Boltzmann distribution,

f(v) = Ce−Av
2
,

is fixed by the normalization condition∫
f(v)dτ = 1 , (i)

where the integration is carried out over the entire velocity space. We

have to calculate C from

C

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−A(v
2
x+v2y+v2z)dvxdvydvz = 1 . (ii)

However, because the integration variables are independent, it is possible

to write the triple integral as a product of three integrals:

C

∫ ∞
−∞

e−Av
2
xdvx

∫ ∞
−∞

e−Av
2
ydvy

∫ ∞
−∞

e−Av
2
zdvz = C

(∫ ∞
−∞

e−Av
2
xdvx

)3
= 1 .

(iii)

We calculate, therefore, an integral of the type

S =

∫ ∞
−∞

e−αx
2
dx . (iv)

The calculation is not complicated, as we shall see, and the result is
√
π/α.

It is possible of course to look up the result in a table of integrals.
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Substituting the result into (iii) we get

C

(
π

A

)3/2
= 1 ⇒ C =

(
A

π

)3/2
.

Remark. The integral may be calculated in the following manner:

We write

S2 =

∫ ∞
−∞

e−αx
2
dx

∫ ∞
−∞

e−αy
2
dy =

∫ ∞
−∞

e−α(x
2+y2)dxdy . (v)

In the double integral over the xy plane we transform to polar coordinates

θ, r. The area element is rdθdr and x2+y2 = r2. Equation (v) is therefore

written as

S2 =

∫ ∞
0

∫ 2π

0
e−αr

2
rdθdr = 2π

∫ ∞
0

re−αr
2
dr = 2π

(
− 1

2α
e−αr

2
)∞
0

=
π

α
,

(vi)

and hence

S =

∫ ∞
−∞

e−αx
2
dx =

(
π

α

)1/2
. (vii)

Solution 1.14 Exercise on page 27

The requirement that f(v) be normalized fixes C as a function of A:

C =

(
A

π

)3/2
.

A is determined from the requirement that the average kinetic energy per

molecule be 3
2kT .

Symmetry considerations give

〈v2x〉 = 〈v2y〉 = 〈v2z〉 ,
which means that

v2 = 〈v2x + v2y + v2z〉 = 3〈v2x〉 ,
so to calculate 〈v2〉 it is enough to calculate 〈v2x〉. Thus

3

2
kT =

〈
1

2
mv2

〉
=

∫
3

2
mv2xf(v)dτ

=
3

2

(
A

π

)3/2
m

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

v2xe
−A(v2x+v2y+v2z)dvxdvydvz

=
3

2

(
A

π

)3/2
m

∫ ∞
−∞

v2xe
−Av2xdvx

∫ ∞
−∞

e−Av
2
ydvy

∫ ∞
−∞

e−Av
2
zdvz

=
3

2

(
A

π

)1/2
m

∫ ∞
−∞

v2xe
−Av2xdvx , (i)
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where we have used the result (vii) of the previous exercise for the

normalization.

Next we calculate an integral of the form

I =

∫ ∞
−∞

x2e−αx
2
dx .

Integration by parts yields

I = − 1

2α

∫ ∞
−∞

x

(
d

dx
e−αx

2
)
dx =

1

2α

∫ ∞
−∞

e−αx
2
dx =

1

2

(
π

α3

)1/2
,

and then [by (i)]

3

2
kT =

3

2

(
A

π

)1/2
m
1

2

(
π

A3

)1/2
=

3m

4A
, (ii)

which leads to

A =
m

2kT
, (iii)

C =

(
A

π

)3/2
=

(
m

2πkT

)3/2
. (iv)

Substituting (iv) in f(v) we obtain the distribution function Eq. (1.1.49).

Starting from Eq. (1.1.49) and calculating
∫
f(v)dτ and

〈
1
2mv

2
〉
, we

find that Eq. (1.1.49) determines C and A, as required.

Remark. A different method for calculating averages will be intro-

duced in Sec. 1.6. We will repeat the calculation of
〈
1
2mv

2
〉
using that

method.

Solution 1.15 Exercise on page 29

We wrote

Z(α) =

∫ ∞
0

e−αzdz . (i)

Now
d

dz
lnZ =

1

Z

dZ

dα
,

(ii)
d2

dα2
lnZ =

1

Z

d2Z

dα2
− 1

Z2

(
dZ

dα

)2
.

From Eq. (i) we find that

dZ

dα
= −

∫ ∞
0

ze−αzdz = −Z〈z〉 , (iii)

d2Z

dα2
=

∫ ∞
0

z2e−αzdz = Z〈z2〉 , (iv)

where we have made use of the definitions of 〈z〉 and 〈z2〉, Eq. (1.1.51).
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Substituting Eqs. (iii) and (iv) into (ii) we obtain

d2

dα2
lnZ = 〈z2〉 − 〈z〉2 . (v)

But

〈(z − 〈z〉)2〉 = 〈(z2 − 2z〈z〉 + 〈z〉2)〉

= 〈z2〉 − 2〈z〉2 + 〈z〉2 = 〈z2〉 − 〈z〉2 ,
so that we find from (v) that the average square deviation is given by

(∆z)2 = 〈(z − 〈z〉)2〉 = d2

dα2
lnZ .

Solution 1.16 Exercise on page 30

The average 〈zn〉 can be written as

〈zn〉 =
∫∞
−∞ z

n exp(−U0z
n/kT )dz

Z
, (i)

where

Z =

∫ ∞
0

exp

(
−U0z

n

kT

)
dz . (ii)

We substitute

α =
U0

kT
(iii)

and using Z(α) we can write 〈zn〉 as

〈zn〉 = − d

dα
lnZ(α) , (iv)

similar to what we did in Eqs. (1.1.51) and (1.1.52).

The dimensions of Z(α) are the same as those of z, namely dimensions

of length. The dimensions of α are determined by the fact that αzn is

dimensionless. Therefore, α has the same dimensions as z−n. Thus

Z(α) = Kα−1/n . (v)

Substituting (v) into (iv) we get

〈zn〉 = 1

nα
=

kT

nU0
,

where in the last equality we have made use of (iii). Consequently

〈U(z)〉 = kT

n
. (vi)
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Solution 1.17 Exercise on page 31

(a) Z(α) =
∫
exp(−α|v|2)dτ , where dτ = dv1dv2 . . . dvD is an in-

finitesimal D-dimensional volume.

The only difference between the present calculation and the

one performed in Eq. (1.1.56) is that the volume of integration

in Z(α) is D-dimensional. The dimensions of α remain as before.

From dimensional considerations, identical to the ones we made

in Sec. 1.6, we conclude that

Z(α) = Kα−D/2 .

Substituting in Eq. (1.1.55),

〈|v|2〉 = − d

dα
lnZ(α) ,

we obtain

〈|v|2〉 = D

2α
.

In usual, three-dimensional, space (D = 3), 〈|v|2〉 = 3/2α, as we

found in Eq. (1.1.59). In two dimensions, 〈|v|2〉 = 1/α; in one

dimension, 〈v2〉 = 1/2α.

(b) For a gas in a three-dimensional harmonic potential

U(r) =
1

2
C|r|2 .

The potential is centered at r = 0, and therefore we want to find

〈|r|2〉.
In Solution 1.11 we showed that the distribution function is

given by

n(r) = n(r0)e
−U(r)/kT ,

so that in our case

n(r) = n(0)e−C|r|
2/2kT .

There is no need to carry out any further calculations: denoting

α = C/2kT , we obtain the distribution function we know, where

|r| is written instead of |v|. The result of the calculation of 〈|r|2〉
will not change, because |r| and |v| are merely variables of inte-

gration, and the integration is over the entire space. The result

is therefore

〈|r|2〉 = 3

2α
=

3kT

C
.



88 Solutions to exercises in the text

(c) In order to find the average energy per molecule we have to cal-

culate 〈12C|r|2〉.
We use the result of (a) and the arguments of (b) above, to

find 〈|r|2〉 in a D-dimensional space:

〈|r|2〉 = D

2α
, (i)

so that

〈U(r)〉 =
〈
1

2
C|r|2

〉
=

1

2
C
D

2α
. (ii)

Since α = C/2kT ,

〈U(r)〉 = 1

2
DkT ,

according to which each vibrational degree of freedom has an

average potential energy of 1
2kT .

Solution 2.1 Exercise on page 34

The problem of a head-on elastic collision between two bodies can, in

principle, be solved with the help of the conservation laws for energy

and momentum. But we are not interested in an exact solution — an

approximate solution is sufficient.

A typical molecule has a mass m ≈ 10−26 kg and a velocity v ≈ 103 m

s−1. The body has a mass M ≈ 10−16 kg and a velocity V ≈ 10−2 m s−1,
i.e. m	M and v 
 V .

What is actually taking place in the system is that a small and fast

molecule hits the enormous body, which is almost stationary. We therefore

expect that the molecule will transfer to the body momentum of order 2mv

and will be reflected with almost the same speed, v, as it had before the

collision. The body will absorb this momentum and change its speed by

a very small amount, ∆V . We can therefore write

M∆V ≈ 2mv ,

so that

∆V ≈ 2
m

M
v .
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Substituting the typical values v ≈ 103 m s−1, m/M ≈ 10−10, we find that

in the collision with the molecule the body’s velocity changes by about

2× 10−7 m s−1.

Solution 2.2 Exercise on page 37

The drunk’s position after N + 1 steps is

RN+1 = RN + Ln , (i)

where n is the direction of the (N+1)th step, i.e. the direction of the step

taken by a drunk located at the point RN . The origin has been chosen at

R0 = 0.

From the first point of view we say that the drunks of the group that

are located at RN will advance with equal probability in all the possible

directions around RN , so that

〈n〉 = 0 , (ii)

and we obtain

〈RN+1〉 = 〈RN 〉 . (iii)

The equality (iii) implies that

〈RN 〉 = 〈RN−1〉 = · · · = 〈R0〉 = 0 ,

and so

〈RN 〉 = 0 (iv)

for all N .

From the second point of view we say that along the drunk’s path, each

point may be considered as the beginning. If from every point we draw

the vector RN , to which the drunk arrives after N more steps, we find

that the number of appearances of RN equals the number of appearances

of −RN . Thus on average 〈RN 〉 = 0.

Solution 2.3 Exercise on page 38

(a) From Eq. (1.2.6) we see that µṙ has dimensions of force. Hence

[µ] =

[
F

ṙ

]
=

[M ][L][T ]−2

[L][T ]−1
= [M ][T ]−1 .

(b) In the absence of an external force, the equation of motion of the body

[Eq. (1.2.6)] takes the form

M r̈+ µṙ = 0
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or

M v̇ + µv = 0 . (i)

Equation (i) is a vector equation, so that each component of the ve-

locity satisfies an equation of the form

Mv̇ + µv = 0 . (ii)

The solution to (ii) is

v = v0e
−(µ/M)t ,

so that the solution to (i) is

v = v0e
−(µ/M)t , (iii)

where v0 is the initial velocity of the body. From the solution (iii) we

immediately see that

lim
t→∞v = lim

t→∞(v0e
−(µ/M)t) = 0 .

Solution 2.4 Exercise on page 38

The motion of the sky diver is one-dimensional along the z axis. We will

choose the positive direction to be downwards, so that Fe = mg. The

equation of motion (1.2.6) then takes the form

mz̈ + µż =mg . (i)

We choose the origin to be the height from which the sky diver jumped,

so that z(0) = 0. Furthermore, we assume that the sky diver’s initial

velocity is zero, namely ż(0) = 0. In order to solve the equation we write

(i) in the form

mv̇ + µv = mg , (ii)

where v is the sky diver’s velocity.

The solution to Eq. (ii) with the initial condition v(0) = 0 is

v =
mg

µ
(1− e−(µ/m)t) . (iii)

At long times the exponential term in (iii) decays and becomes negligible,

so that

lim
t→∞ v =

mg

µ
.
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The characteristic time, θ, of the decay is the time after which the term

v0e
−µt/m decays to 1/e of its initial value, namely θ = m/µ. Long times

are therefore times t
 m/µ, for which the exponential term is negligible,

and then v ≈ mg/µ. The solution to the original Eq. (i) is determined by

integrating (iii) and choosing the integration constant such that z(0) = 0:

z =
mg

µ

[
t+

m

µ
(e−(µ/m)t − 1)

]
. (iv)

Solution 2.5 Exercise on page 38

When Fe is derived from a potential, Eq. (1.2.6) is written in the form

M r̈+ µṙ = −∇U . (i)

Taking the scalar product of (i) with ṙ,

M ṙ · r̈+ µ(ṙ)2 = −ṙ · ∇U . (ii)

But
d

dt
(ṙ)2 = 2ṙ · r̈ ,

and so
1

2
M

d

dt
(ṙ)2 + µ(ṙ)2 = −ṙ · ∇U . (iv)

The right hand side of (iv) is none other than the time derivative of U

(with negative sign):

dU

dt
=
∂U

∂x

dx

dt
+
∂U

∂y

dy

dt
+
∂U

∂z

dz

dt
= (∇U) · ṙ ,

so that we can write (iv) as

d

dt

[
1

2
M(ṙ)2 + U

]
= −µ(ṙ)2 . (v)

Observe that the expression in square brackets is the total energy E of

the body, and thus
dE

dt
= −µ(ṙ)2 . (vi)

Equation (i) is a vector equation. For each component xi

M
d2xi

dt2
+ µ

dxi

dt
= − ∂U

∂xi
.

Equation (ii) is a scalar equation, and is a sum of three equations,

3∑
i=1

[
M

dxi

dt

d2xi

dt2
+ µ
(

dxi

dt

)2]
= −

3∑
i=1

∂U

∂xi

dxi

dt
= −dU

dt
,
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but
d

dt

(
dxi

dt

)2
= 2

dxi

dt

d2xi

dt2
,

3∑
i=1

(
dxi

dt

)2
= ṙ2 ,

so that
1

2
M

d

dt
(ṙ2) + µṙ2 = −U̇ ,

and this is actually Eq. (v).

Solution 2.6 Exercise on page 40

When there is no friction, Eq. (1.2.6) reduces to

M r̈ = Fe

or

M
d

dt
(ṙ) = Fe .

Averaging both sides of this equation (the left hand side can be averaged

before differentiation), we obtain

M
d

dt
〈ṙ〉 = 〈Fe〉 = 0 .

Its solution is

〈ṙ〉 = const ,

which means motion at constant average velocity 〈v〉.

Solution 2.7 Exercise on page 41

Taking the scalar product of the equation

M r̈+ µṙ = Fe (i)

with r, we obtain

Mr · r̈+ µr · ṙ = r ·Fe . (ii)

Using the identities (1.2.10), we have

r · r̈ = 1

2

d2r2

dt2
− (ṙ)2 ,

so that Eq. (ii) takes the form (1.2.9):

1

2
M
d2r2

dt2
+

1

2
µ
dr2

dt
−M(ṙ)2 = r ·Fe .
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Solution 2.8 Exercise on page 42

Equation (1.2.11) is identical to the equation of motion of the sky diver in

Exercise 2.4, where instead of mg we write 2DkT , and z is to be replaced

here by u. The solution which satisfies the required initial condition is

therefore obtained by the appropriate substitutions in Solution 2.4, so

(1.2.12) is obtained.

The dimensions of the parameter θ are

[θ] = [M/µ] =
[M ]

[F/v]
=

[M ]

[M ][L][T ]−2[T ][L]−1
= [T ] .

Solution 2.9 Exercise on page 44

Taking the scalar product of Eq. (1.2.17)

M r̈+ µṙ+ Cr = Fe (i)

with r, and using the identities (1.2.10), we get

1

2
M
d2r2

dt2
+

1

2
µ
dr2

dt
+ Cr2 −M(ṙ)2 = r · Fe . (ii)

Averaging Eq. (ii) we obtain

1

2
M
d2

dt2
〈r2〉+ 1

2
µ
d

dt
〈r2〉+ 2

〈
1

2
Cr2

〉
− 2

〈
1

2
Mv2

〉
= 0 , (iii)

where we wrote v instead of ṙ.

Denoting u = 〈r2〉 and using (1.2.18) for the average kinetic energy,

we obtain Eq. (1.2.19).

Notice that we have not replaced the average potential energy 1
2Cr

2

by 1
2DkT . Had we done so, this would have been equivalent to the as-

sumption that u is a constant independent of time! Since our interest

here is in the time dependence of u, we must keep the term 2Cu in the

equation. We are assuming, therefore, that the numerous collisions have

caused the velocity to reach its thermal value before the time t = 0.

Solution 2.10 Exercise on page 45

Substituting v = Ke−γt into Eq. (1.2.20), we find that γ must satisfy the

equation

γ2 − 1

θ
γ +

2C

M
= 0 , (i)

whose solution is Eq. (1.2.21).
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Hence the general solution to (1.2.20) is a sum of two exponentials

corresponding to the two solutions for γ:

v = Ae−γ1t +Be−γ2t . (ii)

The initial conditions u(t = 0) = u̇(t = 0) = 0 imply that

A+B = −DkT
C

,

(iii)
γ1A+ γ2B = 0 .

The solution of these equations for A and B leads to Eq. (1.2.22).

To investigate the behavior at short times, we note that the system

has two characteristic times: 1/γ1 and 1/γ2. Short times are thus short

by comparison with 1/γ2, which is the shorter of the two, and a power

expansion yields a quadratic behavior:

u(t) = 〈r2〉 ≈ DkTγ1γ2
2C

t2 . (iv)

Notice that γ1γ2 = 2C/M , which gives exactly Eq. (1.2.14) again.

The region in which u is approximately linear is around the point at

which ü = 0 (zero “acceleration” means a constant velocity and a distance

linear with time). Differentiating Eq. (1.2.22) twice we obtain

γ2γ
2
1e
−γ1t − γ1γ22e−γ2t = 0 (v)

or

e(γ2−γ1)t =
γ2
γ1
, (vi)

which means that, around a time corresponding to the solution of Eq. (vi),

〈r2〉 grows linearly with time. It is not the behavior at long times.

Solution 2.11 Exercise on page 47

A practical method of measuring the restoring force constant of the

whisker is based on the fact that if we shift the mirror by an angular

deviation φ0, that is not too large, the mirror will execute harmonic mo-

tion at a frequency:

ω2 =
a

I
.

By measuring the period of the vibrations and the moment of inertia of

the mirror, we obtain a.
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In order for it to be possible to neglect the influence of the random

force on the measurement, the experiment is carried out at a very low

pressure.

Solution 3.1 Exercise on page 51

It is possible to make the following qualitative argument: the mean free

path decreases as the probability for the molecule to collide with other

molecules increases. This probability grows with increasing gas density

as well as with increasing molecular radius. That is, the mean free path

must decrease when the density increases and when the molecular radius

increases.

The dimensions of the mean free path are dimensions of length. To

obtain length from the density and the radius, by a function that de-

creases with each of them we note that the dimensions of the density are

(length)−3, and the radius has dimensions of length, so 1/a2n has the

dimensions of length and is a decreasing function of a and n.

However, since there are two quantities with dimensions in the prob-

lem, n and a, (1.3.2) is not a unique solution. It is possible to create a

dimensionless quantity, a3n, and if 1/a2n is multiplied by an arbitrary

function of a3n, the dimensions of the expression would still be length.

For instance, (1/a2n)e−a3n satisfies all of our requirements. Thus, in this

case, dimensional analysis is not sufficient.

Solution 3.2 Exercise on page 51

A few of the implicit assumptions that were made in the calculation are:

(a) We assumed that the distance that a molecule travels between

collisions is constant, while this quantity has a distribution and

that < is only its average.

(b) The use of the average velocity in Eq. (1.3.2) is also an approx-

imation, because the collision between the two molecules occurs

when both are in motion so that v̄ is not the average velocity of

a gas molecule but the average relative velocity.

(c) We assumed that collisions always involve only two molecules.

This assumption is good for a dilute gas. When the density of

the molecules increases, so does the probability for a simultaneous

collision between three molecules, and these collisions have to be

taken into account.

(d) We assumed that the cross section for scattering depends only

on the geometric dimensions of the molecules. In fact, it also

depends on the relative velocity of the colliding molecule and,

eventually, also on the force between them.
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Solution 3.3 Exercise on page 53

(a) In order to prove Eq. (1.3.10) we need only calculate v̄ using the

Maxwell–Boltzmann distribution

v̄ = 4π

∫ ∞
0

f(v)v3dv = 4π

(
m

2πkT

)3/2 ∫ ∞
0

v3e−mv2/2kTdv . (i)

The integral that we obtained, which we denote as I, can be evaluated

with the help of integration by parts:

I = −kT
m

∫ ∞
0

d

dv
(e−mv2/2kT )v2dv =

2kT

m

∫ ∞
0

e−mv2/2kT vdv

= 2

(
kT

m

)2
,

so that

v̄ =
√
8kT/πm , (ii)

and Eq. (1.3.10) follows.

(b) For the calculation of the escape rate of the gas molecules it is possible

to repeat the argument that led to Eq. (1.3.9), where this time the

area A, which the molecule hits, is the area of the hole at the side of

the container. All the molecules that hit it pass through it and leave

the container. The escape rate from the container is therefore νA.

Solution 3.4 Exercise on page 53

The average relative speed of a pair of molecules is

v̄rel =

∫
f(v1)f(v2)|v1 − v2|dτ1dτ2 , (i)

where dτ1 and dτ2 are volume elements in velocity space dτ = dvxdvydvz,

and f(v) is given by Eq. (1.1.49). As was mentioned in Chap. 1, it is also

possible to describe the motion of two molecules in terms of the center of

mass velocity vcm and the relative velocity vrel. The product f(v1)f(v2)

is an exponential function of the total kinetic energy of the two molecules,

exp[−(m1v
2
1 +m2v

2
2)/kT ], so we express it in terms of vrel and vcm. Since

v1 = vcm +

m2

m1 +m2
vrel ,

v2 = vcm − m1

m1 +m2
vrel ,

(ii)

we obtain
1

2
(m1v

2
1 +m2v

2
2) =

1

2
(Mv2cm + µv2rel) , (iii)
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where

M = m1 +m2 ,
1

µ
=

1

m1
+

1

m2
. (iv)

This means that the motion of the two molecules is equivalent to the

motion of two particles, one with a mass equal to the sum of the molecular

masses, M , and velocity vcm, and the other of mass µ (the reduced mass)

and velocity vrel. All this should be well known from mechanics. Notice

that at this stage it is more convenient not to require equal masses and

instead to allow m1 and m2 to take on arbitrary values.

Returning to the integrand in Eq. (i), it becomes a product of a func-

tion that depends only on vcm and a function that depends only on vrel:

f(v1)f(v2)|v1 − v2| =
(

M

2πkT

)3/2
exp

(
−Mv2cm

2kT

)
·
(

µ

2πkT

)3/2

× exp

(
−µv

2
rel

2kT

)
vrel . (v)

Note that the normalization factors have been changed using the identity

m1m2 = µM . The integration is to be carried out over all possible values

of v1 and v2 or, alternatively, over all possible values of vrel and vcm.

Integration over vcm will simply give unity, as the first factor in (v) is

precisely the normalized distribution function (1.1.49). Thus, we are left

with

v̄rel =

(
µ

2πkT

)3/2 ∫
exp

(
−µv

2
rel

2kT

)
vreldτrel . (vi)

This expression is none other than the familiar expression for the average

speed of a particle of mass m = µ, which we calculated in Exercise 3.3. If

the two molecules are identical (which is the case for a monocomponent

gas), then µ = m/2 and

v̄rel =

√
8kT

πµ
=
√
2 v̄ .

Solution 3.5 Exercise on page 54

The mean free path is approximately [Eq. (1.3.2)]

< =
1

4πa2n
,

where n is the gas density. Each molecule occupies an average volume of

1/n, so that the average intermolecular distance is n−1/3. Under standard
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conditions T ≈ 300 K, P ≈ 105 N m−2 and from the equation of state

n ≈ 1025 m−3. For a typical molecule of radius 1 Å we obtain

<

n−1/3
= <n1/3 =

1

4πa2n2/3
≈ 103 ,

<

a
=

1

4πa3n
≈ 104 .

Solution 3.6 Exercise on page 54

We will assume that oxygen is an ideal gas so that

P = nkT . (i)

Since we have already made an approximation here, there is no point in

using the full equations (1.3.12) and (1.3.13), which were themselves ob-

tained under somewhat unrealistic assumptions. Hence we use Eqs. (1.3.1)

and (1.3.2). The mean free path is therefore

< ≈ 1

4πa2n
. (ii)

Equations (i) and (ii) imply that

P ≈ kT

4πa2<
. (iii)

We are looking for P such that < = 5 cm:

P =
1.4 × 10−23 × 373

4π × 10−20 × 5× 10−2
≈ 0.8 N m−2 ≈ 8× 10−6 atm .

The mean free time is given by

τ =
<

v̄
.

We estimate v̄ in terms of the temperature:

3

2
kT ≈ 1

2
mv̄2 ,

where the mass of an oxygen molecule O2 is

m = 5.3× 10−26 kg ,

so finally

τ ≈ <
(
m

3kT

)1/2
= 0.05

(
5.3× 10−26

3× 1.4 × 10−23 × 373

)1/2

≈ 10−4 s .
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Solution 3.7 Exercise on page 54

We calculate the mean free path of molecules of type 1, whose radius is a1
and whose density is n1. There are also molecules of type 2, whose radius

is a2 and whose density is n2. We perform the calculation as we did to

obtain (1.3.2).

The idea, we recall, is to calculate the number of collisions that the

chosen molecule experiences per unit time, and to divide the molecule’s

thermal speed by this number. The number of collisions experienced by

a molecule of type 1 with identical molecules, per unit time, is calculated

as in Sec. 3.2.

The result is

ν11 =
1

τ11
≈ (4πa21v̄)n1 . (i)

In order to calculate the number of collisions of the same molecule with

type 2 molecules, in the same time unit, we ignore the molecules of type

1. This time the cylinder that the molecule intersects in its collisions,

the one that will replace the cylinder of radius 2a in Fig. 1.3.1, will be a

cylinder of radius a1+a2. In other words, a molecule of type 1 will collide

with a molecule of type 2 if the distance between their centers is smaller

than a1 + a2. Hence, the number of collisions between 1 and 2 will be

ν12 =
1

τ12
= π(a1 + a2)

2v̄n2 , (ii)

and since the total rate for collisions of molecules of type 1 is the sum of

(i) and (ii),

ν1 =
1

τ11
+

1

τ12
=

v̄

<11
+

v̄

<12
,

we find that
1

<1
=

1

<11
+

1

<12
or

<1 = [4πa21n1 + π(a1 + a2)
2n2]

−1 . (iii)

The mean free path of a type 2 molecule is obtained from Eq. (iii) by

interchanging the indices 1 and 2.

Note that a more accurate calculation would require accounting for

the fact that the average relative velocity of two molecules of the same

type is different from that of two molecules of different types.

Solution 3.8 Exercise on page 56

For the distribution in Eq. (1.3.15),

N = N0e
−s/� ,
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the average distance traversed by a molecule without colliding is

〈s〉 =
∫∞
0 sN(s)ds∫∞
0 N(s)ds

= − d

d(1/<)
ln

(∫ ∞
0

N0e
−s/�ds

)

= − d

d(1/<)
ln(N0<) =

d

d(1/<)
ln

1

<
= < .

Solution 3.9 Exercise on page 56

The average distance traversed by a molecule between two successive

collisions with other molecules is <, the mean free path. The average

time between two collisions is τ . Hence, the average number of collisions

experienced by a molecule per unit time is 1/τ , and in a time interval dt

it will experience dt/τ collisions.

If at time t the number of molecules that did not experience collisions

since t = 0 is N(t), then N(t)dt/τ of them will collide between t and t+dt.

Thus, the change in the number of molecules that did not experience

collisions will be

dN(t) = −N(t)dt

τ
,

so that the distribution is

N(t) = N0e
−t/τ ,

where N0 is the number of molecules at time t = 0.

Solution 3.10 Exercise on page 58

The diffusion coefficient is given in Eq. (1.3.20) in the form

D =
1

3
v̄< , (i)

and the mean free path

< ∝ 1

n
. (ii)

For an ideal gas

P = nkT , (iii)

and from equipartition

v̄ ∝ T 1/2 , (iv)

thus

D ∝ T 1/2 · T
P

=
T 3/2

P
. (v)
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Therefore, at a constant temperature

D ∝ 1

P
(vi)

and at constant pressure

D ∝ T 3/2 . (vii)

Solution 3.11 Exercise on page 59

To generalize Eq. (1.3.22) to the three-dimensional case, we consider a

small box centered around the point r = (x, y, z), with sides ∆x,∆y and

∆z (see Fig. 1.3.5). To obtain the change in the number of particles per

unit volume in the box ∂n1
∂t , we have to sum over the changes due to the

flow into and out of its six faces.

The change in the number of particles, due to the flux in the z direc-

tion, is −∂Jz/∂z [in analogy with Eq. (1.3.22)], where Jz is the component

of the flux along the z direction. The two other components of J do not

transport molecules across the faces which are normal to the z axis.

Similarly, the change in the density as a result of the flow in the

directions of x and y will be −∂Jx/∂x and −∂Jy/∂y, respectively. Hence
we obtain

−∂n1
∂t

=
∂Jx
∂x

+
∂Jy
∂y

+
∂Jz
∂z

= ∇ · J .

The divergence operator ∇ · J can be thought of as a scalar product of the gradient
operator ∇ = x̂ ∂

∂x
+ ŷ ∂

∂y
+ ẑ ∂

∂z
and the vector J.

This equation expresses the conservation of the number of particles

and is called the (three-dimensional) continuity equation.

Alternatively, we can make the following argument. n1 is a scalar and

so is ∂n1
∂t . The flux J is a vector. The generalization of (1.3.22) must

give the change of n1 in time in terms of the first derivatives of the vector

components, and yield a scalar. The only such scalar that can be formed

is ∇ · J.

Solution 3.12 Exercise on page 60

(a)

n1(z, t) =
C√
Dt
e−z

2/4Dt

⇓
∂n1
∂t

= − C√
Dt
e−z

2/4Dt

(
1

2t
− z2

4Dt2

)
,
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∂n1
∂z

= − C√
Dt
e−z

2/4Dt z

2Dt
,

∂2n1
∂z2

= − C√
Dt
e−z

2/4Dt

[
−
(

z

2Dt

)2
+

1

2Dt

]

⇓

D
∂2n1
∂z2

= − C√
Dt
e−z

2/4Dt

(
− z2

4Dt2
+

1

2t

)
=
∂n1
∂t

,

hence (1.3.24) is a solution of (1.3.23).

(b) The number of particles of type 1, N1, is obtained by integration of

n1(z, t) over all (one-dimensional) “space”:

N1 =

∫ ∞
−∞

n1(z, t)dz =
C√
Dt

∫ ∞
−∞

e−z
2/4Dtdz

=
C√
Dt

√
4πDt = 2C

√
π .

Hence N1 is independent of time. Moreover, we have found an expres-

sion for the constant C : C = N1/
√
4π.

(c) The graph of n1 as a function of time at a given point z �= 0 is drawn

in the figure.

➤

➤n1(z)

0 z2

2D
tz2

D
2z2

D

The time dependence of the density at point z.

(d) The average square distance

〈z2〉 = 1

N1

∫ ∞
−∞

z2n1(z, t)dz =
1

2C
√
π

C√
Dt

∫ ∞
−∞

z2e−z
2/4Dtdt .

Integrating by parts in the last integral we obtain∫ ∞
−∞

z2e−z
2/4Dtdz = (4Dt)3/2 ·

√
π

2
,
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so that

〈z2〉 = 2Dt .

This means that, on average, the distance of the molecules from their

initial position grows as
√
t (and not as t), which gives a “diffusion

time” much longer than the “thermal” time.

The time required to cross a distance L by diffusion is

t1 =
L2

2D
.

The time required for traveling the same distance at the thermal speed

v̄ is

t2 =
L

v̄
.

The ratio of these times is

t1
t2

=
Lv̄

2D
.

Taking into account Eq. (1.3.20),

D =
1

3
v̄< ,

we get
t1
t2

=
3

2

L

<
,

which means that if the distance traveled is very large compared to

the mean free path, the diffusion time will be much longer than the

time of the respective motion at thermal speed.

Solution 3.13 Exercise on page 62

The velocity of the accelerated particle at time t, since its last collision, is

v = v0 +
F

m
t . (i)

Calculating its average speed, using the distribution (1.3.16), we obtain

vd =
F

m
〈t〉 = F

m

∫∞
0 te−t/τdt∫∞
0 e−t/τdt

. (ii)

Note that N0 has canceled out. We have already calculated the ratio of

such integrals before. The result is

vd =
F

m
τ , (iii)

namely (1.3.32).
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In order to calculate K in terms of the distance traversed by the ac-

celerated particle between its last collision and time t, we write

r = v0t+
F

2m
t2 . (iv)

When we average this equation over many intervals along the particle’s

trajectory (or over an ensemble), the first term on the right hand side

of (iv) vanishes so that we obtain

〈r〉 = F

2m
〈t2〉 (v)

or

d =
1

2

F

m
〈t2〉 , (vi)

but

〈t2〉 =
∫∞
0 t2e−t/τdt∫∞
0 e−t/τdt

=
2τ3

τ
= 2τ2 , (vii)

namely

d =
F

m
τ2 , (viii)

and consequently

〈v〉 = d

τ
=
F

m
· τ , (ix)

as obtained in the other method.

The error in the argument given in the exercise was that we wrote

〈t2〉 = τ2, but the distribution is an exponential that is linear in t and not

in t2, so 〈t2〉 = 2τ2.

Solution 3.14 Exercise on page 66

The viscosity coefficient: η ∝ m<v̄n
The mean free path: < ∝ 1

n

The average speed: v̄ ∝
√

T
m

Hence

η ∝ m · 1
n
·
√
T

m
· n =

√
mT .

From here we deduce that:

(a) η ∝ m1/2,

(b) For T = const, η = const, so that η is independent of the pressure

(or the density).

(c) η ∝ T 1/2.
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Solution 3.15 Exercise on page 67

We have seen that the amount of heat that crosses a unit area per unit

time, along z, is

Qz ≈ 1

6
nv̄[ε̄(−<)− ε̄(<)] .

For small enough < and an almost constant temperature, we can use the

approximation

ε̄(<)− ε̄(−<) = dε̄

dz

∣∣∣∣
z=0
· 2< ,

Qz ≈ −1
6nv̄

dε̄

dz
2< .

The gradient of ε̄ is determined in terms of the gradient of T , which is the

quantity that varies with z. And we find

Qz ≈ −1

3
nv̄<

dε̄

dT

dT

dz
.

Solution 3.16 Exercise on page 68

The thermal conductivity

K̄ ∝ n<v̄c . (i)

For an ideal gas

< ∝ 1

n
,

v̄ ∝ √T ,

ε ∝ T ⇒ c =
dε

dT
= const .

And substituting in (i) we obtain

K̄ ∝ √T .

Solution 3.17 Exercise on page 70

When we add J↓ and J↑ the term proportional to n1(0) cancels out, leaving

Jz = − v̄
<

∂n1
∂z

∫ π/2

0
sin θ cos2 θdθ

∫ ∞
0

re−r/�dr .

Note that ∂n1
∂z has been treated as a constant in the integration, since it

is evaluated at z = 0.
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The calculation of the two remaining integrals is immediate:

∫ π/2

0
sin θ cos2 θdθ =

1

3
,

∫ ∞
0

re−r/�dr = <2 ,

and finally

Jz = −1

3
v̄<
∂n1
∂z

.
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Solution 1 Exercise on page 71

The calculation of the required averages is done by means of the velocity

distribution function (1.1.49):

f(v) =

(
m

2πkT

)3/2
exp

(
−mv

2

2kT

)
,

where v2 = v2x + v2y + v2z .

This function is separable, i.e. it can be written as

f(v) = g(vx)g(vy)g(vz) ,

and is symmetric in its velocity components, i.e. g(x) = g(−x).
Before passing on to the calculations themselves, recall that the in-

tegral of an antisymmetric function G(x) = −G(−x) from −∞ to ∞
vanishes. This is so because, if we change integration variable according

to y = −x, both G and dx change sign and the limits of integration switch.

Hence ∫ +∞

−∞
G(x)dx =

∫ −∞
+∞

G(y)dy .

When we switch the limits of integration back, we pick up another minus

sign and the integral on the right becomes minus the one on the left, but

the two integrals are identical. Hence they must vanish.

Reminder: ∫ b

a

G(x)dx = −
∫ a

b

G(x)dx .

Also since the distribution function is symmetric, its product with an

antisymmetric function is antisymmetric.

If f and A are separable functions of several variables, namely

f(r, s, t) = g1(r)g2(s)g3(t) ,

A(r, s, t) = h1(r)h2(s)h3(t) ,

107
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we can write the average of A in the form

〈A〉 = ∫ h1(r)g1(r)dr ∫ h2(s)g2(s)ds ∫ h3(t)g3(t)dt
= 〈h1〉 · 〈h2〉 · 〈h3〉 ,

where each average is calculated with the one-dimensional distribution.

Moreover, if f is symmetric with respect to r, s, t and A is antisymmetric

with respect to at least one of these variables, 〈A〉 = 0.

We now pass on to the solution of the problem:

(a) First,

〈vx〉 = 0

since, as already mentioned, f (or g) is symmetric with respect to vx,

and A = vx is antisymmetric.

(b) 〈v2x〉 can be calculated directly from (1.1.49):

〈v2x〉 =
(

m

2πkT

)3/2 ∫ ∞
−∞

exp

(
−mv

2
x

2kT

)
v2xdvx

×
∫ ∞
−∞

exp

(
−mv

2
y

2kT

)
dvy

∫ ∞
−∞

exp

(
−mv

2
z

2kT

)
dvz .

In fact we have already calculated all these integrals in Exercise 1.14

and obtained
m

2
〈v2x〉 =

1

2
kT ;

see Sec. 1.6 as well.

Hence

〈v2x〉 =
kT

m
.

(c) A = v2xvy is antisymmetric with respect to vy, and so

〈v2xvy〉 = 〈v2x〉〈vy〉 = 0 .

(d) Here A = |v|2vz is antisymmetric with respect to vz, so that

〈|v|2vz〉 = 〈v2x〉〈vz〉+ 〈v2y〉〈vz〉+ 〈v3z〉 = 0 .

(e) We compute the average of

A = (vx + bvy)
2 = v2x + b2v2y + 2bvxvy ,

〈v2x〉 =
kT

m
,

〈b2v2y〉 = b2〈v2y〉 =
b2kT

m
.
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And from considerations of symmetry

〈2bvxvy〉 = 2b〈vxvy〉 = 0

⇓

〈(vx + bvy)
2〉 = (1 + b2)

kT

m
.

(f) Since f is separable, we have

〈v2xv2y〉 = 〈v2x〉〈v2y〉 =
(
kT

m

)2
.

Solution 2 Exercise on page 71

(a) 〈
1

|v|
〉
=

(
m

2πkT

)3/2 ∫ 1

|v|e
−mv2/2kTdτ .

We use spherical coordinates, since f(v) depends only on the magni-

tude of the velocity.

The volume element of the velocity space in spherical coordinates

is

dτ = v2dv sin θdθdφ .

The angular integration gives 4π, so that

〈
1

|v|
〉
= 4π

(
m

2πkT

)3/2 ∫ ∞
0

ve−mv2/2kTdv .

The last integral is elementary and hence

〈
1

|v|
〉
= 4π

(
m

2πkT

)3/2 (
−kT
m
e−mv2/2kT

)∞
0

=

(
2m

πkT

)1/2
.

Using similar considerations we calculate 〈|v|〉:

〈|v|〉 =
(

m

2πkT

)3/2 ∫
|v| exp

(
−mv

2

2kT

)
dτ

= 4π

(
m

2πkT

)3/2 ∫ ∞
0

v3 exp

(
−mv

2

2kT

)
dv =

(
8kT

πm

)1/2
,

using the result obtained already in Exercise 3.3 or Eq. (1.3.8). From

here
1

〈|v|〉 =
(
πm

8kT

)1/2
.
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The relation between the results is therefore〈
1

|v|
〉
=

4

π
· 1

〈|v|〉 .

That is, the discrepancy is a factor of order 1, as expected.

(b) The probability for the speed of a molecule to be between v and v+dv

is obtained by integrating f(v) [Eq. (1.1.49)] over all directions. This

yields

P (v)dv =

(
m

2πkT

)3/2
4πv2e−mv2/2kTdv . (i)

The most probable molecular speed vm is the value for which P (v)

attains its maximum.

We differentiate P (v), equate its derivative to zero, and obtain

2v − m

kT
v3 = 0 ⇒ vm =

(
2kT

m

)1/2
.

It is easy to check that this is where P (v) attains its maximum and

not its minimum.

Thus
1

2
mv2m = kT .

P (v)dv is the probability of finding the molecule with speed between

v and v + dv. We are looking for a function of E, P̃ (E), such that

P̃ (E)dE be the probability of finding the particle with energy in the

interval (E,E + dE). v is a function of E, v(E), hence we can write

P (v) as P (v(E)). But we must take into account that to an interval

dv there corresponds an interval in energy (dv/dE) · dE. Hence

P̃ (E) = P (v(E))
dv

dE

and since

P̃ (E)dE = P (v(E))
dv

dE
· dE , (ii)

the integral of P̃ (E) over all E is equal to the integral of P (v) over

all v and hence the probability in E is normalized. Since E = 1
2mv

2,

we obtain from (i) and (ii)

P̃ (E)dE =

(
m

2πkT

)3/2
4π

2

m
E

dE

(2mE)1/2
e−E/kT

=
2/
√
π

(kT )3/2
E1/2e−E/kTdE . (iii)
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The most probable energy Em, for which P̃ (E) is maximal, is found

here by differentiation with respect to E and equating to zero, which

yields

1

2E1/2
− E

1/2

kT
= 0 ⇒ Em =

1

2
kT .

Again, it is easy to see that P̃ (Em) is in fact the maximum of P̃ (E),

and not its minimum. Comparing the two results gives

1

2
mv2m = 2Em ,

which means that the most probable energy is not the energy calcu-

lated at the most probable speed! We have another example of this

type in section (a) of this exercise.

Solution 3 Exercise on page 71

The distribution function that we use is

P = Ke−U/kT ,

where K is a normalization constant and

U(r) = C|r|n .
To find the average energy per molecule we have to calculate 〈|r|n〉:

〈|r|n〉 =
∫ |r|n exp(−C|r|n/kT )dV∫

exp(−C|r|n/kT )dV , (i)

where

dV = dxdydz .

We denote α = C/kT , and write (i) in the form

〈|r|n〉 = − d

dα
lnZ(α) , (ii)

where Z(α) is the normalization factor (actually 1/K)

Z(α) =

∫
e−α|r|

n

dV .

With the help of dimensional considerations we can immediately write

Z(α) = Aα−3/n , (iii)

where A is a constant.
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Substituting (iii) into (ii) we get

〈|r|n〉 = 3

nα
=

3kT

Cn
.

The average energy of a molecule is therefore

〈U(r)〉 = 〈C|r|n〉 = 3kT

n
.

For n = 2 (harmonic potential) we obtain the familiar result 〈U(r)〉 =
3
2kT .

Solution 4 Exercise on page 72

(a) We are assuming a very slow process, so that the equipartition prin-

ciple applies to the molecules in the container; namely, the average

energy per molecule in the container is 3
2kT .

The situation is a bit different for the molecules of the leaking

beam. Here there is clearly a preferred direction, which is the z axis,

which is perpendicular to the hole. The degrees of freedom in the

x and y directions of the leaking beam will obviously remain un-

changed; they will contribute 1
2kT per degree of freedom, according

to the equipartition principle. The number of molecules crossing the

hole per unit time is proportional to the velocity of the molecules in

the direction z. Hence more molecules with high vz will be present

in the outgoing beam and the average speed in the beam is higher.

Consequently also the average energy will be higher than 3
2kT , namely

higher than that of a molecule inside the container.

(b) Since we are assuming that the process is almost static, the average

energy of molecules inside 〈Ei〉 is given in a state of equilibrium by

〈Ei〉 =
∫

1

2
mv2

(
m

2πkT

)3/2
e−mv2/2kT dτ =

3

2
kT . (i)

The average energy in the leaking beam 〈E0〉, moving out, is calcu-

lated in the following manner:

The number of molecules of velocity v that pass through the hole

per unit time per unit area can be found using Eq. (1.3.3):

J(v) =
∆N(v)

A∆t
= nf(v)vz . (ii)

This is of course the current of particles of velocity v. Hence the

energy that is carried out through the hole per unit time per unit

area by molecules of velocity v is

S(v) = nf(v)vz · m
2
|v|2 (iii)
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and the total energy flux will be

S = n
m

2

∫
vz≥0

vzv
2f(v)dvxdvydvz . (iv)

The average energy of a molecule that leaves through the hole can be

defined by

S = J · 〈E0〉 , (v)

where J is the particle flux [called ν in Eq. (1.3.9)]. It is the integral

of (ii) over all velocities,

J = n

∫
vz≥0

vzf(v)dvxdvydvz , (vi)

so that

〈E0〉 = S

J
=
m

2
·
∫
vz≥0 vzv

2f(v)dvxdvydvz∫
vz≥0 vzf(v)dvxdvydvz

. (vii)

Passing to spherical coordinates for the evaluation of the integrals in

(vii), we find that

〈E0〉 = 1

2
m

∫ 2π
0 dφ

∫ π/2
0 sin θ cos θdθ

∫∞
0 v5e−mv2/2kTdv∫ 2π

0 dφ
∫ π/2
0 sin θ cos θdθ

∫∞
0 v3e−mv2/2kTdv

=
1

2
m

[
− d

d(m/2kT )
ln

∫ ∞
0

v3e−mv2/2kTdv

]

=
1

2
m · 4kT

m
= 2kT . (viii)

A comparison of the results (i) and (viii) shows that indeed we have

〈Ei〉 < 〈E0〉.

Solution 5 Exercise on page 72

We assume that at each moment t the gas in the container is at equilib-

rium; namely, it satisfies the ideal gas equation of state:

P (t)V = N(t)kT , (i)

where the temperature and the volume are constant.

The number of molecules that leak through the hole in the short time

interval ∆t is given by Eq. (1.3.9), so that the number of molecules will

change at the rate
dN

dt
= −1

4

A

V
v̄N , (ii)
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where the negative sign means that the number of molecules decreases

with time. The solution of Eq. (ii) is

N(t) = N0e
−t/τ ,

where N0 is the number of molecules at the moment the hole is opened,

which is defined as t = 0; τ is the time constant for the escape of the

molecules (τ is not the mean free time):

τ =
4V

Av̄
.

During an interval τ the number of particles decreases by a factor 1/e.

Since the pressure in the container is proportional to the number of

particles inside it, τ is also the time during which the pressure decreases

by a factor 1/e.

Solution 6 Exercise on page 72

(a) First we calculate the rate at which the molecules collide with the

satellite. Since V 	 v̄, it is possible to consider the satellite stationary,

so that Eq. (1.3.9) applies. The rate at which the molecules collide

with each side of the satellite is

ν =
1

4
nv̄L2 (i)

and the average time between two collisions with each side is

τ =
4

nv̄L2
. (ii)

To understand the collision process note that the satellite is much

heavier than the molecules and its speed is many times smaller. There-

fore, to a good approximation, the molecule will reverse its direction

of motion, without changing its speed. Hence, in a collision with

the satellite an average molecule will transfer momentum of order

2m(v̄ + V ) if the molecule and the satellite are moving towards one

another, and 2m(v̄ − V ) if the molecule is moving in the same di-

rection as the satellite. Thus in an interval ∆t the satellite will lose

momentum on order

∆p = −[2m(v̄ + V )− 2m(v̄ − V )]
∆t

τ
,

where ∆t/τ is the number of collisions with each side during time ∆t.

Substituting (ii) into (iii) we find that the restraining force ∆p/∆t

will be

F = −(mv̄nL2)V . (iv)
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Notice the direct proportionality between the force and the velocity

which is characteristic of a friction force. (See Sec. 2.4).

(b) We obtain the satellite’s equation of motion from Newton’s second

law:

M
dV

dt
= −µV , µ = mv̄nL2 ,

whose solution is

V (t) = V0e
−µt/M ,

where V0 is the satellite’s velocity at time t = 0.

The velocity decreases to half its initial value after a time t∗, which
is determined by

e−µt
∗/M =

1

2
,

namely

t∗ =
M

µ
ln 2 =

M ln 2

mv̄nL2
.

We assume that n ≈ 109 m−3, and substitute characteristic orders of

magnitude: M ≈ 102 kg, m ≈ 10−26 kg, v̄ ≈ 102 m s−1, L ≈ 10 m,

and we obtain

t∗ ≈ 102 ln 2

10−26 × 102 × 109 × 102
≈ 1015 s ≈ 1010 days .

Solution 7 Exercise on page 72

Equation (1.3.48),

Qz = −K̄ dT
dz

, (i)

was obtained from the balance of molecules crossing a given plane z =

const, at fixed temperature gradient. The thermal energy current density

along the z axis, Qz, is proportional to the temperature change per unit

length along this axis. The proportionality constant is −K̄, where K̄ is

the thermal conductivity coefficient of the material, given in (1.3.51).

Next, we want to obtain a continuity equation as in (1.3.22), relating

the energy current Qz and the energy density, which we denote by u.

Consider a surface element of material, with area ∆x∆y, located be-

tween the planes z and z + dz as in Fig. 1.3.5. In a short time interval

∆t hot molecules will enter the layer and cold molecules will leave it. If

∂T/∂z > 0, i.e. if the z+dz is warmer than the z plane, then hot molecules

will enter through the top plane and cold molecules will exit through the

bottom plane. The change of the internal energy in the layer is the dif-

ference between the thermal energy brought in by the hot molecules and
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the thermal energy carried out by the cold molecules. Namely

[u(t+∆t)− u(t)]∆x∆y∆z = −[Qz(z +∆z)−Qz(z)]∆x∆y∆t . (ii)

As ∆t and ∆z tend to zero, one obtains from (ii) the (one-dimensional)

continuity equation for the energy:

∂u

∂t
= −∂Qz

∂z
. (iii)

We now apply the chain rule to the derivative of the energy density,

∂u

∂t
=
∂u

∂T

∂T

∂t
,

and since
∂u

∂T
= cn ,

where c is the specific heat per molecule and n is the density of the

molecules, we obtain from Eq. (iii)

cn
∂T

∂t
= −∂Qz

∂z
. (iv)

Substituting (i) into (iv) we obtain

cn
∂T

∂t
= − ∂

∂z

(
−K̄ ∂T

∂z

)
,

and since the thermal conductivity is constant in space, we find the re-

quired equation:

∂T

∂t
=

(
K̄

cn

)
∂2T

∂z2
.

Solution 8 Exercise on page 73

The equation of motion for the height of an aluminum grain, z, with

respect to the bottom of the container is

mz̈ + µż = −mg (i)

where µ is given by Stokes’ law, µ = 6πaη.

The rate of precipitation of the grain is ż. The steady precipitation

rate is the solution of Eq. (i) for long times:

ż = −mg
µ

= − mg

6πaη
= −2ρa2g

9η
. (ii)
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Substituting the numerical data we obtain

ż = −2× 3.26 × (0.5× 10−4)2 × 980

9× 10−2
≈ −1.8× 10−4 cm/s .

The solution of this exercise is similar to that of Exercise 2.4 in the text.

Solution 9 Exercise on page 73

(a) According to Eq. (1.3.47), η is proportional to mv̄<n, where m is the

mass of a molecule. The ratio between the viscosity coefficients of the

two gases is therefore
η2
η1

=
m2v̄2<2n2
m1v̄1<1n1

.

At a constant temperature and pressure, the densities of two ideal

gases are equal. The relationship between the average speed of a

molecule in the gas and its mass is given by v̄ ∝ m−1/2. Thus

η2
η1

=
m2 ·m−1/22 · <2
m1 ·m−1/21 · <1

=

(
m2

m1

)1/2 <2
<1
.

Since the ratio of the masses is equal to the ratio of the atomic masses,

<2
<1

=

(
µ1
µ2

)1/2 η2
η1

= 0.356 .

It is also possible to obtain an estimate of <1 and <2 from Eq. (1.3.47).

If we substitute for v̄

v̄ ≈
√

3kT

m

and for n

n =
P

kT
,

we obtain

< ≈ n

P

√
3kT

m
.

At a pressure of one atmosphere and a temperature of 273 K we obtain

for helium

<1 ≈ 2.4× 10−7 m

and for argon

<2 ≈ 8.5× 10−8 m .
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(b) According to Eq. (1.3.51), K̄ is proportional to nv̄<c, where c is the

specific heat per molecule. Since the average energy per atom is in-

dependent of the type of atom and depends only on the temperature,

the specific heat per atom is also independent of the type of atom.

Moreover, the density of the two gases is equal at equal tempera-

ture and pressure. Thus

K̄2

K̄1
=
v̄2<2
v̄1<1

=
m
−1/2
2 <2

m
−1/2
1 <1

=

(
µ2
µ1

)−1/2 (µ1
µ2

)1/2 η2
η1

=
µ1η2
µ2η1

,

where we have used the result of (a) above. Hence

K̄2

K̄1
= 0.113 .

(c) According to Eq. (1.3.20), D is proportional to v̄<. Thus

D2

D1
=
v̄2<2
v̄1<1

=
K̄2

K̄1
=
µ1η2
µ2η1

= 0.113 .
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Introduction

As promised in the Introduction to Part I, we now turn to the treat-

ment of material systems from a more detailed point of view. This means

that the system, be it a system of molecules, a system of magnetic mo-

ments, or a system of electrons and protons, is described by a dynamical

model. The dynamical model has two components: (a) the rules accord-

ing to which the system evolves in time (the laws of classical mechanics

(Newton), or the laws of relativistic mechanics (Einstein), or the laws of

quantum mechanics (Schrödinger); (b) the forces governing this evolu-

tion (electric, magnetic, gravitational, etc.). Moreover, in such a model

we must also define the relevant degrees of freedom (these may be elec-

trons and protons); it may suffice to describe the system as a collection of

atoms, or perhaps molecules are sufficiently stable and can serve as build-

ing blocks. For instance, the ideal gas discussed in Part I is described by

the coordinates and velocities (or momenta) of each of its molecules —

a total of 6N variables. Its evolution in time is determined by the laws

of classical mechanics (Newton), and to describe its microscopic evolu-

tion in time we would have to solve 3N coupled, second order, differential

equations.

We noted already in the Introduction to Part I that we are not inter-

ested in a specific trajectory, i.e. a detailed solution of the given problem,

and in following each of its degrees of freedom in time. In typical experi-

ments (or measurements) we are not interested in the detailed evolution,

but in averages over long times and over large spatial regions. When

speaking of long times we mean that the durations of the experiments, or

the averaging times, are very long compared to the times during which

the system changes its microscopic state. For instance, the microscopic

time in the gas will be the time between successive collisions — the mean
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free time, which is the characteristic time after which the particles change

their velocities.

What we need, therefore, is a method of calculating averages over

long times, along the evolution trajectory of the system. The system may

change its state for different reasons: because of the forces that are acting

between its constituents, or because of the effects of its surroundings (the

system may be in contact with a source of heat, with a piston on which

an external force is acting, or with an electric or magnetic field, etc.).

The calculation of averages over long times along the system’s tra-

jectories is almost impossible. Hence the time averaging is replaced by

ensemble averaging. The idea is similar to the one we met in the dis-ensemble

cussion of Brownian motion (Chap. 2 of Part I): instead of following the

system’s motion from state to state, we assume, following Gibbs, that we

are given many similar systems each in a different allowed state of the

evolving system. The probability, or the recurrence, of a certain state in

the ensemble is equal to that which would have been obtained along the

path. The averages are then performed over the ensemble. The next two

parts of the book are devoted to the clarification of this method.

We mention here two examples of ensembles, two types of assumptions,

which will be discussed in detail later on:

(a) In insulated systems the energy is conserved. Therefore, dur-

ing its evolution, the system will only pass through equienergetic

states (there may be other conservation laws or constraints, which

will not be violated. The particles will remain, for instance, in

their designated volume, etc.). A natural assumption in this case

is that the system, evolving in time, will pass through all the

allowed states at the same reccurence rate. That is, after a suf-

ficiently long time every state of the system, having the same

given energy, will have appeared the same number of times (this

is the ergodic hypothesis). The average over long times will equal,

therefore, the average over the ensemble of all the equienergetic

states, all with the same probability. Such an ensemble is calledmicrocanoni-
cal ensemble a microcanonical ensemble.

(b) A system coupled to a heat reservoir has a given temperature,

and is able to exchange energy. Hence if we want to replace

the trajectory by an ensemble, we must determine the relative

occurrence of systems in states with different energies.

In Part I we saw that the temperature is related to the av-

erage energy per degree of freedom, and that states whose en-

ergies are much larger than the average energy are less proba-

ble. It is not unreasonable to assume, extrapolating from the
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Maxwell–Boltzmann distribution, that equienergetic states have

the same probability, whereas the relative recurrence rate of states

with different energies is given by their Boltzmann factor, namely

by the quantity e−E/kT . Such an ensemble is called a canonical

ensemble. canonical
ensemble

As was emphasized in the introduction to the previous part, all results

from the more detailed approaches must face a consistency test with the

consequences of the less detailed theories, such as the kinetic theory, and

ultimately with thermodynamics. Part I will serve as a reference for results

of the kinetic theory. Thermodynamics is not developed in this course

and for reference we have introduced Chap. 0 in this part, to recapitulate

essential ideas from thermodynamics. The rest of this part illustrates

the application of the idea of ensembles in the simple example of the

paramagnet rather than in gases or liquids. This system is attractive

because it can be described in terms of discrete degrees of freedom, which

makes probabilistic considerations less abstract. Despite the simplicity

of the model, it describes a few experimental systems in a surprisingly

precise manner. In Part III we will formulate these concepts in a more

general context.

Chapter 1 concentrates on clarifying the microscopic and thermody-

namic concepts for magnetic variables. The magnetic moments in our

paramagnet have discrete states. This would be typical of a quantum

theory, and not in the classical one. Here we take this fact as given

and concentrate on the statistical technique, which is simpler for discrete

variables. Chapter 2 deals with the identification of the paramagnet’s mi-

croscopic states and the following two chapters treat the insulated para-

magnet, namely a system at constant energy. In Chap. 5 we turn to

the discussion of a paramagnet in contact with a “heat bath”, namely

a system at constant temperature. Chapter 6 is dedicated to deepening

the understanding of the concept of entropy based on the example of the

paramagnet, and the last chapter presents experimental results.



Chapter 0

Essential Background in

Thermodynamics

0.1 The first law

This chapter is intended as a condensed review of basic notions in thermo-

dynamics. Its role is to compile ideas that are presupposed to be known

from previous study and are either underlying certain parts of this course

or derived in it. It can serve as a condensed reference and it includes sev-

eral bibliographical suggestions for wider expositions of the various topics.

Though it is basically a compendium, several exercises have been included

along the way to maintain the style of this course. The presentation is

based, for concreteness and simplicity, on a specific physical system: the

ideal gas.

The first law of thermodynamics is the law of conservation of energy.

It is written as

dE = δQ− δW . (2.0.1)

dE is the increase in the energy of the system, δW is the work done by

the system and δQ is the heat transferred to the system. In fact, δQ is

defined as the sum of the increase in the system’s mechanical energy and

the mechanical work done by it. In mechanics this sum is strictly zero.

For a gas in a container whose volume expands by dV against a pressure

P , δW = PdV and Eq. (2.0.1) becomes

dE = δQ− PdV . (2.0.2)

A state of a system in thermodynamic equilibrium is specified by

a reduced set of macroscopic variables. The minimal set of variables

defines the state space of the system. For an ideal gas of N molecules

confined in a volume V at temperature T , any two of the variables (P, V, T )

define the state space. Any other quantity at equilibrium is determined

when any two of these are specified. This is the case because the
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ideal gas obeys the equation of state: equation of
state

PV = NkT (2.0.3)

[compare (1.1.6)], which gives any one of the three in terms of the other

two. The two that are chosen may be thought of as coordinates in a

two-dimensional state space. Thus, any state of the system corresponds

to a point in the state space. Other dependent thermodynamic variables

which are fully determined by the point in state space are called functions

of state. For the ideal gas, for any choice of two of the three variables, the

third one is a function of state. As we shall see below, the internal energy

of the ideal gas is also a function of state [see Eq. (2.0.4), below].

Thermodynamic variables are classified into two types: extensive vari- extensive
andables and intensive variables. Extensive variables have a magnitude pro-
intensive
variables

portional to the size of the system. If two identical systems are combined

into one, each extensive variable is doubled in value. The volume and

number of particles of the gas are examples. The energy, Eq. (2.0.4), is

another. Intensive variables are independent of the size of the system. T

and P are such variables.

While the energy is a function of state, work or heat are not. Specifying

a thermodynamic state of the system does not fix the values of these

quantities. When the state of a system changes, i.e. it undergoes a process

of some kind, the amount of work done by the system depends upon the

process, i.e. upon the path in the space of states which corresponds to

the process and not only upon the initial and final points. The same is

true for the amount of heat transferred to the system. In mathematical

terms: δQ and δW are not exact differentials and one uses δ instead of

d for these infinitesimal quantities. By analogy, in classical mechanics, if

a force is not conservative, the initial and final values of the coordinates

and the velocities of its particles do not determine the work done by the

system in the transition between these two states; the entire path must

be specified.

Reminder: A differential in two variables x, y is written as δa = Ax(x, y)dx +
Ay(x, y)dy. It is an exact differential if it is the difference between the values of some
function z(x, y) at two neighboring points, i.e. if δa = z(x + dx, y + dy) − z(x, y). A

necessary and sufficient condition for this is that ∂Ax
∂y
− ∂Ay

∂x
= 0. If this condition

holds, then Ax(x, y) = ∂z
∂x

and Ay(x, y) = ∂z
∂y

for some function z(x, y) and δa is the

difference of the values of this function. The above can be simply generalized to any
number of variables.

As an example, consider again the ideal gas. The relation between

energy and (absolute) temperature is

E =
f

2
NkT , (2.0.4)
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where f is the number of degrees of freedom per molecule. See also Part I,

Chap. 1. Keeping N fixed, we write δQ for a process where T , V and P

are varied. The state space is two-dimensional. Taking T and V as the

independent variables (coordinates), Eq. (2.0.2) gives for δQ

δQ = Nk

(
f

2
dT +

T

V
dV

)
. (2.0.5)

The right hand side of (2.0.5) does not give equal cross derivatives with

respect to V and T and hence is not an exact differential. Consequently,

the amount of heat transferred to the system in a given process, which is

obtained by integrating δQ along the appropriate path, is not the differ-

ence of the values of some “heat” function between the final and initial

points, but depends on the particular process (the path between the two

points in state space.)

Several processes are given special names: isothermal process — the

temperature is kept constant; isochoric process — the volume is kept con-

stant; isobaric process — the pressure is kept constant; adiabatic process

— there is no heat exchange: dE = −δW .

Exercise 0.1

Calculate the amount of heat transferred to an ideal gas of N molecules

with f degrees of freedom in:

(a) An isothermal process.

(b) An isochoric process.

(c) An isobaric process.

Solution on page 183

Exercise 0.2

An ideal gas is at temperature T1 and volume V1. The gas is taken through

an isobaric process to a state of higher temperature T2. It is then taken

via an isochoric process to a state of temperature T1 and finally back to

the initial state in an isothermal process.

(a) Calculate the amount of heat transferred to the gas in the cycle.

(b) Same as (a) but in reverse cycle.

(c) What would be the result if δQ were an exact differential?

Solution on page 183

Exercise 0.3

(a) Calculate the work done by the gas during the cycle described in the

previous exercise.
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(b) Is it equal to Q?

(c) Calculate the work done by the gas during an adiabatic process.

(d) Show that if the ideal gas undergoes an adiabatic process T and V

satisfy

V T f/2 = const

along the path.

Solution on page 184

The heat capacity is the quantity of heat required to change the tem-

perature of the system by δT . Since the heat capacity is defined in terms

of the heat, it depends on the process. For example, there is the heat ca-

pacity at constant volume, CV , and the heat capacity at constant pressure,

CP . The heat capacity is not a derivative of Q. One can schematically

write

CV =

(
δQ

δT

)
V

. (2.0.6)

It represents the coefficient of dT in the expression for δQ when it is

written in terms of the variables T and V . This expression already appears

in Eq. (2.0.5) and one has

CV =
f

2
Nk . (2.0.7)

The heat capacity at constant pressure is defined analogously as

CP =

(
δQ

δT

)
P

. (2.0.8)

To calculate it one identifies the coefficient of dT in the expression for δQ

when it is written in terms of T and P .

Exercise 0.4

Show that the heat capacity at constant pressure for an ideal gas is

CP =

(
1 +

f

2

)
Nk . (2.0.9)

Solution on page 185

The ratio between the two heat capacities is simply the adiabatic pa-

rameter γ = 1 + 2
f . See also Eq. (1.1.25).

Exercise 0.5

Show that γ is the same γ as in the adiabatic equation, PV γ = const.

Solution on page 185
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0.2 The second law and the entropy

Clausius formulation: It is impossible for any engine working continuously

in a cycle to transfer heat from a colder to a hotter body and to produce

no other effect.

Kelvin formulation: It is impossible for an engine working in a cycle

to extract heat from a single reservoir, produce an equal amount of work

and have no other effect.

The analysis of the second law leads to the conclusion that δQ
T is an

exact differential, i.e. a differential of a new function of state. This is the

entropy S.

dS =
δQ

T
. (2.0.10)

It is an extensive variable. In mathematical terms 1
T is an integration

factor of the differential δQ. It converts it into an exact differential.

The first law, Eq. (2.0.2), may thus be written in terms of state func-

tions only:

dE = TdS − PdV . (2.0.11)

This relation may be used to calculate the entropy differences between

states of a gas. Given that at this stage the entropy is defined only up

to an additive constant this is the most one can do. More about this in

Part III, Chap. 5.

Exercise 0.6

(a) Starting from (2.0.5) show that the entropy of an ideal gas of N

molecules with f degrees of freedom is

S = Nk ln

(
cV T f/2

N

)
. (2.0.12)

(b) Calculate the entropy increase of an ideal gas in an isothermal process.

(c) Calculate the entropy increase of an ideal gas in an isochoric process.

(d) What is the process in which the entropy remains constant?

Solution on page 186

An alternative expression for the heat capacity is obtained in terms of

the entropy, Eq. (2.0.10). One can write δQ as

δQ = T

(
∂S

∂T
dT +

∂S

∂V
dV

)
. (2.0.13)

The coefficient of dT is CV . Hence

CV = T

(
∂S

∂T

)
V

. (2.0.14)
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Analogously

CP = T

(
∂S

∂T

)
P

. (2.0.15)

CV and CP can also be obtained from other functions of state: The

first law is δQ = dE + PdV , hence at constant volume δQ = dE and

CV =

(
δQ

δT

)
V

=

(
∂E

∂T

)
V

. (2.0.16)

To calculate CP we define the enthalpy H as enthalpy

H = E + PV . (2.0.17)

It is one member of a family of thermodynamic potentials discussed in the

next section. It is a function of state, since it depends only on functions

of state.

We reserve the ordinary H for the magnetic field.

We write δQ with dE replaced by dH:

δQ = dE + PdV = dH− V dP =

(
∂H

∂T

)
P

dT +

[(
∂H

∂P

)
T

− V
]
dP .

(2.0.18)

If T and P are the independent variables, the heat transfer due to a change

in the temperature at constant pressure equals the change in the enthalpy

at constant pressure:

CP =

(
δQ

δT

)
P

=

(
∂H

∂T

)
P

. (2.0.19)

Exercise 0.7

Calculate the enthalpy of an ideal gas and from it CP .

Solution on page 186

0.3 Thermodynamic potentials

The energy is a thermodynamic potential when expressed in terms of S

and V : Eq. (2.0.11) gives the variation of the energy in terms of the

variations of the independent variables S and V . It is a function of state.

From Eq. (2.0.11) one obtains two relations:

T =

(
∂E

∂S

)
V

, P = −
(
∂E

∂V

)
S

. (2.0.20)

If one rewrites Eq. (2.0.11) isolating dS and regards the entropy as

a function of E and V , then the entropy S is identified as another
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thermodynamic potential, S(E,V ). It is a function of state and two new

relations follow:

1

T
=

(
∂S

∂E

)
V

,
P

T
=

(
∂S

∂V

)
E

. (2.0.21)

This structure is rather general: The basic function of state, or the

thermodynamic potential, is an extensive quantity which is a function ofthermodyna-
mic potential extensive variables. Its differential is a linear combination of differentials

of extensive variables with intensive variables as coefficients. The par-

tial derivative of a thermodynamic potential with respect to an extensive

variable yields its conjugate intensive variable. Once a thermodynamic po-

tential is given, all the thermodynamic properties can be derived from it.

Exercise 0.8

Given the following expression for the entropy of a system:

S = Nk ln

(
aV E3/2

N5/2

)
, (2.0.22)

where a is a constant, obtain all the thermodynamic information about

this system, P , T etc.

Solution on page 187

When the number of particles N is reconsidered as a thermodynamic

variable that may vary from state to state as a result of an exchange of

particles with the surrounding, or a chemical reaction, one adds in the

expression for the first law the corresponding chemical work.

dE = TdS − PdV + µdN . (2.0.23)

The thermodynamic potential E thus becomes a function of S, V and N .

The coefficient µ is the chemical potential. It represents the change inchemical
potential the energy of the system associated with a unit increase in the number of

particles. µ is an intensive variable.

Exercise 0.9

Show that the chemical potential for a monoatomic ideal gas is given by

µ = −kT ln

(
bV T 3/2

N

)
, (2.0.24)

where b is a constant.

Solution on page 187
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Since energy and entropy are not easy to control experimentally, one

develops alternative representations of the thermodynamic information,

expressed in terms of other thermodynamic potentials, which depend on

the temperature instead of the energy or the entropy. This is carried out

by a Legendre transformation. Starting from an E(S, V,N), Eq. (2.0.20)

gives an expression for T in terms of S, V (and N). Hence it provides S

as a function of T , V (and N). One then considers the function

F = E − TS , (2.0.25)

called the Helmholtz free energy (or the free energy). It is a Legendre free energy

transform of the energy. To identify the independent variables, one writes

the differential of F [using (2.0.23)]:

dF = dE − TdS − SdT = −SdT − PdV + µdN . (2.0.26)

Hence, it is a thermodynamic potential with T , V and N as its natural

variables. Starting from an expression for the free energy one derives the

pressure as a function of T , V and N (which is the equation of state) as

well the entropy and the chemical potential by

S = −
(
∂F

∂T

)
V,N

, P = −
(
∂F

∂V

)
T,N

, µ =

(
∂F

∂N

)
T,V

. (2.0.27)

In contrast to S or E, F is a potential that depends on an intensive

variable, T . Since F is extensive, its derivative with respect to T , i.e. S,

is extensive as well.

These expressions lead to the Maxwell relations between various deri- Maxwell
relationsvatives of the entropy, pressure and chemical potential. They all express

the fact that the mixed second partial derivatives of F (T, V,N) are inde-

pendent of the order of derivation. One finds that

−
(
∂P

∂N

)
T,V

=

(
∂µ

∂V

)
T,N

,

−
(
∂S

∂N

)
T,V

=

(
∂µ

∂T

)
V,N

,

(
∂S

∂V

)
T,N

=

(
∂P

∂T

)
V,N

.

Exercise 0.10

Calculate the free energy of a monoatomic ideal gas. Give the result in

terms of the variables T , V and N and choose the arbitrary constant to

be consistent with (2.0.24).

Solution on page 187
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Exercise 0.11

The free energy for a photon gas is given by

F = −a
3
V T 4 , (2.0.28)

where a is a constant. The origin of this result and the meaning of a will

be discussed in Part IV.

(a) Calculate the entropy of the photon gas.

(b) Calculate the pressure of the photon gas and its equation of state.

(c) Calculate the energy of the photon gas.

(d) What is the chemical potential of the photon gas?

Solution on page 188

Exercise 0.12

Calculate the equation of the adiabatics of a photon gas.

Solution on page 189

Exercise 0.13

Verify the Maxwell relations for:

(a) Ideal gas.

(b) Photon gas.

Solution on page 189

To consider systems which may exchange not only energy but also

particles with a reservoir, the number of particles N is replaced by its

conjugate variable, the chemical potential µ. Mathematically, another

Legendre transformation is performed, leading from the free energy to a

new thermodynamic potential whose natural variables are T , V and µ.

This is done by defining the grand potential, or just the thermodynamic

potential, Ω:

Ω = F − µN = E − TS − µN , (2.0.29)

where the three N ’s (the explicit one, the one inside S and the one inside

E) are expressed in terms of T , V and µ, using the equation for µ(T, V,N),

in Eq. (2.0.27). Then using Eq. (2.0.23) the differential, in terms of the

independent variables T , V and µ, becomes

dΩ = −SdT − PdV −Ndµ. (2.0.30)
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One obtains a set of relations analogous to (2.0.27):

S = −
(
∂Ω

∂T

)
V,µ

, P = −
(
∂Ω

∂V

)
T,µ

, N = −
(
∂Ω

∂µ

)
T,V

, (2.0.31)

with the associated Maxwell relations, which are left as an exercise.

Exercise 0.14

(a) Derive the Maxwell relations associated with the thermodynamic po-
tential Ω.

(b) Calculate Ω for a monoatomic ideal gas.

Solution on page 190

Finally, we express the heat capacity at constant volume (and number
of particles) in terms of F . CV is a derivative of the energy with respect to

T at constant V and N [Eq. (2.0.16)]. But E is a function of S, V and N
[Eq. (2.0.23)], so first one needs the dependence of E on T . This is done

using Eq. (2.0.25), substituting S(T, V,N) from (2.0.27). One can write

E(T, V,N) = F (T, V,N) − T
(
∂F

∂T

)
V,N

, (2.0.32)

and the heat capacity at constant volume becomes

CV =

(
∂E

∂T

)
V,N

= −T
(
∂2F

∂T 2

)
V,N

. (2.0.33)

This is just a rewriting of Eq. (2.0.14). Correspondingly, CP should be

calculated from the enthalpy which is written as a function of T , P and

N . These variables call for a new thermodynamic potential.

0.4 The third law

The experimental failure to reach absolute zero together with the theoret-

ical failure to derive the impossibility of reaching 0 K from the first two
laws, led to the formulation of the third law:

Formulation 1: By no finite series of processes is absolute zero attainable.
Formulation 2: As the temperature tends to zero, the magnitude of the

entropy change in any reversible process tends to zero. We will return to
this issue and its consequences in Part III.

Suggested reading

(1) E. Fermi, Thermodynamics (Dover, New York).

(2) A. B. Pippard, Classical Thermodynamics (Cambridge University
Press, London).

(3) C. J. Adkins, Equilibrium Thermodynamics (McGraw-Hill, London).



Chapter 1

Thermodynamics with Magnetic

Variables

1.1 Introduction

Since part of the testing of statistical mechanics is its ability to reproduce

the laws of thermodynamics, and since the magnetic system is a convenient
example, we open the discussion with a thermodynamic description of

systems which respond to a magnetic field. We will use these results in

Chaps. 4 and 5.

Before passing on to the discussion of the thermodynamic variables,
we recall the relevant concepts from the electromagnetic theory. The

fundamental concept here is the dipole moment (electric or magnetic),
which has two important characteristics. First, a dipole moment in an

external field is acted upon by a torque which tends to align it along

the direction of the field as described in Fig. 2.1.1. A simple calculation,
which will not be given here, shows that the magnitude of the electric

dipole moment, p, of a pair of charges ±q is proportional to the distance
between them, d, i.e. p = qd, and that the magnetic dipole moment of

a planar loop, µ (not necessarily rectangular!), carrying a current I iselectric/
magnetic
dipole
moment

proportional to its area, a : µ = Ia/c (c is the speed of light).

Since the dipole prefers to align itself along the direction of the field, it

is clear that it has a potential energy that depends on the angle between

its direction and the direction of the field or, in other words, on their
scalar product:

Eel = −p ·E , (2.1.1a)

Emag = −µ ·B . (2.1.1b)

This means that the potential energy decreases as the angle between the

direction of the dipole and the direction of the field decreases.
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Fig. 2.1.1 The torque acting on a current loop (a) and a side view of the magnetic
moment of the loop (b). For comparison the electric dipole is depicted (c).

The second role is that each dipole moment is also a source of an

electric or magnetic field. An important fact for us is that the presence
of a macroscopic number of dipoles, for example in a bulk of dielectric

material, changes considerably the external field that would exist in that

region in the absence of the material. The intensity of the field originating
from these dipoles is determined by the polarization density, which is

the dipole moment per unit volume of the material and is denoted by
P in the electric case and M in the magnetic case. M is also called

magnetization density or magnetization per unit volume. The relation
between the induced fields and the polarization density is

E = −4πP , (2.1.2a)

B = 4πM . (2.1.2b)

Notice the difference in sign between the electric and the magnetic equations. It stems
from the opposite behavior of the fields “inside” the dipoles.

Consider, for example, a single dipole moment in a medium of many

other dipoles: It will feel (via the torque) the external field H and also
the additional field 4πM, originating from the neighboring dipoles. The

sum of these two effects is the magnetic induction B, and the relationship

between them is
B = H+ 4πM . (2.1.3)

A similar relationship can be formulated for the electric case, but we will

restrict ourselves to magnetic systems.
To conclude the introduction, we further remark that there is a practi-

cal reason for concentrating on the fieldH, and not the magnetic induction
B, which is that H is the external variable which is under control: We are

able to change the currents, thereby affecting what would have happened

in the absence of the material. The appearance of the magnetic induction
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depends on M, the magnetization density, which is the system’s response

to H. Hence, even though B is the natural variable in electromagnetic
theory, in thermodynamics we prefer to express quantities in terms of H.

1.2 The first law in magnetic variables

The thermodynamic description is of a much more general validity than
would seem so when dealing with a mechanical set of variables — pressure

P and volume V , characteristic of gases and liquids. Analogously, we can
describe a system responding to a magnetic field, using the mechanical-

like variables: the magnetic field H and the magnetization (i.e. the total
magnetic moment) M. The relationship between the magnetization M

and the magnetization density M is, of course, M =MV , where V is the

volume of the system. The field H is an intensive variable, while M, the
response to H, is an extensive variable.

An increase in P leads to a decrease in V , while the increase in H
increases M; however, this is only a difference in sign [see Eq. (2.1.10)].

We can similarly characterize the system by an electric field E (intensive)
and an electric polarization (extensive), etc.

We saw in the previous chapter that the first law of thermodynamics

is written in the form

dE = δQ− δW . (2.1.4)

dE is the increase in the energy of the system, δQ is the heat transferred
to the system and δW is the work done by the system.

When the system expands by dV against a pressure P , δW = PdV .
In order to formulate the first law in magnetic variables, we must first

inquire how the work is expressed in these variables, namely what is the

work done by the system when the external field changes by dH.

For the sake of simplicity we assume that our system is a long, thin

cylindrical bar, with its axis along the magnetic field. The external mag-
netic field orders the microscopic dipoles in the bar, giving rise to an

induced magnetic moment, M . This situation is described in Fig. 2.1.2,
where the external magnetic field along the bar is depicted — before the

change and after it. Suppose the magnetic system at a given instant is

in a microscopic state r in which it has an induced magnetic moment Mr

and the field is H. The change of H to H + dH lowers the energy of

H

➤

➤ ➤
H+dH

M

Fig. 2.1.2 A long, thin bar having an induced magnetic moment in an external field.
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the state. The change in energy is obtained by multiplying the magnetic

moment by the change in the field:

dEr = −MrdH , (2.1.5)

which means that in such a change the system will perform work ofMrdH.

In thermodynamics we are not interested in a given state of the system,
but in the average over long times. Therefore the work performed by the

system when H changes will be

δW =MdH , (2.1.6)

where M is the average of Mr.
We now write (2.1.4) in the form

dE = δQ−MdH . (2.1.7)

And the entropy [Eq. (2.0.10)] is given by

dS =
dE

T
+
MdH

T
. (2.1.8)

It is of course possible to define a new energy:

E∗ = E +MH , (2.1.9)

which is the energy of the state, together with the energy of the electro-

magnetic field.

This is a standard Legendre transformation which produces a new thermodynamic
potential. See e.g. Sec. 0.3.

In terms of E∗ we can express the entropy change in the form

TdS = dE∗ −HdM , (2.1.10)

which is more reminiscent of the corresponding equation for gases, in that

both differentials are of extensive quantities, except for the sign difference:

PdV → −HdM . (2.1.11)

Exercise 1.1

What is the physical meaning of the different derivatives of S, as inferred

from (2.1.8) and (2.1.10), and the relationships between them?

Solution on page 190



Chapter 2

Microscopic States and Averages

2.1 Magnetic states, angular momentum and
paramagnetism

Different materials respond differently when a magnetic field is applied to

them. The simplest response is that as a result of the application of the
field a magnetic moment is induced, which vanishes with the vanishing

of the field. If in addition the induced moment is directed along the
field, the response is called paramagnetic. The magnetic moment (the

magnetization) may also be directed opposite to the field. In this case

the material is called diamagnetic. There is a large diversity of other
behaviors, but here we will mention only the ferromagnet (ferro for iron),

a substance which at moderate temperatures retains its magnetization,
even after the removal of the magnetic field.

Before going on to the thermodynamic discussion of paramagnetism,

we recall that the source of the magnetization that appears in materials is
microscopic and each atom or ion possesses an intrinsic magnetic dipole

moment. Actually, this intrinsic dipole moment originates from the elec-
trons of the atom or ion, as hinted in Fig. 2.1.1(a). An electron revolving

around the nucleus at radius r and velocity v behaves as a circular current

loop of area πr2 and current ev/2πr. The magnetic moment of the loop is

µ =
1

2c
evr . (2.2.1)

Equation (2.2.1) can be written in the form µ = e</2mc or in its vector

version:

µ = − e

2mc
� , (2.2.2)

where m is the mass of the electron and � is its angular momentum. How-

ever, despite the oversimplified assumptions upon which it is based, this

connection between the magnetic moment and the mechanical quantities

138



2.1 Magnetic states, angular momentum and paramagnetism 139

related to the motion of the electron is of general validity. Equation (2.2.2)

also holds for noncircular orbits and remains valid even within the frame-
work of quantum mechanics, which is the appropriate theoretical frame-

work for the discussion of electrons in atoms. In quantum theory the
angular momentum of the electron (or, in fact, of any other particle) is

quantized and can take on values which are integer multiples of the fun-
damental quantum of angular momentum, h̄. Planck’s

constant
h = 6.626 × 10−34 J · s = 6.626 × 10−27 erg · s ,

h̄ =
h

2π
.

Both h and h̄ are referred to as Planck’s constant in the literature. Concerning the
quantization of angular momentum, see any text on modern physics.

It is therefore convenient to define a dimensionless vector L which
measures the angular momentum in units of h̄:

L =
�

h̄
. (2.2.3)

� and L are both called angular momentum; we will leave no room for

confusion between them.

Since the angular momentum of the electron is quantized, the magnetic

moment related to it is also quantized, and the fundamental quantum of
the magnetic moment of the electron is called the Bohr magneton, Bohr’s

magneton

µB =
eh̄

2mc
= 9.273 × 10−21 erg/gauss ,

so that we can write

µ = −µBL . (2.2.4a)

But this is not the end of the story, because in addition to the orbital
angular momentum � the electron also possesses an internal angular mo-

mentum or spin S. Like all angular momenta, also the spin assumes only spin
discrete values but, in contrast to the orbital angular momentum, which

can only take on integral multiples of h̄, the spin can also take on half-
integral values. The spin of the electron can take on the values ±1

2 h̄ only.

This fact is conventionally summarized in the literature by the words “the electron
has spin 1

2 .”

On the basis of Eq. (2.2.2) we could expect the spin itself to create

an additional magnetic moment of 1
2µB, but this is not so: a magnitude

twice as large is found experimentally. Hence the relation between the
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magnetic moment and the spin of the electron is

µ = − e
m
s = −2µBS , (2.2.4b)

where again we have defined a dimensionless spin by S = s/h̄.

The reason for the factor-of-2 discrepancy with the expected result for the electron’s
magnetic moment is explained by taking into account relativistic effects in the quantum
treatment of the electron, as was first done by Dirac at the end of the twenties. Actually,
the true value is slightly larger than 2 (by two parts in a thousand). This fact can be
explained within the framework of quantum electrodynamics.

The total magnetic moment of a single electron is thus the sum of
(2.2.4a) and (2.2.4b). The magnetic moment of the whole atom or ion,

which is in fact our main interest, is the sum of the contributions of all its

electrons. The electrons in the atom are arranged in shells, so that each
electron in every shell has a specific angular momentum. The total angular

momentum of electrons in a full shell or subshell is zero. If one electron
is added to or removed from a full shell the ion remains with an angular

momentum equal in size to the angular momentum of the additional or
missing electron. Since a charged particle, possessing angular momentum,

has a magnetic moment, we can assign the ion that magnetic moment.

In light of Eq. (2.2.4) the magnetic moment of the ion is proportional
to its total (dimensionless) angular momentum:

J =
∑
i

(Li + Si) . (2.2.5)

Moreover, it is possible to show that in an external magnetic field, the ion

increases its energy by an amount which is proportional to J:

∆E = gµBJ ·H , (2.2.6)

where g is a numerical factor of order 1 which is determined by the struc-
ture of the atom. g is called the gyromagnetic factor and it actually de-gyromagne-

tic ratio scribes the ratio between the magnetic moment of the ion and its to-
tal angular momentum. For a free electron we obtain g = 2, as already

mentioned.

As an example we consider doubly ionized copper, Cu++. In the ex-
ternal shell, the fourth shell, Cu contains a single electron. The double

ionization removes this last electron as well as one from the full, highest
subshell of the third shell, 3d. The ion has a single hole in the 3d shell

with angular momentum 5
2 h̄, as explained above.

There are different kinds of paramagnets. Here we discuss a type for

which the ions possessing angular momenta are set in fixed positions in

a crystal. For example, in ionic crystals of copper salts, manganese or
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gadolinium, the ions Cu++, Mn++, Gd++ give rise to the paramagnetism

of the salt. If there are many nonmagnetic atoms in the salt per magnetic
ion, then it is reasonable to assume that due to the large separation of

the magnetic ions they do not affect one another. This is the case, for
example, in copper potassium sulphate: CuSO4 ·K2SO4 · 6H2O.

Remark. Equations (2.2.1) and (2.2.2) are valid only in cgs units.

In the SI system the factor of c (the speed of light) in the denominator

should be dropped. Hence the Bohr magneton is in SI units:

µB =
eh̄

2m
= 9.273 × 10−24 J T−1 .

All other equations have the same form in both systems.

2.2 Microscopic states, observables

The simplest case that we begin with is a paramagnet in which N magnetic

ions have “spin 1
2 .” This means that any projection (component) of Smay

take on the values ±1
2 only.

From here on the total angular momentum of the ion will be referred to as the spin.
This is so since we are not interested in the details of such an ion and are considering
only its general characteristics, which are its spin and magnetic moment. The spin will
serve for the enumeration of states and the magnetic moment for the calculation of its
energy in a magnetic field.

If a field H is applied to a single moment µi, the energy is given by

εi = −µi ·H . (2.2.7)

However, in our case, the magnetic moment can have only two projections
along the field (µB or −µB), so that we can write

εi = −µBHσi , (2.2.8)

where σi is a variable that has two possible values: ±1.
σ describes the projection of the spin along the direction of the field. In the case of

spin 1
2 , its projection along the field is h̄σ/2, where σ = ±1.

Since we are assuming that the magnetic moments are far from one
another (which means that there is no interaction between the magnetic

ions), we can write the energy of a configuration or of a microscopic state

of the system of moments in the form

E(σ1, . . . , σN ) = −µBH
N∑
i=1

σi . (2.2.9)
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➤

➤

➤

➤

H

➤

z
➤

Fig. 2.2.1 A model of a paramagnet in an external field.

By the term configuration or microscopic state we mean a state in which
all the degrees of freedom of the system are specified (see also Sec. 1.5 of

Part I).
In the present case the system has N degrees of freedom corresponding

to N magnetic ions, which we denote by σi. Each degree of freedom can

assume one of two possible values, σi = ±1 (because we chose ions with
spin 1

2). If each σi is assigned a value, a specific configuration, or a specific

microscopic state, is determined. For instance, the configuration σi = +1
for every i is the state in which all the magnetic moments point along

the field, while σi = −1 for every i is the state in which all the magnetic
moments are opposite to the field. Figure 2.2.1 depicts a lattice on which

there are “spherical” atoms, black and white, which have zero magnetic

moments. There are also “elongated” atoms, with arrowheads represent-
ing their magnetic moments. Their serial number is i and the projection

of their magnetic moment along the z axis, which is chosen along the field,
is ±µB. There is no interaction between them. This is our model system.

This system has 2N microscopic states. Each of them is character-
ized by N numbers (σ1, . . . , σN ), which determine the projection of each

spin. In each microscopic state the properties of the system are com-

pletely defined. With each microscopic state one can associate observ-
ables, A(σ1, σ2, . . . , σN ), which are numbers associated with the particu-observables

lar state. For instance, the total magnetic moment along the z axis is an
observable given by

M(σ1, . . . , σN ) = µB

N∑
i=1

σi , (2.2.10)

as is the total energy given by (2.2.9).
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The magnetic moment of a subsystem with Na of the N magnetic

moments is an observable of the full system

Ma(σ1, . . . , σN ) = µB

Na∑
i=1

σi , (2.2.11)

despite the fact that it depends only on part of the variables. So is the

energy of the subsystem Ea = −HMa. The value of a particular spin σi
is also an observable, etc.

With a little extra effort it is possible to generalize the present model

to the case in which the ions have an angular momentum J > 1
2 , where J

is the sum of the orbital angular momentum and the spin [Eq. (2.2.5)].

In this case the possible values of the projection of the angular mo-

mentum along H are

Jz = −J,−J + 1,−J + 2, . . . , J .

Thus, there are 2J + 1 possibile projections. The energy levels of such

an ion are given again by multiplying µBJzH by the gyromagnetic factor.

All the expressions that we have written in this section still hold, with the

proviso that every degree of freedom will now have 2J + 1 states, instead

of just two. Consequently, there will now be (2J+1)N microscopic states.

2.3 Probabilities and averages

As was mentioned in the Introduction to this part, the role of statistical

mechanics is to create a bridge from microscopic states to averages. To

this end we want to know the probability for a certain microscopic state

to appear along the system’s trajectory in configuration space. Such a

trajectory is described by giving the N -tuples (σ1, . . . , σN ) in a certain

time interval. This approach is replaced, of necessity, by the ensemble

approach, in which the time evolution is ignored, and probabilities are

assigned to all allowed states.

The ensemble is defined by the collection of probabilities, or recur-

rence rates, of every microscopic state. We denote the probability of the

state (σ1, . . . , σN ) by P (σ1, . . . , σN ). Once P is given, the problem of

evaluating averages becomes a mere technicality. Since, if A(σ1, . . . , σN )

is an observable of the paramagnetic system, in the microscopic state

(σ1, . . . , σN ), the required average is just

〈A〉 =∑
{σ}

P (σ1, . . . , σN )A(σ1, . . . , σN ) , (2.2.12)
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where
∑
{σ} denotes the summation over all microscopic states. Thus, the

sum is over 2N states, wherein each spin takes on both possible values.

In the case of a spin J , each spin takes on 2J + 1 values, and the sum is

over (2J + 1)N microscopic states of the system.

Thus, for example, the average magnetic moment of the system, in

an ensemble defined by P , is determined by the average of A = M =

µB(σ1 + σ2 + · · ·+ σN ), so that

〈M〉 = µB
∑
{σ}

(∑
i

σi

)
P (σ1, . . . , σN ) . (2.2.13)

The fog of mathematical symbols can be reduced by writing Eq. (2.2.13) in the simple
cases of small N . For N = 3 we obtain

〈M〉 = µB

∑
σ1,σ2,σ3

(σ1 + σ2 + σ3)P (σ1, σ2, σ3) ,

where the summation is performed independently over σ1, σ2 and σ3, each assuming
the values ±1. There are a total of eight possibilities.

Next, we show that 〈M〉 is proportional to the average magnetic mo-

ment of a single spin. To this end we define the probability for a given

spin — with i = 1 for example — to have the moment σ1(+1 or −1):
P (σ1) =

∑
{σ}
′P (σ1, . . . , σN ) , (2.2.14)

where
∑′ denotes that we are summing over microscopic states with

fixed σ1, or in other words we are summing over all possible values of

σ2, . . . , σN .

Of course, all the moments are equivalent so there is no special signif-

icance to σ1. The prime can be attributed to any other spin i, and then

the sum in Eq. (2.2.14) represents the probability P (σi) for that spin to

have the value +1 or −1. Thus we can denote all of them by P (σ).

We can therefore rewrite Eq. (2.2.13) in the form

〈M〉 = µBN
∑
σ=±1

σP (σ) = µBN〈σ〉 , (2.2.15)

where 〈σ〉 is the average of the observable A = σi.

Exercise 2.1

Does the result (2.2.15) seem reasonable to you, without a detailed cal-

culation? What would you expect to be, without calculating, the average

magnetic moment of the subsystem of the Na spins [whose moment is

given by Eq. (2.2.11)]?

Solution on page 191
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The transition from Eq. (2.2.13) to Eq. (2.2.15) was done in the fol-

lowing manner. We change the order of summations in Eq. (2.2.13) and

write

〈M〉 = µB

N∑
i=1

∑
{σ}

σiP (σ1, . . . , σN ) . (2.2.16)

The summation over the states may be carried out in two stages. First, we

hold σi constant for a certain i, and carry out the inner summation over

all possible σj with j �= i. After that we sum over σi. The inner sum is∑
{σ}

σiP (σ1, . . . , σN ) =
∑

σi=±1
σi
∑
{σ}
′P (σ1, . . . , σN ) , (2.2.17)

where, as before,
∑′ denotes a sum in which each spin takes the values

±1, except for σi, whose value is fixed. Using Eq. (2.2.14) we note that

the primed sum is P (σi), so that we may write the right hand side of

Eq. (2.2.17) in the form ∑
σi=±1

σiP (σi) = 〈σi〉 . (2.2.18)

Now we are left with the outer summation in Eq. (2.2.16), after we sub-

stitute Eq. (2.2.18) into Eq. (2.2.16). Since 〈σi〉 is independent of i [as

P (σi) are also independent of i], we are summing N equal terms 〈σ〉, and
we obtain Eq. (2.2.15).

The independence of i means that we obtain the same result for each of the magnetic
moments of the system, the reason for which is of course that they are all identical.

Exercise 2.2

Show that it is possible to write the probability that two spins i and j

will have components σi and σj, respectively, as

P (σi, σj) =
∑
{σ}
′′P (σ1, . . . , σN ) , (2.2.19)

where σi and σj are held fixed in the summation, and the summation is

carried out over all other N − 2 spins.

Solution on page 191

With the help of Eq. (2.2.19) we can write the covariance between two

spins, which measures the dependence of one spin (say, i = 1) on the state

of another (say, j = 2). We denote the covariance by C(1, 2) or generally

C(i, j). Its definition is

C(1, 2) = 〈σ1σ2〉 − 〈σ1〉〈σ2〉 . (2.2.20)
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Clearly, if the two spins are independent of each other, C vanishes. C is

positive if a given value of σ1 encourages spin 2 to have the same value.

C will be negative if σ1 encourages spin 2 to have the opposite value.

An explicit example for the calculation of C(1, 2) will be given in the

next chapter.



Chapter 3

Isolated Paramagnet —

Microcanonical Ensemble

3.1 Number of states and probabilities

When one is trying to determine the ensemble, to decide on the occur-
rence rates of the distinct microscopic states of a system, it is vital to

take into account the strict constraints. It is clear, for example, that if
a gas is in a sealed vessel, the time evolution of the system will not re-

sult in the appearance of states in which molecules are found outside the
vessel. Similarly, all conservation laws must apply to the states of the

ensemble.

The first conservation law which comes to mind is the conservation of

energy of an isolated system. Clearly, the trajectory of an isolated system
will contain only states whose energy is equal to the initial energy. Taking

into account the conservation laws and the external constraints applied to
the system, it is natural to assume, in the absence of other information,

that all the states are equally probable.

One may ask, of course, how it is possible for the paramagnetic system
to pass from one state to another, and not remain in a single microscopic

state if the spins do not affect one another. The answer is that there are,

necessarily, interactions between the different spins, but that these involve
energies that are very small compared to the energy of the moments in the

magnetic field. Nevertheless, since we are dealing with many states of the
same energy, even a small perturbation can (in the quantum description)

transfer the system from state to state, with finite probability. Thus it is
reasonable to treat the problem as if the energy were given by (2.2.9) and

the system’s trajectory, in the space of microscopic states, passes through

all of the allowed states.

A similar question may be asked for the case of an ideal gas of pointlike molecules,
and the answer is, of course, that the collisions of the molecules with one another and
with the walls of the container cause the gas to pass from one microscopic state to
another.

147
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Moreover, we shall interpret the state of thermal equilibrium as a state

to which the system has evolved after a long enough time, so that by now

all the microscopic states appear at the same occurrence rate during its

time evolution. This collection of states corresponds to a macroscopic

state. The ensemble we defined, of constant energy, is called a micro-microcanoni-
cal ensemble canonical ensemble (there is no point in trying to find a deep meaning to

this name).

In such an ensemble, if the energy is E, the probability for a certain

microscopic state is, simply, 1/Γ(E), where Γ(E) is the number of states

with energy E. Namely for our paramagnet

P (σ1, . . . , σN ) =
1

Γ(E)
. (2.3.1)

Up to this point the considerations are of universal generality. To say

more about Γ(E) we turn to the simple model of the paramagnet.

The model is so simple that it is possible to answer this question

in detail, using combinatorial considerations. The energy of the state

depends only on the difference between the number of spins that point

along the field, N+, and those that point in the opposite direction, N−.
Denoting this difference by q, namely

q = N+ −N− , (2.3.2)

we obtain from (2.2.9)

E = −µBHq , (2.3.3)

which means that constant E is equivalent to constant q.

However, since the sum of N+ and N− is also constant, and equal to

the total number of spins, constant q means that both N− and N+ are

constant. But we can immediately write down the number of states with

given N− and N+, since this is simply the number of ways of dividing N

objects into two groups, N+ in one and N− in the other. That is,

Γ(E) =
N !

N+!N−!
. (2.3.4)

Exercise 3.1

Show that

Γ(E) =
N !(

N
2 − E

2µBH

)
!
(
N
2 + E

2µBH

)
!
. (2.3.5)

Solution on page 192
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3.2 Calculating averages and correlations

The first calculation we can perform is of the average magnetization. This

is an especially simple calculation, since in all the states of equal energy

the magnetization is identical. Hence

〈M〉 = µBq = −E
H

(2.3.6)

and the average magnetization per degree of freedom (spin) is simply

µBq/N , or −E/(NH).

Next we calculate P (σ1), which was defined in Eq. (2.2.14) as the

probability for spin number 1 to have a projection σ1 along the field. We

start with σ1 = 1. That is, we calculate P (σ1 = 1) (as already mentioned

and will be verified by the calculation, the result is independent of our

choice of spin i = 1). We carry out the summation in (2.2.14) with

P (σ1, . . . , σN ) given by 1/Γ(E) in (2.3.5).

Since the probabilities are all equal, the problem reduces to finding

the number of microscopic states with given q, for which σ1 = +1.

We have to calculate the number of states of the remaining N − 1

spins, with an excess (N+−N−) along +z, equal to q−1. In other words,

these are the states with N− spins along −z, as in the calculation of Γ(E)

but with only N+ − 1 along z. This number is

(N − 1)!

(N+ − 1)!N−!
,

so that

P (σ1 = +1) =
(N − 1)!

(N+ − 1)!N−!
· 1

Γ(E)
=
N+

N
=

1

2
− E/N

2µBH
. (2.3.7)

The answer indicates that we could have calculated P (σ1 = 1) in a simpler

way: the probability for spin 1 to have projection +1 is equal to the

probability for any one of other spins to have projection +1. Thus the

required probability is also equal to the probability for an arbitrary spin

to have projection +1, and is of course equal to the ratio of the number

of spins with projection +1 and their total number: N+/N .

Exercise 3.2

Show that

P (σ1 = −1) = 1

2
+
E/N

2µBH
. (2.3.8)

Solution on page 193
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Exercise 3.3

Show that it is possible to deduce P (σ1) from Eq. (2.2.15).

Solution on page 193

In other words, we can say that if the energy is negative, the spins tend

to align themselves along the magnetic field. Namely, the probability for a

spin to point along the field is larger than 1
2 . If the energy is positive, the

spins tend to be opposite to the field. Let us consider a few representative

cases:

(a) The maximal energy of the system is NµBH: all the spins point

opposite to the field. If this is the given energy it is obvious that

we will not find any spin that is pointing along the field and so

P (σ1 = 1) = 0 , P (σ1 = −1) = 1 .

The same result will of course be obtained from a direct substi-

tution into (2.3.7) and (2.3.8).

(b) The minimal energy is −NµBH: all the spins point along the

field —

P (σ1 = 1) = 1 , P (σ1 = −1) = 0 .

(c) E = 0: P (σ1 = 1) = P (σ1 = −1) = 1
2 .

The behavior of P (+1) and P (−1) as functions of the energy is depicted

in Fig. 2.3.1.

The average moment per spin 〈σ〉 is calculated as follows:

〈σ〉 =∑
σ

σP (σ) = 1 · P (1) + (−1)P (−1) = N+

N
− N−

N
=

q

N
. (2.3.9)

➤

➤

P

E/µBHN

P(–1)P(+1)

1–1

1

1/2

Fig. 2.3.1 A graphical representation of Eqs. (2.3.7) and (2.3.8).
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A more interesting question with a somewhat surprising answer,

maybe, is the question of the covariance between the spins in the iso-

lated system. P (σ1, σ2) and C(1, 2) are defined by (2.2.19) and (2.2.20).

An argument similar to the one made concerning P (σ1) will hold here as

well, and we can write down




P (+1,+1) =
(N+ − 1)N+

N(N − 1)
,

P (+1,−1) = P (−1,+1) =
N+N−

N(N − 1)
,

P (−1,−1) = (N− − 1)N−
N(N − 1)

.

(2.3.10)

Note that P (−1,+1) and P (+1,−1) are equal but correspond to dif-

ferent microscopic states. Hence the normalization is

P (+1,+1) + P (+1,−1) + P (−1,+1) + P (−1,−1) = 1 .

Exercise 3.4

Produce the detailed argument that leads to (2.3.10).

Solution on page 194

The covariance of the spins number 1 and 2, Eq. (2.2.20), is

C(1, 2) =
∑
σ1,σ2

σ1σ2P (σ1σ2)−
[∑
σ1

σ1P (σ1)

]2

=
(N+ − 1)N+

(N − 1)N
+

(N− − 1)N−
(N − 1)N

− 2
N+N−

(N − 1)N
− (N+ −N−)2

N2
,

in which for the last term we have used Eq. (2.3.9). A bit of algebra leads

to

C(1, 2) =
1

N − 1

(
q2

N2
− 1

)
< 0 . (2.3.11)

That is, although there are no interactions between the spins it seems as

if they “disturb” one another from aligning in the same direction. This

is implied by the fact that C(1, 2) < 0. However, it is important to note

that the correlations are independent of the distance between spin number

1 and spin number 2. This fact points to the origin of the correlations.

They appear since, when N+ −N− = q is constant, the combinatorics of

N −2 spins is different from that of N −1 spins. In other words, choosing

the value of σ1 to be, for example, +1, reduces the number of possibilities

for the rest of the spins to have the value +1 so that it also reduces the
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probability of finding σ2 = +1. The origin of these correlations, therefore,

is not dynamical but combinatorial. In order to learn from the correlations

about the dynamics of the system, we must remove from the system the

combinatorial effect, which can be done by taking the thermodynamic

limit.

The thermodynamic limit is the limit in which N tends to infinity and

is the limit that generally interests us in statistical physics. The covariance

in Eq. (2.3.11) is of order 1/N , since q/N is of order 1. So it tends to zero as

N tends to infinity, as indeed we would expect to occur. The probabilities

(2.3.7) and (2.3.8) etc. depend on the ratio E/N , and do not tend to zero

in the thermodynamic limit, since E/N remains finite. This is also the

rule for treating all the other extensive quantities: in the thermodynamic

limit the extensive quantities are to be evaluated per degree of freedom.

For instance, 〈E〉 and 〈M〉 are extensive quantities, so that they yield

meaningful values for 〈E〉/N and 〈M〉/N in the thermodynamic limit.

This means that when calculating an extensive quantity we are interested only in the
largest term, which is proportional to the number of particles (or to the volume). Since
the number of particles is very large, the successive terms are negligible.

Exercise 3.5

Calculate the average square deviation of M from its average (∆M)2.

Solution on page 195

Exercise 3.6

What is the probability that spin number 1, 2 and 3 will all be +1, in the

thermodynamic limit?

Express the result in terms of the number of spins and the energy.

Solution on page 197

3.3 Numerical examples and Stirling’s formula

In order to obtain a better sense for the orders of magnitude of the num-

ber of states we are dealing with, we shall study Γ(E) of Eq. (2.3.5) for

different values of N . For N = 1, i.e. for a single spin, there are two

possible values for E, each of them corresponding to a single state. For

the case N = 2 there are already three possibilities for E. Two states

correspond to E = ±2µBH, one state to each sign and two more states

correspond to E = 0, Γ(0) = 2. For the not-too-simple case N = 10 the

results are summarized in Table 3.1.
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Table 3.1

E/µBH −10 −8 −6 −4 −2 0 2 4 6 8 10

Γ 1 10 45 120 210 252 210 120 45 10 1

Notice the emerging trend that the largest number of states corre-

sponds to E = 0. This trend becomes more pronounced as the number of

degrees of freedom (spins) increases.

This fact hints that, if our system were not isolated, but could ex-

change energy with its surroundings, it would have had to compromise

between its tendency towards the state with minimal energy and the most

probable (microscopic) state with zero energy.

In order to effectively analyze the cases with macroscopic N (∼ 1022),

we have to find a good method of calculating, at least approximately,

factorials of numbers of this order. This is achieved by using Stirling’s

formula:

n! � nne−n√2πn . (2.3.12)

Stirling’s formula gives an approximation that improves as n increases. Already for
n = 10 substitution into (2.3.12) gives 3.60× 106 compared to the true value, which is
10! = 3628800.

Instead of directly calculating Γ(E) for large values of N , we define a

function S/k as the logarithm of Γ(E) in (2.3.5), and calculate it. That is,

1

k
S ≡ ln Γ � −

(
N

2
− E

2µBH

)
ln

(
1

2
− E/N

2µBH

)

−
(
N

2
+

E

2µBH

)
ln

(
1

2
+
E/N

2µBH

)
. (2.3.13)

The first part of (2.3.13) is a definition and is referred to as Boltzmann’s

formula (it should not come as a great surprise to the reader if we leak

at this stage the fact, to be discussed in the next chapter, that S is the

entropy). The second part is an approximation, using (2.3.12), in which entropy

we keep the first term, which is the largest, in the expansion in powers

of N .

The term we have kept is proportional to N , since E is proportional

to N . The first term that we neglected is independent of N (in the limit

N →∞, the neglected term divided by N tends to 0), so that when N is

very large the approximation is justified. We have found, therefore, that

S is an extensive quantity.
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Exercise 3.7

(a) Use Stirling’s formula to deduce Eq. (2.3.13).

(b) Check if (2.3.13) gives values that are close to the ones that appear

in Table 3.1.

Solution on page 198

The following fact is of interest: Stirling’s approximation is justified

for all three factorials in (2.3.5), except for a few states at the edges of

the spectrum. The energies of our paramagnets start at −NµBH and end

at +NµBH. At these energies the number of states is one. Thus S must

vanish at the edges of the spectrum. Even though Stirling’s approximation

does not apply near these points, the leading term in S, (2.3.13), has the

property that it vanishes at the edges of the spectrum, as it should.

➤

S/Nk

E/µBHN
1–1

ln2

➤

Fig. 2.3.2 The “entropy” per spin for the paramagnet.

The shape of the function S is shown in Fig. 2.3.2. Note that the

vertical axis corresponds to S/N , not S. With the help of S we can now

calculate the number of states Γ = eS/k as a function of E or, better yet,

as a function of E/(NµBH), which measures the energy per degree of

freedom in units of µBH. The shape of Γ(E) is described in Fig. 2.3.3 for

N = 10, 100, 1000. Note the huge increase in the number of states as a

function of N and the concentration near E = 0.

A study of Fig. 2.3.3 reveals a great similarity to the shape of the

Gaussian (normal) distribution. And indeed it is possible to show that

when N 
 1 the number of states with energy E depends on E in a

Gaussian manner:

Γ(E) = C exp

(
−E2

2Nµ2BH
2

)
, (2.3.14)
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Fig. 2.3.3 Graphs of the number of states as a function of the dimensionless variable
E/(NµBH), for (a) N = 10, (b) N = 100, (c) N = 1000. The vertical scale is different
in each of the graphs.

where C is a constant that depends only on N (and not on E), and can be

calculated, for instance, from the normalization requirement, according to

which the integral of Γ(E) over all values of E should be 2N .

Exercise 3.8

Prove (2.3.14), and calculate the normalization constant.

Solution on page 200

Finally, it is worth mentioning that S of Eq. (2.3.13) can be expressed

in terms of P (±1), from Eqs. (2.3.7) and (2.3.8), and has the form

S = −Nk[P (+1) lnP (+1) + P (−1) lnP (−1)] . (2.3.15)



Chapter 4

Isolated Paramagnet — Subsystems

and Temperature

4.1 Microscopic states and thermodynamic
equilibrium

So far only one new concept has been introduced beyond the dynamics of

the system, which is the probability within a set of states, or an ensem-

ble. It is time to try and connect this new concept with thermodynamic

quantities. The first among these is the temperature. We turn therefore

to the identification of the relative temperature of two systems.

Obviously, in order to discuss temperature we need at least two sys-

tems, since the temperature is precisely the intensive variable, whose

equality characterizes the equilibrium between them when there is no

mechanical interaction. We choose, therefore, two paramagnetic systems:

System a with Na spins and a magnetic field Ha,

System b with Nb spins and a magnetic field Hb.

We isolate both systems from the rest of the universe, but allow them

to interact thermally. This means that the total energy of the two systems,

E, will be constant but the energies of the two systems Ea and Eb are

unconstrained provided Ea+Eb = E. No forces will act between the spins,

except for the tiny forces we mentioned earlier which drive the system

towards thermal equilibrium — namely, to uniform occurrence rates of

all microscopic states of the combined isolated system, as explained in

Chap. 3.

The energy of a given state of system a is

Ea = −µBHa

Na∑
i=1

σi (2.4.1)

and that of system b is

Eb = E −Ea . (2.4.2)

156
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If the number of states of system a with energy Ea is Γ(Ea), then system

b has Γ(E − Ea) states, and the total number of states of the composite

system, for which system a has energy Ea, is

ΓT = Γ(Ea,Ha,Na) · Γ(Eb,Hb,Nb)

= Γ(Ea,Ha,Na) · Γ(E −Ea,Hb,Nb) , (2.4.3)

where we have emphasized the dependence of both factors on the number

of spins of the subsystems and on the magnetic field of each of them.

The rest of the argument has the following structure:

When the numbers Na andNb are very large, there exists a value of Ea,

which we denote by Ēa, for which ΓT is maximal. Moreover, the maximum

is extremely sharp, and the number of states in which Ea differs from Ēa

is, relatively, very small. This will be the equilibrium state, because if the

combined system “visits” all the states with total energy E at the same

frequency, it will almost always be in a state for which Ea = Ēa. In this

case we can identify the intensive quantity that becomes equal in the two

subsystems. This quantity will be called the temperature.

In order to proceed, we write (2.4.3) in the form

ΓT = exp

(
S(Ea,Ha,Na) + S(E −Ea,Hb,Nb)

k

)
, (2.4.4)

where for each system we have defined separately S/k = lnΓ.

The number of states attains its maximum at Ēa, which may be deter-

mined by the requirement that the derivative of the exponent with respect

to Ea should vanish, or

1

k

∂S(Ea,Ha,Na)

∂Ea

∣∣∣∣
Ēa

=
1

k

∂S(Eb,Hb,Nb)

∂Eb

∣∣∣∣
Ēb

≡ β , (2.4.5a)

where Eb is not an independent variable but satisfies Eb = E − Ea and

Ēb = E − Ēa. β has the dimensions of energy to the power of −1.

Since Γ is a monotonic function of S, if S has a maximum Γ is maximal as well.

In conclusion, we found an intensive quantity which characterizes the

maximum of ΓT and has the same value in the two subsystems. We called

this quantity β. Second, if we also find that almost all the states of the

composite system satisfy Ea = Ēa, then this will be the system’s thermal

equilibrium state.

4.2 β and the temperature

Before we proceed to prove the sharpness of the maximum, let us iden-

tify the quantity β in our model of a paramagnet. β came about from
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equilibrium considerations between two systems a and b, but it is possi-

ble to define it in general for a single paramagnetic system with a given

energy E:

β =
1

k

∂S(E,H,N)

∂E
. (2.4.5b)

The “entropy” S of an isolated paramagnet is given by Eq. (2.3.13) and

by differentiating it we obtain

β =
1

2µBH
ln

[(
1

2
− E/N

2µBH

)/(
1

2
+
E/N

2µBH

)]
. (2.4.6)

Recalling the expressions (2.3.7) and (2.3.8), for the probabilities for a

spin to point up or down, we can write

2µBHβ = ln

[
P (σ = +1)

P (σ = −1)
]
, (2.4.7)

from which we obtain the interesting result

P (+1)

P (−1) = e2µBHβ . (2.4.8)

Exercise 4.1

Use Eq. (2.4.8) to calculate P (+1) and P (−1). Compare to (2.3.7) and

(2.3.8).

Solution on page 201

Namely, if we knew that β = 1/kT , then (2.4.8) would be the expres-

sion for the Boltzmann distribution, as in Part I. That is, the ratio of

the probabilities of the two states is e−∆E/kT , where ∆E is their energy

difference.

But at present we cannot conclude that 1/β is proportional to an abso-

lute temperature, only that it is an increasing function of the relative tem-

perature — since even after demonstrating the sharpness of the maximum,

we will only know that β is identical for systems at thermal equilibrium

with each other. In order to identify β as defined by Eq. (2.4.5) as an ab-

solute temperature, we have to show that it connects the entropy change

with the heat increase, or that it may be identified from the ideal gas law.

However, we may note that if S is indeed the entropy, then (2.4.5b) is the

connection between the entropy and the absolute temperature.

4.3 Sharpness of the maximum

In order to find the behavior of the number of states of the combined

system as a function of Ea, near its maximum, we will use the expression
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for Γ(E) when N 
 1, i.e. Eq. (2.3.14). Inserting it into Eq. (2.4.3) and

taking for simplicity Ha = Hb = H, we obtain

ΓT = CaCb exp

(
− E2

a

2Naµ
2
BH

2

)
exp

[
−(E −Ea)

2

2Nbµ
2
BH

2

]
, (2.4.9)

where Ca and Cb are normalization constants that depend on Na and Nb.

In terms of the “entropy” we obtain

1

k
ST =

1

k
(Sa + Sb) = ln ΓT = ln(CaCb)− 1

2(µBH)2

[
E2
a

Na
+

(E −Ea)
2

Nb

]
.

(2.4.10)

Next we find the maximum of the entropy. Since (2.4.10) is a quadratic

function of Ea, there is no need to differentiate with respect to Ea; it is

enough to complete the expression in brackets to a square:

E2
a

Na
+

(E −Ea)
2

Nb
=

(Na +Nb)E
2
a

NaNb
− 2EEa

Nb
+
E2

Nb

=
Na +Nb

NaNb

(
Ea − NaE

Na +Nb

)2
+

E2

Na +Nb
, (2.4.11)

so that

1

k
ST = ln(CaCb)− 1

2(µBH)2

[
Na +Nb

NaNb

(
Ea − NaE

Na +Nb

)2
+

E2

Na +Nb

]
.

(2.4.12)

This is a quadratic function of Ea whose maximum is attained at

Ēa =
NaE

Na +Nb
. (2.4.13)

As will immediately be shown, ΓT has a sharp maximum at this energy,

so that this will also be the average of Ea. We see, therefore, that the

energy is distributed between the two systems in direct proportionality

to their size. In order to show that the overwhelming majority of states

are concentrated around Ea = Ēa, we return to ΓT , and rewrite it using

(2.4.12) in the form

ΓT (Ea) = CT exp

[
− Na +Nb

2(µBH)2NaNb
(Ea − Ēa)

2
]
, (2.4.14)

where the constant CT includes all the factors which do not depend on

Ea.
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Equation (2.4.14) describes a Gaussian distribution whose width (stan-

dard deviation), ∆Ea, is µBH
√
NaNb/(Na +Nb). If both systems are

macroscopic, Na and Nb will both be of order N ( = Na +Nb), and the

width of the distribution will be of order µBHN
1/2. Apparently, this is

not the result we anticipated, since instead of decreasing withN the width

of the distribution increases with N . However, we must remember that

what is relevant is the relative width of the distribution, which is ∆Ea/Ēa.

since Ēa is proportional to N , the relative width tends to zero as N−1/2:

∆Ea

Ēa
∼ N−1/2−−−→

N→∞ 0 , (2.4.15)

which means that in the thermodynamic limit the states of the combined

system for which Ea = Ēa exhaust the states of the isolated system.

Hence, Ea = Ēa describes thermal equilibrium between the two systems.

It is possible to understand the state of thermodynamic equilibrium

between two systems from a slightly different perspective on Eq. (2.4.14).

Since in the thermodynamic limit Ea diverges, it is more natural to con-

sider the distribution of the quantity Ea/Na, which is the energy per

degree of freedom. To this end we need only rewrite Eq. (2.4.14) in the

slightly different form

ΓT = CT exp


−
(
Ea

Na
− Ēa

Na

)2

· Na/Nb

2(µBH)2
N


 . (2.4.16)

And it is immediately clear that the width of this (Gaussian) distribution

of Ea/Na behaves as N−1/2 and vanishes in the thermodynamic limit.

Exercise 4.2

Verify that (2.4.14) actually implies (2.4.15).

Solution on page 202

Returning to (2.4.10), we find that at thermal equilibrium (Ea = Ēa)

ST = S̄T = S(Ēa) + S(Ēb) . (2.4.17)

This means that the “entropy” is extensive: It grows linearly with the size

of the system.

The distribution of the number of states of the composite system, as a

function of Ea/Na, is depicted in Fig. 2.4.1. In the thermodynamic limit

the width of the peak tends to zero. An instructive exercise is to sketch

ΓT from (2.4.3) with Γ from (2.3.5) for small values of Na and Nb (even

12), and a value of E around 6µBH.
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Ea/N
➤–

Ea/N

ΓT ➤

Fig. 2.4.1 The number of states of the combined system (2.4.16).

Fig. 2.4.2 The number of states in Eq. (2.4.3) as a function of Ea with E = NaµBH/2
for (a) Na = Nb = 12, (b) Na = Nb = 100. Notice that we have not made use of the
approximation (2.4.14).

The calculation of Γ can be performed by a direct calculation of the

factorials in (2.3.5) or using the approximation (2.3.13). The result is

depicted in Fig. 2.4.2(a). To demonstrate the behavior of the width of the

distribution as a function of N , we give in Fig. 2.4.2(b) a sketch of ΓT for

Na = Nb = 100 and E = 50 µBH.

4.4 Identification of temperature and entropy

After finding that the equality of β is the condition for thermodynamic

equilibrium, we return to discuss an isolated paramagnet and to identify

β. To this end we note that S, as given in Eq. (2.3.13), is a function of

M (M = −E/H) alone. Namely,

S = −1

2
k[(N +M/µB) ln(1 +M/NµB)

+(N −M/µB) ln(1−M/NµB)− 2N ln 2] . (2.4.18)
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Hence changing the magnetization of the system will lead to a change in

the “entropy” given by

dS =
∂S

∂M
dM = − k

2µB
ln

(
1 +M/NµB
1−M/NµB

)
dM . (2.4.19)

Using (2.4.6) with M = −E/H we obtain

dS = −kβHdM . (2.4.20)

We compare this expression with the expression for the entropy, as it

appears in thermodynamics. From Eq. (2.1.10) we can obtain the entropy

change due to a change of M or E∗.
But the paramagnet is a special system for which E = −MH, so that

E∗ = 0, and the entropy cannot depend on E∗. Thus we obtain from

(2.1.10)

dS = −H
T
dM . (2.4.21)

This means that if we identify β as

kβ =
1

T
, (2.4.22)

we obtain a full correspondence between the statistical mechanics of a

paramagnet and its thermodynamics. T , which appears on the right hand

side of (2.4.22), is of course the absolute temperature. And if k is the

Boltzmann constant, then the unit of temperature is identical in the two

scales. The identification (2.4.22) also states that S, which thus far has

been referred to as “entropy,” is really the entropy, since if we insert

(2.4.22) into (2.4.20) we immediately obtain (2.4.21).

Now, after having identified the meaning of β and S, we can use the

equations we derived not only for a paramagnet at a given energy (iso-

lated) but also for other situations, such as when the system is at a given

temperature. This we do in the following exercise.

Exercise 4.3

(a) Show that for a paramagnet at a given temperature, the average value

of the spin’s projection along the field is

〈σ〉 = tanh(βµBH) . (2.4.23)

What is the average magnetic momentM of the whole system? Sketch

the average moment as a function of H.

(b) Repeat the calculation of the magnetizationM(β,H) using Eq. (2.4.6).
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(c) Repeat the calculation of the magnetization using Eq. (2.4.21) and

the explicit expression for S(M) (2.4.18).

(d) Show that for a paramagnet at a given temperature, the average en-

ergy is given by

E = −NµBH tanh(βµBH) . (2.4.24)

Solution on page 203

4.5 Negative temperature

It is worth noting that the definition of the inverse temperature 1/kT via

the energy derivative of the entropy, Eq. (2.4.5), gives the paramagnet

a range of energies with negative temperatures (see Fig. 2.4.3). This is

the range E > 0, where the entropy decreases with increasing energy. At

E = 0, where the slope of S as a function of E vanishes, the temperature is

infinite. Systems with negative temperatures are warmer than the systems

with positive temperature: if two systems are brought together, one with

negative temperature and the other with positive temperature, heat will

flow from the first to the second. This phenomenon is typical of systems

whose energy spectrum is bounded from above. Here we will not enter

into more detail. We mention only that in realistic systems there are

also kinetic energies, which we did not account for, thus having an energy

spectrum that is not bounded from above. In fact, it is impossible for a

state of real thermodynamic equilibrium to exist at negative temperatures.

➤

T

➤

S

T

E

Fig. 2.4.3 The entropy and temperature of a paramagnet vs energy. Since 1/T =
∂S/∂E, T > 0 for increasing S, “T =∞” for maximal S, and T < 0 for decreasing S.
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4.6 Summary

The discussion of the paramagnet suggests that in the framework of the

microcanonical ensemble, in which each microscopic state of the isolated

system has the same probability, it is possible to define entropy and tem-

perature.

The entropy is given by the Boltzmann formula:

S(E) = k ln Γ(E) , (2.4.25)

where Γ(E) is the number of states with energy E.

The absolute temperature is determined by studying the equilibrium

of subsystems and is defined as

β =
1

kT
=

1

k

∂S

∂E
, (2.4.26)

where on the right hand side the external parameters are constant.

Given β, the probability for a single spin to have projection σ along

the magnetic field is, according to (2.4.8) and Exercise 4.1,

P (σ) = CeβµBHσ = Ce−βε(σ) , (2.4.27)

where ε(σ) is the energy per spin with projection σ and C is the normal-

ization constant of the probability.



Chapter 5

Paramagnet at a Given Temperature

5.1 The canonical ensemble

A system is kept at a fixed temperature when it is in thermal equilibrium
with a much larger system, referred to as a heat bath. Clearly, the en-

ergy of the system under discussion is not constant, since the system is in
thermal contact with the heat bath, so that it may exchange energy with

it. We thus have to determine probabilities for states with different ener-
gies. In the Introduction (to Part II) we proposed that in such a case, the

recurrence of systems in the ensemble, describing the smaller system, will

be proportional to the Boltzmann factor e−E/kT , where E is the energy
of the small system.

The Boltzmannian proposal is not arbitrary. First, the kinetic theory
hinted in this direction; second, studying Eq. (2.4.8) or (2.4.27) in the

preceding chapter we find that in the isolated paramagnetic system, the
single spin satisfies the Boltzmann distribution in a state of equilibrium.

We pick from the isolated system a subsystem a of spins whose number

n is very small compared to the total number of spins N (n	 N but still
n 
 1; for example, N = 1023, n = 1020) — so that we may consider

the rest as a heat bath. The probability for these spins to have values
σ1, . . . , σn will be the product of the probabilities for the single spins.

Since as long as n 
 1 there are no correlations, as we have learned in
Sec. 3.2 (the artificial correlations, which enter owing to the constraint of

a constant energy, vanish when n is very large). Hence

P (σ1, . . . , σn) = C exp

(
βµBH

n∑
i=1

σi

)
= Ce−β(ε1+...+εn) . (2.5.1a)

But

E =
n∑
i=1

εi (2.5.1b)

is the energy of a microscopic state with n spins — the microscopic state,

given by (σ1, . . . , σn).

165
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We have seen therefore that the probability that in thermodynamic

equilibrium our n-spin system will be found in a specific state (σ1, . . . , σn)

is indeed proportional to e−E/kT , where E is the total energy in this state.

Notice that there may exist many states with the same value of E and

hence also the same probability. As we will see later on, we will have to

take all of them into account.

Exercise 5.1

Show that the constant C in (2.5.1a) is given by

C−1 =
∑

σ1=±1
. . .

∑
σn=±1

e−βE(σ1,...,σn) . (2.5.2)

Solution on page 204

In other words, the Boltzmann distribution corresponding to the

canonical ensemble, describing the system at a given temperature, is de-canonical
ensemble rived from the first ensemble we discussed — the microcanonical ensemble,

describing an isolated system. It is true that here we have only shown

this for the special case of a paramagnet, but the assertion holds quite

generally.

The derivation of the canonical distribution, from the microcanonical

one, in the general case is not more complicated: The number of states of

the isolated system in which the subsystem a is in a specific microscopic

state with energy Ea, is given by the second exponential in Eq. (2.4.4)

(considered as a product) with Ha = Hb. The first one counts the number

of states of the subsystem with energy Ea. Since Ea 	 E, the second

term in the exponent can be expanded to first order in Ea, giving

ΓT = exp

(
S(E,H,N)

k

)
exp(−βEa) = Ce−βEa , (2.5.3)

where use has been made of (2.4.5).

The fact that the two ensembles are equivalent is of double importance.

First, the temperature is a much more natural variable than the energy.

Second, calculations with constant energy are several times more com-

plicated than those at constant temperature. It implies that the results

we obtain for the thermodynamic functions from each of the ensembles

will be identical. The difference is that each of the ensembles will give

the state functions in terms of different controllable quantities, so that we

will have to “translate” from one language to the other. For instance, in

the case of the paramagnet, the microcanonical ensemble is described by

E,N,H as controlled variables, while the canonical ensemble is described

by T,N,H. We re-emphasize the differences and the similarities between

the two types of ensembles from a microscopic standpoint:
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In a microcanonical ensemble all states have the same energy. All of

these states are assigned the same probability. In a canonical ensemble
the system may exchange energy with its surroundings, but it is in ther-

mal equilibrium with a heat bath, so that it has a well-defined average
energy. The magnitude of the heat exchanged with the heat bath is small

compared to the average energy.
In the canonical ensemble the system is assigned a temperature, and

every state can appear in it. However, the probability of a state is pro-

portional to e−E/kT , if the energy of the state is E.
The canonical ensemble is related to the microcanonical ensemble in

that a large system can be subdivided into a relatively small system and
a heat bath. The system as a whole is isolated and is described by a mi-

crocanonical ensemble; however, the subsystem does not have a constant
energy. The distribution of subsystems must be derived from the assump-

tions of equilibrium and the equality of the probabilities of all states of the

large isolated systems (subsystem + heat bath) having the same energy.
And, indeed, the result is the Boltzmann result as formulated above.

5.2 The partition function and thermodynamic
quantities

We pass on, therefore, to the calculation of the properties of the param-

agnet, whose temperature is 1/kβ = T . To this end we first define an partition
functionall-important concept, which is the partition function:

Z =
∑

allmicroscopic
states

e−βE (microscopic state) . (2.5.4)

The common notation for the partition function, Z, originates from its German name
Zustandsumme, meaning “sum over states.”

Actually, we have already seen the partition function as the normal-

ization factor 1/C in Eqs. (2.5.2) and (2.5.3). This function, known in
probability theory as the “generating function,” is very useful in the cal-

culation of averages. The idea is that we can replace the computation of
the average of many observables by the computation of derivatives of Z

with respect to the appropriate controlled variables.
For instance, the average energy at temperature T is an ordinary av-

erage [Eq. (2.2.12)] with probabilities

P = Z−1e−βE . (2.5.5)

Namely,

〈E〉 = Z−1
∑
{σ}

E(σ1, . . . , σn)e
−βE(σ1,...,σn) , (2.5.6)

where the summation is over all possible states (σ1, . . . , σn).
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A brief study of Eq. (2.5.6) reveals that the sum appearing in it can

be written as −∂Z/∂β. Thus

〈E〉 = − 1

Z

∂Z

∂β
= −∂ lnZ

∂β
. (2.5.7)

Note the similarity to the method of calculating averages which was presented in
Sec. 1.6.

In a similar manner it is possible to write the average magnetization

in the form

〈M〉 = 1

β

∂ lnZ

∂H
. (2.5.8)

Exercise 5.2

Prove Eq. (2.5.8).

Solution on page 204

Exercise 5.3

Show that if Z is a function of βH only, then we can immediately deduce

that 〈E〉 = −H〈M〉 from Eqs. (2.5.7) and (2.5.8).

Solution on page 205

For the paramagnetic system it is possible to directly evaluate Z, since

in this case each term of the sum in (2.5.4) is a product, making it possible

to write Z as

Z(β,H) =
∑

σ1,σ2,...,σn

e−βε1(σ1) · e−βε2(σ2) · . . . · e−βεn(σn) . (2.5.9)

Now, it is possible to sum over each of the variables (σ1, . . . , σn) indepen-

dently, and to write the sum of products as a product of sums:

Z(β,H) =


 ∑

σ1=±1
e−βε1


 . . .


 ∑

σn=±1
e−βεn


 . (2.5.10)

It is easy to see that every term of the product we wrote appears in (2.5.9),

and every term of (2.5.9) appears in (2.5.10).

For example, for n = 2 Eq. (2.5.9) takes the form

Z = e−βε1(−1)e−βε2(−1) + e−βε1(−1)e−βε2(+1)

+e−βε1(+1)e−βε2(−1) + e−βε1(+1)e−βε2(+1) ,

while [Eq. (2.5.10)]

Z =
(
e−βε1(−1) + e−βε1(+1)

) (
e−βε2(−1) + e−βε2(+1)

)
,

which is exactly equivalent.
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All the terms in the product (2.5.10) are identical, and equal to

z(β,H) = e−βµBH + eβµBH = 2cosh(βµBH) . (2.5.11)

Hence

Z(β,H) = [z(β,H)]n . (2.5.12)

It is possible to think of z as the partition function of a single spin.

Substituting (2.5.12) into (2.5.7), we obtain

〈E〉 = −n∂ ln z
∂β

= −nµBH tanh(βµBH) . (2.5.13)

This expression is identical to (2.4.24).

Obviously the magnetization, obtained from substituting (2.5.12) in

(2.5.8), is

〈M〉 = nµB tanh(βµBH) , (2.5.14)

as was already obtained in Exercise 4.3.

It is of course possible to use the relationship

〈E〉 = −H〈M〉 .

As a final note in this section the reader is warned, if he has not

noticed it himself already, of the notational ambiguity, characteristic of

statistical mechanics, expressed by the fact that no special notation is

used to distinguish between the thermodynamic random variables and

their averages. For example, one meets Eqs. (2.5.7) and (2.5.8) repeatedly

in the literature (in this text as well!) in the form

E = −∂ lnZ
∂β

, M =
1

β

∂ lnZ

∂H
,

and so on. The reason for this is of course that due to the huge number

of degrees of freedom, in a thermodynamic system, each observable takes

its average value with negligible relative deviations. Moreover, there is

no room for such a distinction within thermodynamics since the concept

of probability does not enter its framework at all. This fact requires the

reader to be alert and to notice always, especially in the calculation of

averages and probabilities, which are the quantities that have already

been averaged and which have not. The reader will be warned where

necessary.
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5.3 Susceptibility and specific heat of a paramagnet

The behavior of the average energy and of the magnetization, as a function

of the external variables H and β, is determined by the behavior of 〈σ〉.
In order to study it, it is convenient to define the dimensionless variable,

x = βµBH. Now, we can draw 〈σ〉 as a function of x, as depicted in

Fig. 2.5.1.

x
➤

1
➤

<σ>

–1

Fig. 2.5.1 〈σ〉 as a function of x = βµBH.

This graph may be interpreted in two ways:

(a) As the description of the average projection of the spin along the

direction of the field as a function ofH, at a constant temperature.

We see that at zero field (x = 0) there is no preferred direction,

and the average projection is zero. It starts to grow linearly with

H (see below) and finally, at a very large field, the average of

the projection attains the full value of the spin, 〈σ〉 → 1, namely

the polarization saturates. The region x < 0 describes the case

in which the direction of H is reversed, so that at saturation the

direction of the magnetization will also reverse, 〈σ〉 → −1.
(b) As the description of the behavior of the average spin projection at

a decreasing temperature, when the external field is held constant.

At very high temperatures,

x = βµBH → 0 ,

there is no difference between the probability for the spin to have

a projection along the field and the probability for its projection

opposite to the field. Hence 〈σ〉 tends to 0.

When H is constant and T → 0, the thermal energy finds it

hard to flip spins, and again the average spin projection tends to
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saturate the spin, along the field. More and more spins “freeze”

along the direction of the field.

Low and high temperatures are defined relative to the characteristic

temperature Θ = µBH/k.

At very high temperatures the energy of a single moment, µBH, is negligible compared
to the thermal energy kT . At very low temperatures the reverse is true.

As mentioned above, at low fields the magnetization grows linearly

with the field. This property is the main characteristic of the paramagnet.

The coefficient of H is called the magnetic susceptibility and it measures susceptibility

the size of the magnetic response of the system to changes in the external

magnetic field. If we write

〈M〉 � nχH , (2.5.15)

then χ is the magnetic susceptibility per spin. Its value is obtained from

(2.5.14) with the help of the fact that tanhx � x for small x.

The result is

χ =
µ2B
kT

. (2.5.16)

The existence of an inverse relationship between the susceptibility and the

temperature was found experimentally by P. Curie in 1895, and has since

been referred to as the Curie law.

From (2.5.16) we learn that as the temperature decreases the system

magnetizes more easily — the slope at the origin, in Fig. 2.5.1, grows. As

to the correspondence of this result with experiments, we will return to

discuss this point in Chap. 7.

Finally, we calculate the specific heat per degree of freedom at a con-

stant field. Since at a constant field δQ = δE [see Eq. (2.1.7)], clearly

specific heat

cH =
1

n

(
∂E

∂T

)
H

. (2.5.17)

Exercise 5.4

Prove that

cH =
µ2BH

2

kT 2 cosh2(βµBH)
. (2.5.18)

Solution on page 205

In the specific heat the characteristic temperature of the paramagnet

appears in the most dramatic manner. cH is drawn as a function of

1/x = kT/µBH in Fig. 2.5.2. The specific heat attains its maximum at

kT � 0.8 µBH . (2.5.19)
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cH/k

kT/µBH
➤

➤

0.4

0.1

0.2

0.3

0.4

0.8 1.2 1.6 2.0  3.0

Fig. 2.5.2 The specific heat (2.5.18).

The general appearance of the graph could have been guessed in advance.
At low temperatures (kT 	 µBH), changing the temperature does not

change the energy, since each spin has thermal energy of order kT but

requires energy (which it lacks) of order µBH to reverse its direction.
Stated differently, the system is saturated and the energy is minimal. At

high temperatures (kT 
 µBH), disorder is total and cannot be increased
by raising the temperature. Thus cH → 0 when T → 0 and when T →∞.

Since there are in this problem only two characteristic energies, µBH and
kT , clearly everything that happens depends on their ratio, y ≡ kT/µBH;

otherwise, changing the units would affect the behavior of the system.

The two limits that we studied are y → 0 and y →∞. Thus, somewhere
between them we expect to attain a maximum, since cH(y) is nonnegative,

and must therefore grow near y = 0 and decrease towards y → ∞. The
location of the maximum would be around y = 1, as both the thermal

energy and the magnetic energy are significant in this region.

Exercise 5.5

Sketch the magnetization per spin at a constant field as a function of

temperature.

Solution on page 206

Exercise 5.6

(a) Calculate the entropy of the paramagnet as a function of T and H.
(b) Sketch the entropy per spin at a constant field as a function of

temperature.
(c) Sketch the entropy per spin at a constant temperature as a function of

the field (sketch in one drawing two graphs whose temperatures have

a ratio of 5).

Solution on page 206
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5.4 Paramagnet with J > 1/2

The results we have obtained in this chapter can easily be generalized to

the case in which the spin is not 1
2 . Such a spin would have more than two

states. If the magnitude of the spin is J , then there are 2J + 1 possible

values for the projection of the spin along the direction of the field, taking

the values from −J to +J in unit steps.

Since the ion acquires in a magnetic field an additional energy given

by Eq. (2.2.6), the energy of ion number i in a magnetic field H will be

given by a generalization of (2.2.8):

εi = −1

2
gµBHσi , (2.5.20)

where

σi = −2J,−2(J − 1), . . . , 2J . (2.5.21)

The number of microscopic states of a system of N spins is not 2N any

more but (2J + 1)N . The properties of a paramagnet with general J will

be revealed by solving the following exercise.

Exercise 5.7

(a) Calculate the partition function (2.5.4) for a paramagnet with gene-

ral J .

(b) Calculate the average magnetization per spin, and sketch it as a func-

tion of H.

(c) Calculate the susceptibility and compare it with that we calculated

for J = 1
2 .

(d) Calculate the specific heat cH , and compare it with the result for

J = 1
2 .

Solution on page 207
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Order, Disorder and Entropy

It is commonly said that the magnitude of the entropy measures the dis-

order in a system, and that the tendency of the entropy to increase is

the same as the tendency for increasing disorder. These concepts and

relationships take on a more definite and quantitative character within

information theory, which is related in this way to thermodynamics. Here

we exemplify only a few of these concepts in connection with the sim-

ple paramagnetic model, without giving detailed definitions and without

entering into a formal discussion.

If the system is ordered, one glance at the system is enough to de-

termine its state. There are not many states to confuse us. Thus, for

example, if a small collection of cubes is ordered into a large cube, it

is easy to discern the state of the system. A very small number of

parameters will describe it, there are very few states similar to the or-

dered one. Conversely, if the cubes are scattered, the number of states

which create a similar impression is huge, and the system appears to be

disordered.

The same applies to our spins. Here each state of the system corre-

sponds to a certain ordering of the spins, some of which are along the

field while others are in the opposite direction. If all are pointing along

the field (E = −NµBH), or in the opposite direction (E = +NµBH),

we will naturally say that the system is in an ordered state. Notice that

there is only one state (corresponding to a single ordering) with each of

the energies we mentioned. Thus for these energies

Γ(E = −NµBH) = Γ(E = NµBH) = 1 (2.6.1)

and the entropy for these energy values vanishes [see (2.3.13) or (2.4.18)].

If we know that the system has energy −(N − 2)µBH, then obviously

one spin is pointing in a direction opposite to the field. If this fact is all

that is known about the system (this is the information we obtained in

our glance), the system can be in one of N different states, in each of

174
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which a different spin is the exception. Namely,

Γ[E = −(N − 2)µBH] = N (2.6.2a)

and the corresponding entropy is

S[E = −(N − 2)µBH] = k lnN . (2.6.2b)

All these states are equally probable, and the fact that the same amount

of information, namely the knowledge of E, is much less informative about

the state of the system, indicates the increase in disorder.

We recall a few expressions for the entropy, for example (2.3.13):

S

k
= −

(
N

2
− E

2µBH

)
ln

(
1

2
− E/N

2µBH

)

−
(
N

2
+

E

2µBH

)
ln

(
1

2
+
E/N

2µBH

)
. (2.6.3)

This is the expression which was depicted in Fig. 2.3.2. It has a maximum

at E = 0, where

S(E = 0) = kN ln 2 . (2.6.4)

Since the number of states is maximal, we cannot say anything about the

system if only the energy E = 0 is given. Disorder dominates. As we

have already seen in the solutions of Exercises 3.7 and 3.8, the number of

states with E = 0 is not given simply by eS/k = 2N but by

Γ(E = 0) =
2N√
2πN

. (2.6.5)

A different expression for the entropy, which we have seen earlier, is

(2.3.15), is given in terms of single spin probabilities:

S = −Nk[P (+1) lnP (+1) + P (−1) lnP (−1)] . (2.6.6)

Exercise 6.1

What assumptions will transfer us from (2.6.6) to (2.6.4)?

Solution on page 211

We will try to view this expression as a particular case of a situation

in which there are m states, which we will denote by α, α = 1, . . . ,m,

whose probabilities are Pα, and S is given by

S = −k
m∑
α=1

Pα lnPα . (2.6.7)
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Note that S = −k〈ln P 〉.

Along with (2.6.7) there exists of course the relationship

m∑
α=1

Pα = 1 . (2.6.8)

Without entering into detailed proofs, which are a mathematical exercise

of interest in itself, we note that:

(a) S has a minimum if the system is in a state — say, α = 1 — and

hence P1 = 1 and Pα = 0 for all α �= 1. In this case we infer

from (2.6.7) that S = 0. We can again identify this probability

distribution with order, since among the m states only one is

possible, with the information at hand.

(b) S has a maximum if Pα = 1/m for all α, and then

S = k lnm. (2.6.9)

In this condition we are unable to distinguish between the differ-

ent possibilities: disorder dominates.

For example, a paramagnet of N spins can be in one of m =

2N possible states. If we denote them according to ascending

order in energy, then α = 1 will be the unique state for which

E = −NµBH and α = 2N will be the unique state for which

E = +NµBH. Thus, for example, if it is known that E =

−NµBH, then clearly P1 = 1, and all other Pα vanish. If it is

known that E = 0, we find from (2.6.5) that the number of states

is 2N/
√
2πN , and the probability for each state is

√
2πN/2N .

Hence a substitution in (2.6.7) or (2.6.9) will give again, in the

limit N → ∞, the already familiar result S(E = 0) = kN ln 2,

which describes maximal disorder.

Finally, note that Eq. (2.6.7) implies that for the canonical

ensemble

S = k(lnZ + β〈E〉) . (2.6.10)

Exercise 6.2

Prove Eq. (2.6.10).

Solution on page 211



Chapter 7

Comparison with Experiment

The magnetization of several paramagnetic ionic salts has been measured,

from very small fields up to saturation. Figure 2.7.1 describes the exper-

imental results for the ions of chromium, iron and gadolinium which are

all triply ionized, composed in salts, whose other components are non-

magnetic. The correspondence between theory and experiment is very

impressive. This includes the fact that measurements performed at differ-

ent temperatures, for the same salt, when plotted as a function of H/T ,

fall on the same curve.

Let us consider some characteristics of the results. The first is the

saturation value of the magnetization which differs from ion to ion. The

reason for this is, of course, the dependence of the magnetization upon the

spin, which was obtained in Exercise 5.7(b). At saturation (H/T → ∞)

we find that

〈M〉/N → gµBJ , (2.7.1)

so that there is a linear relationship between the magnetization at sat-

uration and the spin. Thus, had we not known the value of J by other

means, we could have determined it from these experiments.

The second characteristic of the results is the different slopes of the

graphs at the origin, i.e. for H → 0. The relevant feature is the depen-

dence of the susceptibility — described by the slope of the graph at the

origin — on the spin, a dependence which was studied in Exercise 5.7(c).

It reads

χ = (gµB)
2J(J + 1)

3kT
. (2.7.2)

Actually, we could have used these two equations to find in addition to

J the value of g, which is equal in all three ions to 2. In parenthesis we

note that the reason for this is that their atomic structure is such that

only the spin, and not the orbital angular momentum, contributes to the

total angular momentum J [see Eq. (2.2.5)].
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Fig. 2.7.1 Graphs of the average magnetization per ion in units of µB as a function of
H/T . The measurements were made at different temperatures, as noted in the figure.
In all the cases g = 2. Taken from W. E. Henry, Phys. Rev. 88, 561 (1952).

The specific heat with the interesting structure (2.5.18) is very hard to

measure experimentally, because it requires separating the magnetic effect

from the numerous extra contributions originating from the lattice vibra-

tions, the nonmagnetic electrons, and the like, which obscure the picture.

Summary

We have treated the special case of a paramagnet having N degrees of free-

dom (spins of ions), which can take two values (the projections along the

direction of the magnetic field), or a larger, but finite, number of values.

We have used it to exemplify the microcanonical ensemble, represent-

ing an isolated system — a system with strictly constant energy. In such

an ensemble, all states have equal probability: equal to the inverse of the

total number of states with the same energy.

In order to define the temperature of a system, we must think of it as

part of a larger isolated system. The isolated system is then composed of

two systems, both of which are macroscopic; one of them is much larger
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than the other. The two subsystems — of which the larger one is a heat

bath — exchange energy until they reach equilibrium.

Equilibrium is attained when the total energy is distributed between

them in such a way that the number of states is maximized.

At the maximum, the energy derivative of the entropy in the system

and in the heat bath are equal. This common value is found to be β =

1/kT , from the relation between the quantity of heat and the entropy.

The states of the small system are not restricted by conservation of

energy. Instead, at a given temperature, the probabilities of its states

are proportional to the Boltzmann factor e−E/kT . This is the canonical

ensemble.

All this has a nice experimental verification shown in Fig. 2.7.1.



Self-assessment exercises

Exercise 1 Solution on page 213

The number of states of the system composed of subsystems a and b in

Eq. (2.4.3), ΓT , has a maximum at Ea = Ēa. Calculate Ēa and Ēb for the

special case in which Ha = Hb.

Exercise 2 Solution on page 213

(a) Prove that the specific heat at constant field (2.5.18) may also be

calculated from

cH =
T

n

(
∂S

∂T

)
H

.

(b) Describe the similarities and differences between the paramagnet and

the ideal gas.

Exercise 3 Solution on page 214

It is possible to describe the behavior of certain materials in nature by

spins with magnetic moment m which can point in three possible direc-

tions, all in one plane, as depicted in the figure below.

(a) Calculate the energy of a single spin, in each of the above states, in

the presence of an external magnetic field H = Hx̂.
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(b) A paramagnet whose constituents are spins of the type described

above is at temperature T . There is no interaction between the spins.

Find its partition function when an external magnetic field is applied

along x.

(c) Find the average magnetization per spin in the paramagnet described

in (b).

Calculate the value of the magnetization using two methods:

(1) As a canonical weighted average of the moment of a single spin.

(2) By direct calculation from the partition function.

(d) Calculate the magnetic susceptibility per spin of the paramagnet.

Does the Curie law apply (namely, χ ∝ 1/T )?

(e) Calculate the average energy (per spin) of this paramagnet.

(f) Calculate its specific heat.

Exercise 4 Solution on page 217

Repeat the solution of Exercise 3 for a material for which the magnetic

moment m has four possible directions as in the figure below. The field is

still in the x direction.

Exercise 5 Solution on page 219

Calculate the probability for a paramagnet of ions with J = 1
2 at temper-

ature T and magnetic field H to have energy E.

Exercise 6 Solution on page 219

The probability for the drunk in the random walk of Part I to be found

at a distance R from his initial location, after N steps, has the same

mathematical structure as the probability for a paramagnet of N spins to

have magnetization M .

(a) Calculate the probability for a drunk who is walking in one dimension

and having a step of length L to be found at a distance x from his

initial location after N steps.
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(b) Show that when N 
 1 but x
L 	 N , the probability which you

calculated in (a) goes over to a Gaussian distribution. Use Stirling’s

formula.

(c) Calculate the width (standard deviation) of the distribution, ∆x, and

its relative width, ∆x/NL.



Solutions to exercises in the text

Solution 0.1 Exercise on page 126

(a) For an isothermal process we may use Eq. (2.0.5) to compute δQ.

In a process with initial volume Vi, final volume Vf and (constant)

temperature T we obtain

QT =

∫
T
δQ =

∫ Vf

Vi

Nk
T

V
dV = NkT ln

(
Vf
Vi

)
, (i)

where the subscript on Q denotes the variable kept fixed.

(b) In an isochoric (constant V ) process we calculate analogously

QV =

∫
V
δQ =

∫ Tf

Ti

f

2
NkdT =

f

2
Nk(Tf − Ti) . (ii)

(c) In an isobaric (constant P ) process none of the terms in Eq. (2.0.5)

vanishes, but the equation of state (2.0.3) provides a relation between

the differentials: PdV = NkdT . So we obtain

QP =

∫
P
δQ =

∫ Tf

Ti

(
1 +

f

2

)
NkdT =

(
1 +

f

2

)
Nk(Tf − Ti) . (iii)

If instead the volume is the integration variable, one obtains the

equivalent result

QP =

∫
P
δQ =

∫ Vf

Vi

(
1 +

f

2

)
PdV =

(
1 +

f

2

)
P (Vf − Vi) . (iv)

Solution 0.2 Exercise on page 126

(a) Combining the results of the previous solution one finds that

Q =

∮
δQ = Nk

[
T2 − T1 − T1 ln

(
V2
V1

)]
, (i)

183



184 Solutions to exercises in the text

where V2 is the volume at the end of the isobaric process. Since there

is a linear relation between volume and temperature in an isobaric

process, we may write the result (i) in terms of temperatures only:

Q = Nk

[
T2 − T1 − T1 ln

(
T2
T1

)]
. (ii)

We write Q in Eq. (ii) in the form

Q = NkT1

[
T2
T1
− 1− ln

(
T2
T1

)]
. (iii)

This is an increasing function of T2/T1 for T2/T1 ≥ 1 (which one

verifies by noting that its derivative is always positive in this interval)

with a minimum Q = 0 at T2/T1 = 1. Hence Q is positive in this

cycle.

(b) If the cycle is reversed Q changes sign and becomes negative.

(c) If δQ were an exact differential we would have found Q = 0, since the

integration over a closed path would then have vanished.

Solution 0.3 Exercise on page 126

(a) In the isobaric process we have

WP =

∫
P
δW =

∫ V2

V1

PdV = P (V2 − V1) . (i)

In the isochoric process WV = 0 and in the isothermal step

WT =

∫
T
δW =

∫ V1

V2

NkT

V
dV = −NkT1 ln

(
V2
V1

)
. (ii)

Adding the three contributions one finds that

W =

∮
δW = P (V2 − V1)−NkT1 ln

(
V2
V1

)
. (iii)

(b) Using the equation of state, Eq. (2.0.3), one notes that this is the

same result for Q of Eq. (i) of the previous solution. The reason is

that the energy is a function of state and so its integral over any

process depends only on the initial and final states:

∫
dE = Ef −Ei .

Thus, its contribution over a full cycle vanishes and W = Q.
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(c) In an adiabatic processes δQ = 0 and hence

δW = −dE = −f
2
NkdT ,

which is integrated to obtain

Wadiabatic = −f
2
Nk(Tf − Ti) . (iv)

(d) Substituting δQ = 0 in Eq. (2.0.5) we find that

V T f/2 = const . (v)

Solution 0.4 Exercise on page 127

We express δQ in terms of the variables T and P . Using the equation of

state (2.0.3) we transform the infinitesimal work to the form

PdV = NkdT − V dP .

Then, using the expression for E, Eq. (2.0.4), we use Eq. (2.0.2) to write

δQ = dE +PdV =
f

2
NkdT + (NkdT − V dP ) = Nk

(
1 +

f

2

)
dT − V dP ,

leading to Eq. (2.0.9).

Solution 0.5 Exercise on page 127

For an adiabatic process we have from Eq. (v) of Solution 0.3

V T f/2 = const , (i)

or

TV 2/f = const . (ii)

Expressing T in terms of P and V by the equation of state gives, for a

fixed number of particles,

PV γ = const , (iii)

with γ = 1 + 2
f . See also Solution 1.8b in Part I.
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Solution 0.6 Exercise on page 128

(a) We write Eq. (2.0.5) replacing δQ = TdS to obtain

dS = Nk

(
f

2

dT

T
+
dV

V

)
. (i)

The right hand side of Eq. (i) is now an exact differential [unlike the

right hand side of Eq. (2.0.5)] and it can be integrated to give

S = Nk ln(bV T f/2) , (ii)

where b is a constant. This constant may be taken out of the loga-

rithmic function to become an additive constant. As written above,

S is not an extensive function because of the V inside the logarithm.

It is made extensive by writing b = c/N , which (at constant N) adds

but a constant to S.

(b) We can use Eq. (ii) at both end points, where the volumes are Vi and

Vf (and the temperatures cancel), to obtain

∆S = Nk ln

(
Vf
Vi

)
. (iii)

Note that one could obtain the same result by taking QT /T from

Eq. (i) in Solution 0.1.

(c) Using Eq. (ii) at both end points, where the temperatures are Ti and

Tf , one obtains

∆S =
f

2
Nk ln

(
Tf
Ti

)
. (iv)

(d) If the entropy remains constant, dS = 0 and also δQ = 0. The

process is therefore adiabatic. For an ideal gas Eq. (ii) holds and

hence during the process the product V T f/2 remains constant [see

also Exercise 0.3(d)] or

TV γ−1 = const . (v)

Solution 0.7 Exercise on page 129

Using Eq. (2.0.17) the enthalpy of an ideal gas is found to be

H =

(
1 +

f

2

)
NkT ,

which gives, via (2.0.19), the correct value for CP , Eq. (2.0.9).
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Solution 0.8 Exercise on page 130

We use Eqs. (2.0.21). The first of these equations gives the identification

of the temperature:
1

T
=

(
∂S

∂E

)
V

=
3

2

Nk

E
. (i)

The second gives
P

T
=

(
∂S

∂V

)
E

=
Nk

V
. (ii)

These are just the relations between energy and temperature for a

monoatomic ideal gas and its equation of state. Equation (2.0.22) is the

same as (2.0.12) written in terms of the energy and with f = 3.

Solution 0.9 Exercise on page 130

It is possible to use Eq. (2.0.23) as the fundamental relation and calculate

the chemical potential as

µ =

(
∂E

∂N

)
S,V

. (i)

However, this way requires the explicit form of the function E(S, V,N),

which can be obtained by inversion of (2.0.22). Instead we use Eq. (2.0.23)

in the form

dS =
1

T
(dE + PdV − µdN) (ii)

and calculate

µ = −T
(
∂S

∂N

)
E,V

= −kT
[
ln

(
aV E3/2

N5/2

)
− 5

2

]
. (iii)

Expressing the energy in terms of N and T and absorbing the 5/2 in the

constant a, one obtains (2.0.24).

Solution 0.10 Exercise on page 131

In order to calculate F (T, V,N) one needs E and S in terms of T , V and

N . These are found in Eqs. (2.0.4) and (2.0.12). We substitute into the

definition (2.0.25) to obtain the required expression for the free energy,

F = −NkT
[
ln

(
cV T 3/2

N

)
− 3

2

]
. (i)
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Now we calculate the chemical potential as

µ =

(
∂F

∂N

)
T,V

= −kT
[
ln

(
cV T 3/2

N

)
− 5

2

]
. (ii)

Comparison with Eq. (2.0.24) gives b = ce−5/2, and thus

F = −NkT
[
ln

(
bV T 3/2

N

)
+ 1

]
. (iii)

The entropy of the ideal gas, which was used to find the free energy

explicitly, is rederived by applying (2.0.27):

S = −
(
∂F

∂T

)
V,N

.

Solution 0.11 Exercise on page 132

(a) Using the free energy, Eq. (2.0.27), one obtains

S =
4a

3
V T 3 .

(b) Similarly,

P =
a

3
T 4 .

This is the form of the equation of state of a photon gas. Note that

the pressure is independent of the volume.

(c) To calculate the energy we use Eq. (2.0.25) to write

E = F + TS = aV T 4 .

(d) Since the free energy is independent of N , the chemical potential

vanishes. This means that photons may be freely emitted or absorbed

by the walls of the container.

Solution 0.12 Exercise on page 132

The equation of state of a photon gas (1.1.7) is

PV =
1

3
E . (i)
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In an adiabatic compression, all of the work goes to changing the internal

energy, i.e.

PdV = −dE . (ii)

From Eq. (i) we obtain

dE = 3PdV + 3V dP . (iii)

Adding up Eqs. (ii) and (iii),

4PdV + 3V dP = 0

⇓

4

3

dV

V
+
dP

P
= 0 . (iv)

The solution of Eq. (iv) is

PV 4/3 = const . (v)

Equation (v) is the required adiabatic equation.

Solution 0.13 Exercise on page 132

(a) The first of the Maxwell relations is satisfied because

(
∂P

∂N

)
T,V

=
kT

V
,

(
∂µ

∂V

)
T,N

= −kT
V
.

In order to verify the other two, we use Eq. (iii) in Solution 0.10 to

write the entropy in the form

S = −
(
∂F

∂T

)
V,N

= Nk

[
ln

(
bV T 3/2

N

)
+

5

2

]
, (i)

as well as the expressions for P (T, V,N) [Eq. (ii) of Solution 0.8] and

µ(T, V,N) [Eq. (ii) of Solution 0.10].

(b) For the photon gas nothing depends on N . Therefore the first two

Maxwell relations are empty, i.e. 0 = 0. Using the results of (a) and

(b) in Solution 0.11, the third relation is verified.
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Solution 0.14 Exercise on page 133

(a) Deriving from Eq. (2.0.31) the mixed second derivatives, one finds

that

(
∂P

∂µ

)
T,V

=

(
∂N

∂V

)
T,µ

,

(
∂S

∂µ

)
T,V

=

(
∂N

∂T

)
V,µ

,

(
∂S

∂V

)
T,µ

=

(
∂P

∂T

)
V,µ

.

(b) To calculate Ω(T, V, µ) one uses the definition (2.0.29) with the explicit

relation for N(µ) obtained from Eq. (2.0.24). The result is

Ω = −N(µ)kT = −kbV T 5/2eµ/kT .

Solution 1.1 Exercise on page 137

We compare the entropy changes, as given in Eqs. (2.1.8) and (2.1.10):

dS =
1

T
dE +

M

T
dH , (i)

dS =
1

T
dE∗ − H

T
dM , (ii)

with the differentials of S, which is

dS =

(
∂S

∂E

)
H

dE +

(
∂S

∂H

)
E

dH , (i)′

dS =

(
∂S

∂E∗

)
M

dE∗ +
(
∂S

∂H

)
E∗
dM . (ii)′

We obtain from Eqs. (i) and (i)′ (E and H are independent variables)

(
∂S

∂E

)
H

=
1

T
,

(
∂S

∂H

)
E

=
M

T
.

(iii)
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And from Eqs. (ii) and (ii)′ (E∗ and M are independent variables) we

obtain (
∂S

∂E∗

)
M

=
1

T
,

(
∂S

∂M

)
E∗

= −H
T
.

(iv)

The second order mixed derivatives of (iii) and (iv) give the Maxwell

relations:

∂2S

∂E∂H
=

[
∂(1/T )

∂H

]
E

=

[
∂(M/T )

∂E

]
H

,

∂2S

∂E∗∂M
=

[
∂(1/T )

∂M

]
E∗

= −
[
∂(H/T )

∂E∗

]
M

.

(v)

Solution 2.1 Exercise on page 144

Because the average of a sum is the sum of averages,

〈M〉 =
〈

N∑
i=1

µBσi

〉
= µB

∑
i

〈σi〉 , (i)

and 〈σi〉 does not depend on the spin’s index i, we obtain

〈M〉 = µBN〈σ〉 . (ii)

The result (ii) is (2.2.15). This means that (2.2.15) is a reasonable result,

since it is derivable from simple general considerations.

If there are Na spins in the subsystem, the same argument will give

〈Ma〉 = µBNa〈σ〉 .

Solution 2.2 Exercise on page 145

In order to find the probability for spin i to have a given value for its

projection along the z direction, σi, and for spin j to have the value σj,

we have to evaluate the ratio of the number of configurations in which

spins i and j assume these specified values, and the total number of con-

figurations, which is of course 2N .



192 Solutions to exercises in the text

The number of configurations in which spin i has the specified

projection σi and spin j the projection σj , is the sum of the number

of all configurations, in which these two spins have these specific

values, whereas all others can have every possible value. We start

from the fact that the number of configurations with all spin projec-

tions specified, Q(σ1, . . . , σN ) = 2NP (σ1, . . . , σN ). To obtain the total

number of states with specified σi and σj , Q(σi, σj), we perform the

sum:

Q(σi, σj) =
∑′′

{σ}
Q(σ1, . . . , σi, . . . , σj , . . . , σN )

= 2N
∑′′

{σ}
P (σ1, . . . , σN ) , (i)

in which the double prime indicates that while N − 2 spins different from

i and j assume, each, its two values ±1, the projections of spins i and j

are kept fixed.

The probability, P (σi, σj), for spin i to have component σi and spin j

component σj, is therefore

P (σi, σj) =
1

2N
Q(σi, σj) (ii)

and substituting Eq. (i) for Q we obtain Eq. (2.2.19).

Solution 3.1 Exercise on page 148

The number of states with energy E is given by Eq. (2.3.4):

Γ(E) =
N !

N+!N−!
, (i)

where the relationship between the number of spins N+ and N− (in the

direction of the field and in the opposite direction, respectively) and the

energy E is given by Eqs. (2.3.2) and (2.3.3):

E = −µBH(N+ −N−) , (ii)

and the total number of spins N is

N = N+ +N− . (iii)
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From Eqs. (ii) and (iii) we obtain

N+ =
N

2
− E

2µBH
,

N− =
N

2
+

E

2µBH
.

(iv)

Substituting (iv) in (i) we obtain

Γ(E) =
N !(

N
2 − E

2µBH

)
!
(
N
2 + E

2µBH

)
!
. (v)

Solution 3.2 Exercise on page 149

The calculation of P (σ1 = −1) is similar to the calculation of P (σ1 = 1).

Also here σ1 is constant, but this time we have to calculate the number

of states of N − 1 spins, with an excess along +z, equal to q+1. In these

states there are N+ spins as in the calculation of Γ(E) and N− − 1 spins

along −z (since spin σ1 is directed along −z).
The required number of states is therefore the number of possibilities

of choosing N− − 1 out of N − 1:

(N − 1)!

(N− − 1)!N+!
,

so that

P (σ1 = −1) = 1

Γ(E)

(N − 1)!

(N− − 1)!N+!
=
N−
N

,

where we have used Eq. (2.3.4) for Γ.

Instead of N− we substitute the expression we obtained for it in Solu-

tions 3.1 (iv), to obtain

P (σ1 = −1) = 1

2
+
E/N

2µBH
.

Alternatively, one can calculate the probability as a ratio between the

number of spins with projection −1 and the total number of spins.

Solution 3.3 Exercise on page 150

Since in our model the spin has only two possible values, we can write

P (1) + P (−1) = 1 . (i)
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Equation (2.2.15) takes the form

〈M〉 = µBN [P (1)− P (−1)]

or

P (1) − P (−1) = 〈M〉
µBN

. (ii)

Equations (i) and (ii) are equations in two unknowns, P (1) and P (−1),
whose solution is

P (1) =
1

2
+
〈M〉
2µBN

,

P (−1) =
1

2
− 〈M〉

2µBN
.

(iii)

Since E = −H〈M〉 [see Eq. (2.3.6)], we immediately obtain Eqs. (2.3.7)

and (2.3.8).

Solution 3.4 Exercise on page 151

In order to obtain Eqs. (2.3.10) we calculate the number of states in which

there are two constant spins, whereas all the other spins can have every

possible value, under the constraint that there are a total of N+ spins

along the field and N− spins in the opposite direction.

(a) Calculation of P (+1,+1).

Among the N − 2 spins N+ − 2 are directed along the field and N−
in the opposite direction. The number of possible states is thus

(N − 2)!

(N+ − 2)!N−!
.

Hence

P (+1,+1) =
1

Γ(E)

(N − 2)!

(N+ − 2)!N−!
=
N+(N+ − 1)

N(N − 1)
.

(b) Calculation of P (+1,−1) or P (−1,+1).

Among the N−2 spins N+−1 are directed along the field and N−−1

in the opposite direction. The number of possible states is

(N − 2)!

(N+ − 1)!(N− − 1)!
.
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Hence

P (+1,−1) = P (−1,+1) =
1

Γ(E)

(N − 2)!

(N+ − 1)!(N− − 1)!
=

N−N+

N(N − 1)
.

(c) Calculation of P (−1,−1).
Among the N − 2 spins N+ are directed along the field and N− − 2

in the opposite direction. The number of possible states is

(N − 2)!

N+!(N− − 2)!
,

so that

P (−1,−1) = N−(N− − 1)

N(N − 1)
.

Solution 3.5 Exercise on page 152

Since the magnetization is identical in all states with the same energy,

there are no states with magnetization different from µBq, so that the

deviation ofM from its average vanishes, and hence (∆M)2 = 0. However,

even though we already know the answer we will calculate (∆M)2 in a

direct manner, as this method of calculation is typical of many other cases

and is worth knowing. You have already seen a simple example of such a

calculation in Exercise 1.15 of Part I.

The average square deviation of M from its average is

(∆M)2 = 〈(M − 〈M〉)2〉 = 〈(M2 − 2M〈M〉 + 〈M〉2)〉

= 〈M2〉 − 〈M〉2 . (i)

〈M〉 is given in Eq. (2.3.6) or (2.3.9):

〈M〉 = µBq . (ii)

Calculation of 〈M2〉:
From Eq. (2.2.10)

M = µB

N∑
i=1

σi .

Hence

〈M2〉 = ∑
{σ}

(
µB

N∑
i=1

σi

)2

P (σ1, . . . , σN )

=
∑
{σ}

µ2B

N∑
i=1

N∑
j=1

σiσjP (σ1, . . . , σN ) .
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We have used the fact that(∑
k

xk

)2

=

(∑
i

xi

)(∑
j

xj

)
=
∑
i

∑
j

xixj .

Hence

〈M2〉 = µ2B

N∑
i=1

N∑
j=1

∑
{σ}

σiσjP (σ1, . . . , σN )

= µ2B

N∑
i=1

N∑
j=1
j �=i

∑
{σ}

σiσjP (σ1, . . . , σN )

+µ2B

N∑
i=1

∑
{σ}

σ2i P (σ1, . . . , σN ) ≡ Σ1 +Σ2 ,

where we have separated between the cases with i �= j (
∑

1) and those

with i = j (
∑

2).

(a) To calculate
∑

1 we rewrite the inner sum in the form

∑
{σ}

σiσjP (σ1, . . . , σN ) =
∑
σi,σj

σiσj
∑
{σ}
′′P (σ1, . . . , σN )

=
∑
σi,σj

σiσjP (σi, σj) ,

where we have used the notations of Chap. 2 and Eq. (2.2.19).

P (σi, σj) has already been found [Eqs. (2.3.10)], and since it is

independent of i and j we obtain

Σ1 = µ2B

N∑
i=1

N∑
j=1
j �=i

[P (+1,+1)− P (+1,−1) − P (−1,+1) + P (−1,−1)]

= µ2BN(N − 1)

[
(N+ − 1)N+

N(N − 1)
− 2

N+N−
N(N − 1)

+
(N− − 1)N−
N(N − 1)

]
.

Note that
N∑
i=1

N∑
j=1
j �=i

1 = N(N − 1) .
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Hence

Σ1 = µ2B(N
2
+ −N+ − 2N+N− +N2

− −N−)

= µ2B[(N+ −N−)2 − (N+ +N−)] = µ2B(q
2 −N) . (iii)

(b) Calculation of Σ2:

Since σ2i = 1 for all i and
∑
{σ} P (σ1, . . . , σN ) = 1,

Σ2 = µ2B

N∑
i=1

∑
{σ}

σ2i P (σ1, . . . , σN ) = µ2BN . (iv)

From (iii) and (iv) we obtain

〈M2〉 = Σ1 +Σ2 = µ2B(q
2 −N) + µ2BN = µ2Bq

2 .

Substituting (v) and (ii) into (i), we get

(∆M)2 = µ2Bq
2 − µ2Bq2 = 0 , (v)

as anticipated.

Solution 3.6 Exercise on page 152

In order to calculate P (σ1 = +1, σ2 = +1, σ3 = +1), we have to calculate

the number of states with N−3 spins, having an excess in the +z direction

equal to q − 3. This number is

(N − 3)!

(N+ − 3)!N−!
,

so that

P (+1,+1,+1) =
1

Γ(E)

(N − 3)!

(N+ − 3)!N−!
=
N+(N+ − 1)(N+ − 2)

N(N − 1)(N − 2)
.

In the thermodynamic limit both N+ and N →∞, and

P (+1,+1,+1) →
(
N+

N

)3
.
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In the solution to Exercise 3.1 we found that

N+ =
N

2
− E

2µBH
=
N

2

(
1− E/N

µBH

)
,

so that in the thermodynamic limit

P (+1,+1,+1) =
1

8

(
1− E/N

µBH

)3
.

Solution 3.7 Exercise on page 154

(a) From Eqs. (2.3.4) and (2.3.5)

Γ(E) =
N !(

N
2 − E

2µBH

)
!
(
N
2 + E

2µBH

)
!
=

N !

N+!N−!
.

From the definition of the function S

1

k
S ≡ ln Γ(E) = lnN !− lnN+!− lnN−! . (i)

Applying Stirling’s formula for large n, Eq. (2.3.12), we obtain

lnn! �
(
n+

1

2

)
lnn− n+

1

2
ln(2π) . (ii)

Assuming that N , N+ and N− are all large enough, we substitute

their approximation (ii) in (i), to obtain

1

k
S �

(
N +

1

2

)
lnN −N −

(
N+ +

1

2

)
lnN+ +N+

−
(
N− +

1

2

)
lnN− +N− − 1

2
ln(2π)

=

(
N +

1

2

)
lnN −

(
N+ +

1

2

)
lnN+ −

(
N− +

1

2

)
lnN−

−1

2
ln(2π) . (iii)

We now write

N± = N · N±
N

, (iv)
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and then

1

k
S =

(
N +

1

2

)
lnN −

(
N+ +

1

2

)(
lnN + ln

N+

N

)

−
(
N− +

1

2

)(
lnN + ln

N−
N

)
− 1

2
ln(2π)

= −
(
N+ +

1

2

)
ln
N+

N
−
(
N− +

1

2

)
ln
N−
N
− 1

2
ln(2πN) , (v)

where the last transition was made after we noticed that from all the

terms proportional to lnN the only one left was −1
2 lnN .

But (see Solution 3.1)

N+ =
N

2
− E

2µBH
,

N− =
N

2
+

E

2µBH

(vi)

⇓
N±
N

=
1

2
∓ E/N

2µBH
.

Substituting (vi) in (v) we obtain

1

k
S � −

(
N

2
− E

2µBH

)
ln

(
1

2
− E/N

2µBH

)

−
(
N

2
+

E

2µBH

)
ln

(
1

2
+
E/N

2µBH

)
− 1

2
ln(2πN) , (vii)

where we have further neglected the term 1
2 compared to N±. Finally,

we note that the first two terms on the right hand side are proportional

to N whereas the third one is proportional to lnN only. For N →∞
the third term is negligible compared to the first two, so that we find

(2.3.13).

(b) Equation (2.3.13) is not sufficiently accurate for the calculation of

the number of states for large, but not macroscopic, values of N even

though Stirling’s approximation is already quite accurate. To this end

we must return all the “branches we cut” in the process of obtaining

(2.3.13), i.e. use Eq. (v) of (a) above:

1

k
S̃ = −1

2
ln(2πN) −

(
N + 1

2
− E

2µBH

)
ln

(
1

2
− E/N

2µBH

)

−
(
N + 1

2
+

E

2µBH

)
ln

(
1

2
+
E/N

2µBH

)
. (viii)
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The following table summarizes the results of the calculation with eS/k

[Eq. (2.3.13)] and with eS̃/k [Eq. (viii) here] for N = 10.

E/µBH −10 −8 −6 −4 −2 0 2 4 6 8 10

eS/k 1 25.8 149.0 449.7 837.2 1024.0 837.2 449.7 149.0 25.8 1

eS̃/k – 10.9 47.0 123.8 215.6 258.4 215.6 123.8 47.0 10.9 –

Note the good agreement between the results in the second row of the table

and the results of Table 3.1. Nevertheless, at the edges of the spectrum it is

not possible to use S̃ as it diverges there. This does not mean that (2.3.13)

is wrong, but that it is valid only in the macroscopic limit, N →∞.

Solution 3.8 Exercise on page 155

We use the notation ε = E/µBH for short, and write (2.3.13) in the form

1

k
S = −N

2

(
1− ε

N

)[
ln

(
1− ε

N

)
− ln 2

]

−N
2

(
1 +

ε

N

)[
ln

(
1 +

ε

N

)
− ln 2

]

= N ln 2− N

2

[(
1− ε

N

)
ln

(
1− ε

N

)
+

(
1 +

ε

N

)
ln

(
1 +

ε

N

)]
. (i)

Now, if N 
 1 we may approximate the logarithmic function by the first

two terms in its power expansion:

1

k
S � N ln 2− N

2

[(
1− ε

N

)(
− ε

N
− ε2

2N2

)
+

(
1 +

ε

N

)(
ε

N
− ε2

2N2

)]
.

(ii)

Keeping terms up to the second order in ε we obtain

1

k
S � N ln 2− ε2

2N
(iii)

or

Γ = eS/k � Ce−ε2/2N , (iv)

which is Eq. (2.3.14). The constant C is not 2N , as might be expected

from Eq. (iii), since we neglected too many terms depending on N on our

way to Eq. (iv). If we use instead of (2.3.13) the more exact result we

obtained in the answer to the previous exercise [Eq. (viii)], then we should

add −1
2 ln(2πN) to the right hand side of Eq. (i).

Thus we obtain, instead of Eq. (iii),

1

k
S̃ � ln

(
2N√
2πN

)
− ε2

2N
, (v)
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so that

C =
2N√
2πN

. (vi)

The same result is also obtained from the normalization condition:

C

∫ ∞
−∞

exp

(
− ε2

2N

)
dε = 2N , (vii)

since the value of the integral on the left hand side is
√
2πN .

Note that we integrated over energies from −∞ to ∞, although clearly our approxi-
mation is valid only when ε/N is very small. But this means that most of the area of
the graph is concentrated around ε = 0 and the exponential function decays extremely
fast, so that the “tail” does not affect the sum.

Solution 4.1 Exercise on page 158

We calculate P (+1) and P (−1) by solving two equations in two unknowns:

The sum of the probabilities satisfies

P (+1) + P (−1) = 1 . (i)

Equation (2.4.8) reads
P (+1)

P (−1) = e2µBHβ (ii)

⇓
P (+1)

1− P (+1)
= e2µBHβ

⇓

P (+1) =
e2µBHβ

1 + e2µBHβ
.

With the help of (i):

P (−1) = 1

1 + e2µBHβ
.

Multiplying both by e−µBHβ:

⇓

P (+1) =
eµBHβ

2 cosh(µBHβ)
,

P (−1) = e−µBHβ

2 cosh(µBHβ)
.
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P (±1) as calculated here are the same probabilities given in Eqs. (2.3.7)

and (2.3.8). The difference is that now they are expressed not as functions

of E and H but as functions of β and H. By comparing the two forms it

is possible to obtain the relationship (2.4.6) between E and β.

Solution 4.2 Exercise on page 160

The energy distribution (2.4.14) is a Gaussian distribution, which we

write as

ΓT (Ea) = C exp

[
−(Ea − Ēa)

2

2Nα2

]
,

where α remains finite in the thermodynamic limit (check!). The simplest

way to estimate the width of a Gaussian curve is to measure the distance

to the energy value for which the distribution decreases to half of its

maximal height.

Thus, we search for an energy Ea satisfying

C

2
= C exp

[
−(Ea − Ēa)

2

2Nα2

]

or

ln 2 =
(Ea − Ēa)

2

2Nα2

⇓
Ea = Ēa ± (2Nα2 ln 2)1/2 .

This means that the width of the curve is

∆Ea � 2(2Nα2 ln 2)1/2 ∼ N1/2 .

As the average energy is proportional to the number of spins in the system,

we have
∆E

Ēa
∼ N1/2

N
∼ N−1/2 .

The calculation may, of course, be performed in a more exact manner, if

we calculate

(∆Ea)
2 = 〈(Ea − Ēa)

2〉 ,

〈(Ea − Ēa)
2〉 =

∫∞
−∞(Ea − Ēa)

2 exp
[−(Ea − Ēa)

2/2Nα2
]
dEa∫∞

−∞ exp
[−(Ea − Ēa)2/2Nα2

]
dEa

.

Calculating the integral by the methods we developed in Part I, we obtain

(∆Ea)
2 = Nα2 .

Hence

∆Ea ∼ N1/2 .
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We again use the fact that Ēa ∼ N , so that

∆Ea

Ēa
∼ 1

N1/2
.

Solution 4.3 Exercise on page 162

(a) 〈σ〉 = (+1)P (+1) + (−1)P (−1) = P (+1)− P (−1).
Using the results of Solution 4.1 for P (+1) and P (−1) we obtain

〈σ〉 = eµBHβ

2 cosh(µBHβ)
− e−µBHβ

2 cosh(µBHβ)
= tanh(µBHβ) . (i)

Since the N spins are independent of one another, we have

[Eq. (2.2.15)]

M = µBN〈σ〉 ,
and hence

M = µBN tanh(µBHβ) . (ii)

M/N

H
➤

➤

µB

−µB

(b) Equation (2.4.6) provides us with the relationship between energy and

temperature, and since E = −MH, also with a relationship between

the magnetization and the temperature,

e2µBHβ =
NµB +M

NµB −M ,

and, if we solve for M , we get

M = µBN tanh(µBHβ) .

(c) From (2.4.21) and (2.4.19) we obtain

H

T
= − ∂S

∂M
=

k

2µB
ln

1 +M/NµB
1−M/NµB .

Now we can invert the relationship and express M in terms of all the

other quantities exactly as in (b), and obtain (ii) again.
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(d) Equation (2.4.24) can simply be obtained from E = −MH using M

from (a) or (b) above.

Solution 5.1 Exercise on page 166

The constant C in Eq. (2.5.1a) is a normalization constant, which ensures

that ∑
{σ}

P (σ1, . . . , σn) = 1 , (i)

where {σ} denotes the summation over all possible configurations, with

σi = ±1 for each i.

Reminder: Eq. (i) is necessary if P is to be interpreted as the probability of a config-
uration.

That is, we require that

∑
{σ}

C exp

(
βµBH

n∑
i=1

σi

)
= 1 ,

or

C−1 =
∑
{σ}

exp

(
βµBH

n∑
i=1

σi

)
. (ii)

The energy of a given configuration is

E(σ1, . . . , σn) = −µBH
n∑
i=1

σi .

Writing the summation over {σ} in (ii) in detail, we obtain

C−1 =
∑

σ1=±1
. . .

∑
σn=±1

e−βE(σ1,...,σn) .

Solution 5.2 Exercise on page 168

The average magnetization is given by

〈M〉 = ∑
{σ}

[
µB

n∑
i=1

σi

]
P (σ1, . . . , σn)

=
1

Z

∑
{σ}

[
µB

n∑
i=1

σi

]
exp


βµBH n∑

j=1

σj


 ,

(i)
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where

Z =
∑
{σ}

exp

(
βµBH

n∑
i=1

σi

)
. (ii)

Since the sum in (i) is
1

β

∂Z

∂H
,

we immediately obtain

〈M〉 = 1

β

1

Z

∂Z

∂H
=

1

β

∂ lnZ

∂H
.

Solution 5.3 Exercise on page 168

If f is a function of x = βH only, then the following relations hold:

∂f

∂β
=
∂f

∂x

∂x

∂β
= H

∂f

∂x
,
∂f

∂H
=
∂f

∂x

∂x

∂H
= β

∂f

∂x
.

If f(x) = lnZ(x), then

∂ lnZ

∂β
= H

∂ lnZ

∂x
,
∂ lnZ

∂H
= β

∂ lnZ

∂x

⇓
∂ lnZ

∂β
=

1

β
H
∂ lnZ

∂H
.

And from Eqs. (2.5.7) and (2.5.8) we obtain

〈E〉 = −H〈M〉 .

Solution 5.4 Exercise on page 171

We substitute in the definition of the heat capacity per spin at constant

field (2.5.17),

cH =
1

n

(
∂E

∂T

)
H

, (i)

the average energy of the system, E, as given by Eq. (2.5.13):

E = −nµBH tanh(βµBH) . (ii)

Differentiating with respect to T we obtain(
∂E

∂T

)
H

=
dβ

dT

(
∂E

∂β

)
H

= −kβ2
(
∂E

∂β

)
H

= kβ2nµBH
µBH

cosh2(βµBH)
=

nµ2BH
2

kT 2 cosh2(βµBH)
. (iii)
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From (i) and (iii) we obtain

cH =
µ2BH

2

kT 2 cosh2(βµBH)
.

Solution 5.5 Exercise on page 172

The magnetization per spin at a constant temperature was plotted in

Solution 4.3. See also Fig. 2.5.1. The plot at constant field is:

M/NµB

kT/µBH
➤

➤

0.5

1.0

2 40 4
0

H>0

Note that this graph corresponds to the region H > 0 in Solution 4.3

or x > 0 in Fig. 2.5.1, and that the abscissa variable here is 1/x.

Solution 5.6 Exercise on page 172

(a) The entropy of the paramagnet as a function of M is given by

Eq. (2.4.18), which we rearrange and rewrite in a slightly different

manner:

S = −Nk
2

[
ln

(
1−

(
M

NµB

)2)
+

M

NµB
ln

(
NµB +M

NµB −M
)
− 2 ln 2

]
.

(i)

Substituting the explicit expression (2.5.14) for M as a function of T

and H, we obtain

S(T,H) = −Nk
2

[
ln(1− tanh2 x)+tanhx ln

(
1 + tanhx

1− tanhx

)
−2 ln 2

]
,

(ii)

where x ≡ βµBH and N is the number of spins.

Now, using the identities

1− tanh2 x =
1

cosh2 x
,

1 + tanhx

1− tanhx
= e2x ,
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we obtain

S(T,H) = Nk[ln(2 cosh x)− x tanh x]

= Nk

{
ln

[
2 cosh

(
µBH

kT

)]
− µBH

kT
tanh

(
µBH

kT

)}
. (iii)

(b) The entropy per spin as a function of temperature (at a constant field)

is depicted in the following graph:

➤

➤
T

kln2

S/N

(c) The entropy per spin as a function of the field (at constant tempera-

ture):

➤

➤
H

kln2

S/N

5T
T

Solution 5.7 Exercise on page 173

(a) First we calculate, in analogy to Eq. (2.5.11), the partition function

per ion:

z =
2J∑

σi=−2J
eβgµBHσi/2 . (i)
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The summation in (i) can be computed, as a geometric series whose

first term is eβgµBHJ . Denote x = βgµBH; then

z =
2J∑

σi=−2J
exσi/2 =

ex(J+1) − e−xJ
ex − 1

. (ii)

Reminder:

1 + q + q2 + · · ·+ qn−1 =
qn − 1

q − 1
.

Note that σi changes in steps of 2.

Multiplying the numerator and the denominator in the last fraction

by e−x/2, we obtain

z =
ex(J+1/2) − e−x(J+1/2)

ex/2 − e−x/2 =
sinh(J + 1/2)x

sinh(x/2)
. (iii)

If the number of spins is N , then the system’s partition function is

obtained by (2.5.12):

Z =

[
sinh(J + 1/2)x

sinh(x/2)

]N
. (iv)

(b) The average magnetization per spin is calculated in a manner similar

to that which brought us (in the case of spin 1
2) to Eq. (2.5.14). Recall

that Eq. (2.5.8) is completely general. We continue to express Z in

terms of x, and in order to obtain the derivative with respect to H we

use the chain rule.

〈M〉
N

=
1

N

1

β

∂ lnZ

∂H
=

1

N

1

β

d lnZ

dx

∂x

∂H

= gµB
d

dx
ln

[
sinh(J + 1/2)x

sinh(x/2)

]

= gµB

[
(J + 1/2) cosh(J + 1/2)x

sinh(J + 1/2)x
− 1/2 cosh(x/2)

sinh(x/2)

]
. (v)

We define Brillouin’s function by

BJ(x) ≡ 1

J

[(
J +

1

2

)
coth

(
J +

1

2

)
x− 1

2
coth

(
x

2

)]
(vi)

and write (v) in the shortened form

〈M〉
N

= gµBJBJ(x)
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or, using the definition of x,

〈M〉
N

= gµBJBJ(βgµBH) . (vii)

In order to plot a graph of 〈M〉/N as a function of H, we have to

analyze the behavior of the Brillouin function BJ(x). Since it is an

odd function, it is sufficient to study the region x ≥ 0. For x→∞ it

is easy to see that BJ(x) → 1. This means that the saturation value

of 〈M〉/N is gµBJ . At first sight it seems as if BJ(x) diverges for

x → 0. However, we know that for J = 1
2 , BJ(x) = tanhx, which

behaves like x at small x, so we have to study its behavior near the

origin more carefully. We expand BJ(x) around x = 0, and write

coth y =
ey + e−y

ey − e−y =
2+ y2 + . . .

2y + y3/3 + . . .
.

For y 	 1 it is possible to write

coth y � 1 + y2/2

y(1 + y2/6)
.

But, for y 	 1,
1

1 + y2/6
� 1− y

2

6
,

so that we obtain

coth y � 1

y

(
1 +

y2

2

)(
1− y2

6

)
,

and by neglecting terms of order higher than y2,

coth y � 1

y

(
1 +

y2

3

)
=

1

y
+
y

3
. (viii)

Hence, for small x the function BJ(x) takes the form

BJ(x) � 1

J

{(
J +

1

2

)[
1

(J + 1/2)x
+

1

3

(
J +

1

2

)
x

]
− 1

2

(
2

x
+
x

6

)}

=
1

J

[
1

3

(
J +

1

2

)2
x− 1

12
x

]
=

x

3J
(J2 + J) =

(
J + 1

3

)
x (ix)

and this is the behavior we already know for the case J = 1
2 . Now we

still have to check if indeed nothing special happens between x = 0

and x→∞. To this end we calculate the derivative:

dBJ

dx
= − (J + 1/2)2

J sinh2(J + 1/2)x
+

1

4J sinh2 x/2
.
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A brief study reveals that dBJ/dx is positive for all x, so BJ(x) is a

monotonic increasing function in the region under discussion. Hence

〈M〉/N as a function of H will look as in the following figure:

<M>/NgµB
J=7/2

J=2

J=1/2

➤

βgµBH

➤

All we have used to arrive at the qualitative form of these curves is

that the value at which they saturate increases in proportion to J and

their slope at the origin in proportion to J(J+1) [Eqs. (vii) and (ix)].

(c) We obtain the susceptibility from the behavior of 〈M〉 at small fields.

From Eqs. (vii) and (ix) we immediately find

〈M〉
N
≈ gµBJ · J + 1

3
· βgµBH = (gµB)

2J(J + 1)

3kT
H , (x)

and the susceptibility is

χ = (gµB)
2J(J + 1)

3kT
. (xi)

Substituting J = 1
2 and g = 2, we obtain the result (2.5.16).

(d) We calculate the specific heat at a constant field using Eqs. (2.5.17)

and (2.5.7):

cH =
1

N

(
∂E

∂T

)
H

= − 1

N
kβ2

(
∂E

∂β

)
H

=
1

N
kβ2

∂

∂β

(
∂ lnZ

∂β

)
= kβ2

∂2 ln z

∂β2
, (xii)
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where we have substituted Z = zN . Next we note that

∂2 ln z

∂β2
= (gµBH)2

d2 ln z

dx2
.

But we have already computed the derivative d ln z/dx in (v). Using

(v) and (vii) we obtain

d ln z

dx
= JBJ(x) ,

d2 ln z

dx2
= J

dBJ (x)

dx
= − (J + 1/2)2

sinh2(J + 1
2)x

+
1/4

sinh2 x/2
,

so that finally

cH = k(βgµBH)2


 1

4 sinh2
(
1
2βgµBH

) − (J + 1/2)2

sinh2((J + 1/2)βgµBH)


 .

Substituting J = 1
2 , g = 2 we obtain (2.5.18).

Solution 6.1 Exercise on page 175

If E = 0 we have equal probabilities for each state

P (+1) = P (−1) = 1

2
,

and then
S

k
= −N

(
1

2
ln

1

2
+

1

2
ln

1

2

)
= N ln 2 .

This means that the assumption that the probabilities for a spin to be

along the direction of the field or in the opposite direction are equal, brings

us from (2.6.6) to (2.6.4). In this case the thermal energy easily overcomes

the interaction energy of the spins with the field, so that there is no

preferred direction: the temperature is very high and disorder dominates.

Solution 6.2 Solution on page 176

Substituting the probabilities (2.5.5) into Eq. (2.6.7) we obtain

S = −kZ−1
m∑
α=1

(−βEα − lnZ)e−βEα

= kβZ−1
m∑

α=1

Eαe
−βEα + kZ−1 lnZ

m∑
α=1

e−βEα .
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The first term includes the average energy 〈E〉. In the second term there

appears the sum of probabilities which is of course 1. Hence

S = kβ〈E〉 + k lnZ ,

which is the required result.
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Solution 1 Exercise on page 180

From Eq. (2.4.5a) and from the explicit expression for β as a function of

E, Eq. (2.4.6), we obtain the following equation for Ēa:

1

2µBHa
ln
µBHaNa − Ēa

µBHaNa + Ēa
=

1

2µBHb
ln
µBHbNb −E + Ēa

µBHbNb +E − Ēa
.

If Ha = Hb = H, the coefficients of the logarithms cancel and their

arguments must be equal. With a little algebra we obtain

Ēa =
Na

Na +Nb
E .

Ēb has to make up the difference between Ēa and E, so that

Ēb =
Nb

Na +Nb
E .

You may have been able to guess in advance that the energies at equilib-

rium are distributed in direct proportion to the sizes of the two systems,

so that each of them has the same energy per degree of freedom. How-

ever, it is nice to find yet another verification that we are treading on solid

ground.

Solution 2 Exercise on page 180

(a) Since δQ = TdS, the specific heat at constant field is T (∂S/∂T )H ,

and the specific heat per degree of freedom is

cH =
T

n

(
∂S

∂T

)
H

.

We now use the expression that we found for S(T, H) in

Exercise 5.6(a):

S(T,H) = nk[ln(2 cosh x)− x tanhx] , x ≡ µBH

kT
.
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Hence
∂S

∂T
= − x

T

dS

dx
=
nkx2

T

1

cosh2 x
,

so that

cH = k
x2

cosh2 x
,

and this result is identical to Eq. (2.5.18).

(b)

Ideal gas Paramagnet

Extensive variable V M

Intensive variable P −H
TdS = dE + PdV TdS = dE∗ −HdM
TdS = dH− V dP TdS = dE +MdH

Enthalpy H = E + PV E∗ = E +MH

E = 3
2PV E∗ ≡ 0

Equation of state PV = NkT M = NµB tanh

(
µBH

kT

)

(High T ) M � N µBH
kT

Adiabatic system dS = 0 dS = 0
dE = −PdV dM = 0 or H = 0
PV γ = const M = const or H = 0

Solution 3 Exercise on page 180

(a) The energy of a magnetic moment, m, in a field H is given by

ε = −m ·H = −mH cosα . (i)

Substituting the value of α into each of the possible states, we find

ε(α) =




−mH , α = 0 ,

mH

2
, α =

2π

3
,

mH

2
, α =

4π

3
.

(ii)

(b) Since the temperature is given, it is natural to use the canonical en-

semble. The partition function is

Z(β,H) =
∑
{all

states}

e−βE(state) . (iii)
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The same argument that led to (2.5.12), which is based solely on the

fact that the spins are independent, will yield for the paramagnetic

system under discussion as well,

Z(β,H) = [z(β,H)]N , (iv)

where N is the number of spins in the system, and z is the single spin

partition function. In this case

z(β,H) =
∑
α

e−βε(α) , (v)

with α = 0, 2π/3, 4π/3.

The energy per spin has already been calculated in (a), Eq. (ii),

and thus

z(β,H) = eβmH + 2e−βmH/2 (vi)

⇓

Z(β,H) = (eβmH + 2e−βmH/2)N . (vii)

(c) In the absence of an external field there will be an equal population in

each of the three possible states, and hence a vanishing magnetization.

Since the field is acting in the x direction, the spins aligned in the

x direction have a lower energy, so that they have a higher probability.

Thus it is expected that the net magnetization will also be in the x

direction. (Note: there is a complete symmetry between the directions

y and −y. Hence the magnetization of this system cannot have a

component along y.) We shall verify this conclusion quantitatively

using both methods mentioned.

(1) The contribution to the magnetization in the x direction, of each

of the states, is

mx(α) = m cosα

⇓


mx(0) = m,

mx

(
2π

3

)
= mx

(
4π

3

)
= m cos

(
2π

3

)
= −m

2
.

(viii)
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The contribution along y is

my(α) = m cos

(
α− π

2

)

⇓


my(0) = 0 ,

my

(
2π

3

)
= m

√
3

2
,

my

(
4π

3

)
= −m

√
3

2
.

(ix)

The probability of a given one-particle state, α, is given by

Pα(β,H) =
e−βε(α)

z(β,H)
, (x)

where the denominator, given in Eq. (v) or (vi), guarantees that

the sum of probabilities is 1. In order to obtain the magnetization,

we multiply the contribution of each state, Eqs. (viii) and (ix), by

the probability of that state (x) and sum over the products:

〈mx(β,H)〉 =∑
α

mx(α)Pα(β,H) = m
eβmH − e−βmH/2

eβmH + 2e−βmH/2
, (xi)

〈my(β,H)〉 =∑
α

my(α)Pα(β,H) = 0 . (xii)

This is of course the average magnetization per spin.

(2) Since the field is in the x direction we can use (2.5.8) and write

the average magnetization per spin in the form

〈mx〉 = 1

βN

∂ lnZ

∂H
, (xiii)

where Z is given in Eq. (vii); from which

lnZ = N ln(eβmH + 2e−βmH/2) (xiv)

and hence

〈mx〉 = 1

β

eβmH − e−βmH/2

eβmH + 2e−βmH/2
βm , (xv)

which is the result we obtained in (xi).
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(d) Since the field is weak, we use the approximation ex � 1 + x for the

numerator and the denominator in Eq. (xi), and hence

〈mx〉 � m3βmH/2

3
=
βm2H

2
, (xvi)

and from here

χ =
m2

2kT
, (xvii)

i.e. χ ∝ 1/T , and Curie’s law is recovered.

(e) The average energy per spin may be calculated either from Eq. (2.5.7)

or simply from 〈ε〉 = −〈mx〉H. Both methods yield

〈ε〉 = −mH eβmH − e−βmH/2

eβmH + 2e−βmH/2
= −mH

(
1− 3

2 + e3βmH/2

)
. (xviii)

(f) The specific heat per spin at a constant field is

cH =

(
∂〈ε〉
∂T

)
H

= 2k
(3βmH/2)2

(2e−3βmH/4 + e3βmH/4)2
(xix)

Solution 4 Exercise on page 181

(a) The energy of a magnetic moment in an external field H in the x

direction

ε(α) = −m ·H = −mH cosα ,

where in this case

α = 0 ,
π

2
, π,

3π

2
⇓

ε(0) = −mH ,

ε

(
π

2

)
= 0 , (i)

ε(π) = mH ,

ε

(
3π

2

)
= 0 .

(b) For this paramagnet as well the partition function is a product of

single particle partition functions:

Z(β,H) = [z(β,H)]N ,

where N is the number of spins in the system.

This time the single spin states are characterized by four angles.

Hence

z(β,H) = eβmH + e−βmH + 2 , (ii)

so that

Z(β,H) = (eβmH + e−βmH + 2)N . (iii)
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(c) Calculation of the average magnetization per spin:

(1) In this case only the states α = 0 and α = π contribute to the

magnetization along x, since the other two states have zero pro-

jections along x. With a field in the x direction the magnetization

does not have a component along y here as well.

The average magnetization per spin is therefore

〈mx〉 = mx(α = 0)Pα=0(β,H) +mx(α = π)Pα=π(β,H)

= m
eβmH − e−βmH

eβmH + e−βmH + 2
. (iv)

(2) Differentiating the partition function we obtain

〈mx〉 = 1

βN

∂ lnZ

∂H
=

1

β

∂ ln z

∂H
= m

eβmH − e−βmH

eβmH + e−βmH + 2
.

(d) A power expansion of the numerator and the denominator in Eq. (iv),

along with the approximation ex � 1+ x for x	 1, gives the magne-

tization for weak fields:

〈mx〉 � βm2

2
H ,

so that

χ =
m2

2kT
. (v)

In this case as well Curie’s law is valid and we obtain the same result

as in Exercise 3.

(e) Using Eq. (2.5.7) and the result (ii), we obtain

〈ε〉 = −∂ ln z
∂β

= −mH eβmH − e−βmH

eβmH + e−βmH + 2
= −mH tanh

(
βmH

2

)
,

(vi)

which means that, as expected for a paramagnet,

〈ε〉 = −〈mx〉H .

(f) The heat capacity per spin at a constant external field is

cH =

(
∂〈ε〉
∂T

)
H

, (vii)



Solutions to self-assessment exercises 219

where 〈ε〉 is given in Eq. (vi). Differentiating we obtain

cH = 2k
(βmH/2)2

cosh2(βmH/2)
.

Solution 5 Exercise on page 181

The probability for a given state, α, with energy Eα = E is Z−1e−βE

[Eq. (2.5.5)]. However, there are many states with the same energy E.

Their number Γ(E) is given by (2.3.5). Thus the probability of finding

the system in a state with energy E is

P (E) = Z−1e−βEΓ(E) . (i)

Now Γ(E) is related to the entropy by Γ = eS/k, so that

P (E) = Z−1e(TS−E)/kT . (ii)

In order to obtain the explicit dependence on E we have to substitute

for Z the expression (2.5.12) with (2.5.11) and (2.3.13) for S. Note that

it is not correct to use the expression for S(T,H) which we obtained in

Exercise 5.6, as this expression is obtained under the assumption that

E = 〈E〉, whereas here we are interested precisely in arbitrary values of

E which may be different from the average.

Recall the warning at the end of Sec. 5.2.

As the explicit form of P (E) is complicated and not very helpful, we leave

the result in the form of Eq. (ii).

It is worth noting that the probability is maximal not when S is maxi-

mal but when the combination TS−E is. More on this in the coming part.

Solution 6 Exercise on page 181

(a) Suppose that out of the N steps made by the drunk N+ were to the

right and N− to the left. If the length of each step is L, then he will

be located at a distance

xN = (N+ −N−)L ≡ qL . (i)

We also have

N+ +N− = N . (ii)

Note that if N is even, then q must also be even, and if N is odd, so

is q. Hence q changes in steps of 2 between −N and N . From Eqs. (i)

and (ii) we have

N+ =
N + q

2
, N− =

N − q
2

. (iii)
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We are thus interested in the probability of q having a certain

value. This probability is equal to the probability that out of N steps

N+ will be to the right [(1/2)N+ ] times the probability for there to

be N− steps to the left [(1/2)N− ] times the number of possibilities of

distributing N steps into two groups N !/(N+!N−!). Making use of

Eq. (iii), we find

P (q) =

(
1

2

)N N !

N+!N−!
=

N !

2N
(
N+q
2

)
!
(
N−q
2

)
!
, (iv)

and this is the probability for the drunk to be located at a distance

x = qL from the initial point. Note that P (q) is different from zero

only if q is an integer of the same parity as N .

(b) We use Stirling’s formula, in the form

lnn! � n lnn− n+
1

2
ln(2πn) . (v)

We write lnP using (v), without neglecting the last term:

lnP = lnN !− lnN+!− lnN−!−N ln 2

�
[
N lnN −N +

1

2
ln(2πN)

]
−
[
N+ lnN+ −N+ +

1

2
ln(2πN+)

]

−
[
N− lnN− −N− +

1

2
ln(2πN−)

]
−N ln 2

=

(
N +

1

2

)
lnN −

(
N+ +

1

2

)
lnN+ −

(
N− +

1

2

)
lnN−

−N ln 2− 1

2
ln 2π , (vi)

where the fact that N++N− = N led to the cancellation of the terms

linear in N , N+ and N−. One term 1
2 ln 2π was canceled as well. Now,

we use the fact that we are interested in the behavior of P (q) near

q = 0, which is the average of q. In this case Eq. (iii) implies that N+

and N− are very close to 1
2N . We thus write

lnN± = lnN − ln 2 + ln

(
1± q

N

)
. (vii)

Taking only the first two terms in the expansion of the logarithm, we

obtain

lnN± � lnN − ln 2± q

N
− 1

2

(
q

N

)2
. (viii)
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ln(1 + x) = x− x2

2 + x3

3 − . . .

We now substitute everything into (vi) and obtain

lnP �
(
N +

1

2

)
lnN −

(
N+ +

1

2

)(
lnN − ln 2 +

q

N
− q2

2N2

)

−
(
N− +

1

2

)(
lnN − ln 2− q

N
− q2

2N2

)

− N ln 2− 1

2
ln 2π . (ix)

Note that of all the terms proportional to lnN only −1
2 lnN is left,

and, after neglecting 1/2N2 with respect to 1/N , of all the terms that

include q the only ones left are

(N− −N+)q

N
+

(N+ +N− + 1)q2

2N2
=

(
− 1

2N
+

1

2N2

)
q2 � − q2

2N
.

And of all the terms that contain ln 2, only ln 2 is left. Thus we obtain

lnP � − q2

2N
− 1

2
lnN + ln 2− 1

2
ln 2π = ln

2√
2πN

− q2

2N
. (x)

We have therefore obtained a Gaussian distribution:

P (q) =
2√
2πN

e−q
2/2N . (xi)

The distribution function of x is obtained by substituting q = x/L

and by further dividing (xi) by 2 due to the fact that q changes by

steps of 2, so that ∆x = 2L∆q. From here

f(x) =
1√

2πNL2
exp

(
− x2

2NL2

)
. (xii)

(c) Since 〈x〉 = 0,

(∆x)2 = 〈x2〉 .
We have already calculated such integrals many times along this

course, and the result is always one over twice the coefficient of the

square of the random variable. Hence

∆x =
√
NL2 = L

√
N

and the relative width is

∆x

NL
=

1√
N
.
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Introduction

In Part II we saw that the canonical ensemble emerges naturally from the ensem-

ble that characterizes an isolated system (the microcanonical ensemble). There it

was demonstrated in the special case of a simple system  the paramagnet, but

the argument can be generalized in a natural way to any system. The canonical

description is the most useful one, as in most practical cases it is possible to control

the temperature and not the energy of the system. Indeed we will use the canonical

ensemble, as a starting point in the analysis of most systems we shall consider.

In this part we will employ the canonical ensemble to investigate the properties

of several simple systems. Instead of deducing from the properties of the 

canonical ensemble the validity of the description based on the canonical ensemble,

we shall accept it as a commandment. As a compensation we will dedicate the

first chapter of this part to considerations that will make the transition smoother.

First, we will show that the assumption of a canonical ensemble fits well the laws

of thermodynamics. We will then deal with a collection of quantum oscillators, in

which each degree of freedom has an infinite number of states that are discrete. This

is a generalization of the paramagnet in which each degree of freedom has a finite

number of states.

Next, we go on to discuss gases. As opposed to the paramagnet and the quan-

tum oscillator, the degrees of freedom here, the coordinates and momenta of the

molecules, are continuous variables. Several generalizations of the methods de-

scribed in the preceding part are needed, in order to obtain the familiar results of

dilute gases. Here as well we will check the correspondence with known results. We

will show that the kinetic theory derives from statistical mechanics. We will deduce

the ideal gas law as well as Dalton’s law, and verify the consistency of our results,

which will not be an easy matter, as we will find out. Finally, we will deal with

fluctuations of thermodynamic quantities and the conditions under which they can

be neglected, i.e. the question of the width of the distribution of thermodynamic

quantities in the canonical ensemble.
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Chapter 1

The Canonical Ensemble and

Thermodynamics

1.1 The partition function and the internal energy

No harm will be done if we repeat once more the rule that an uncompro-
mising test which every description of statistical mechanics must pass is
its conformity with the laws of thermodynamics. The status of the latter
is much stronger than that of the dynamical models or of the methods we
formulate to calculate averages.

In the canonical description, the system is described by its microscopic
states, which we denote by the index i. The innocent index i may be a
state of a paramagnet (one of the 2N values taken by the spins, denoted
as {σ} in Part II), or the collection of coordinates and momenta of all
gas molecules. Each state i is assigned an energy Ei. The energy can be
given by an expression like (2.2.9) for a paramagnet, or by the sum of
kinetic and potential energies of all of the molecules in the gas, having
coordinates and momenta that characterize the state i.

The classical physicist needs all the coordinates and momenta in order to characterize a
state (see Chaps. 3 and 4 ahead). The quantum physicist will remark that if coordinates
as well as momenta are needed, then a compromise will have to be made in the precision
with which they are specified.

“Canonical” means that:

(a) In the ensemble all states with the same number of particles and the
same volume are allowed.

(b) The relative probability for a state i to appear in the ensem-
ble is

e−βEi ,

where β = 1/kT .

226



1.1 Partition function and internal energy 227

In other words, the ratio of the probabilities for the appearance of
two states i and j is

P (i)

P (j)
= e−β(Ei−Ej) . (3.1.1)

We are treating i as if it were a discrete index, in order not to complicate the discussion.
In a gas, for instance, this is not the case. However, the required generalizations are
very simple, and will appear in the following chapters.

In Chap. 5 of Part II we mentioned that the partition function has an
especially important role. We define it anew for a gas of particles: partition

function
Z(T, V,N) =

∑
i

e−βEi . (3.1.2)

On the left hand side we have emphasized the fact that the sum over
states is a function of the temperature, the volume and the number of
particles, since these are held fixed. The appearance of these variables
and not others hints at a possible relation between Z and the Helmholtz
free energy F . See e.g. Sec. 0.3, Part II. But why rush?

The volume is a natural variable when one is considering a gas or moving particles
(liquid or solid). In the discussion of the paramagnet in Part II, the spins are fixed in
their positions and are insensitive to the volume. The partition function there depends
on T , H and N , which are held constant when summing over all the states of the
system.

Exercise 1.1

Explain where is the dependence on V and N on the right hand side of
(3.1.2).

Solution on page 292

The definition (3.1.2) holds for every system. Thus, we can express
the average energy of the system in terms of its partition function using
an expression identical to (2.5.7). That expression was obtained indeed in
the special case of the paramagnet. But the same argument can be used
again, since the transition from (2.5.6) to (2.5.7) did not depend on any
particular feature of the system.

Exercise 1.2

Prove that (3.1.2) implies that

〈E〉 = −∂ lnZ
∂β

= kT 2 ∂ lnZ

∂T
. (3.1.3)

Solution on page 292
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We identify 〈E〉 with the internal energy which in the thermodynamic
context is denoted by the letter E or sometimes, in other texts, U (see
also the remark at the end of Sec. 5.2 of Part II). 〈E〉 is of course a state
function, in the thermodynamic sense, since if the volume, the number of
particles and the temperature are given then 〈E〉 is determined.

Now, we continue to obtain the rest of the thermodynamic quantities
using equations like (3.1.3). Once we have obtained these quantities, we
will have the connection between the microscopic laws of the system and
its thermodynamic properties; we will have reached an understanding of
the statistical origin of the laws of thermodynamics.

1.2 Thermodynamic work

Since we have already found out how to express the internal energy in
terms of the partition function, the next step is to obtain an expression
for the thermodynamic work in terms of the partition function, and to
find the correspondence with the first law of thermodynamics. Then we
go on to identify the entropy and the Helmholtz free energy.

In order to identify the thermodynamic work, we first note that the
work performed by a system is related to the variation of external param-
eters. In a gas, for instance, the work is related to the volume. The work
can be related to a change in the position of the system, if it is located
in an external force field. In the example of the paramagnet in Part II:
if the external field H varies from one spatial position to another, then a
change in the system’s position is accompanied by a change of magnitude
dH in the field, and will therefore involve performing work according to
Eq. (2.1.6). The problem before us, therefore, is to identify and to for-
mulate the relationship between the variation of the external parameters
and the work performed by the system.

Suppose that we have identified such an external parameter that
will, in most cases, depend on an external body, which affects the en-
ergies of the system’s states (for example: the walls of a container, the
source of a magnetic or a gravitational field, etc.). We denote it as X.
The work that the system performs will therefore be performed on this
body.

In the general case the partition function will depend on the variables T,X,N and
the right hand side of Eq. (3.1.2) will be Z(T,X,N).

The energy of each microscopic state depends, therefore, onX; namely,

Ei = Ei(X) . (3.1.4)
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This work is related to the existence of a “force”:

Fi = −∂Ei

∂X
. (3.1.5)

The “force” in Eq. (3.1.5) is a force in a generalized thermodynamic sense and may
also be pressure or magnetization.

It is important to make sure that the meaning of Eq. (3.1.5) is indeed
clear: the system + the external body “tends,” as usual, to reduce the
energy. Suppose that the system is in a state i. If the increase in X

involves a decrease in its energy, the system will tend to realize this change,
i.e. it will apply a “force” Fi on the external body directed along X. Fi
will then be positive, and ∂Ei/∂X negative. A similar argument can be
performed in the case where Ei is an increasing function of X. The body
will “want” to move in the direction of −X in order to decrease the energy.
That is, a negative “force” will act upon it.

Now, if the force is given by (3.1.5), then the work done by the system
in a state i on the external body, when the external coordinate changes
from X to X + dX, is obtained by the product of the force and dX or,
from a different point of view, from the change in its energy:

δWi = FidX = −∂Ei(X)

∂X
dX . (3.1.6)

The thermodynamic work performed by the macroscopic system will be,
like every thermodynamic quantity, an average of δWi over the canonical
ensemble

δW = Z−1
∑
i

(δWi)e
−βEi . (3.1.7)

Substituting (3.1.6) in (3.1.7), using the chain rule for the derivatives and
carrying out the summation, we obtain

δW =
1

β

∂ lnZ

∂X
dX . (3.1.8)

Equation (3.1.8) tells us, therefore, that once we have obtained the parti-
tion function it is possible to calculate from it the thermodynamic work
accompanying every change of the external parameter, by multiplying the
change dX by the thermodynamic “force” β−1∂ lnZ/∂X. It is important
to note that (3.1.8) expresses the work performed by the system in a quasi-
static process: we required that the infinitesimal process of varying X be
performed, while the system has a definite temperature and the change
dX induces a continuous change in the microscopic states. Only then are
we allowed to use the probabilities of the canonical ensemble in order to
calculate δW as in Eq. (3.1.7).
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Exercise 1.3

Prove (3.1.8).

Solution on page 293

Note that Eq. (3.1.8) does not imply that

δW = − ∂E

∂X
dX .

Before we proceed, we exemplify the arguments made in the two cases
we have already met: the paramagnet and the ideal gas.

Paramagnet

In this case the energy of a microscopic state i of N spins is given by

Ei = −µBH · (σ1 + σ2 + . . .+ σN ) . (3.1.9)

Here i denotes the microscopic states that were denoted in Part II by (σ1, σ2, . . . , σN).

The “force” is

∂Ei

∂H
= −µB · (σ1 + σ2 + . . .+ σN ) (3.1.10)

and this is actually the magnetization in state i, Mi.
Thus, the work performed by the system in state i, when the magnetic

field changes from H to H + dH, will be

δWi = −∂Ei

∂H
dH (3.1.11)

and the thermodynamic work is obtained by averaging:

δW = −Z−1∑
i

∂Ei

∂H
e−βEidH . (3.1.12)

This sum is nothing but − 1
β
∂Z
∂H , so that

δW =
1

β

1

Z

∂Z

∂H
dH =

1

β

∂ lnZ

∂H
dH , (3.1.13)

and of course this is the result we wanted. In order to identify the meaning
of β−1∂ lnZ/∂H we turn to Part II, to find that this is precisely the
magnetization [see Eq. (2.5.8)]. Hence we can write

δW =MdH , (3.1.14)



1.2 Thermodynamic work 231

which is the result (2.1.6), obtained using similar arguments in the previ-
ous part.

Actually, we could have obtained this result by averaging (3.1.10) using
the canonical probabilities Pi:〈

∂E

∂H

〉
=
∑
i

∂Ei

∂H
Pi = −µB

∑
{σ}

(σ1 + . . .+ σN )P (σ1, . . . , σN ) .

An ideal gas in a container

In spite of its apparent simplicity, this case requires special attention. The
reason for this is that the role of the external parameter X is played by
the volume whereas the energy of a molecule in the container apparently
depends only upon its speed, since ε = 1

2mv
2. Now, if Ei is independent

of V , then δWi vanishes [see (3.1.6)], so clearly the thermodynamic aver-
age δW also vanishes. This leads to the paradoxical conclusion that the
volume change of an ideal gas does not require any work.

In order to avoid this trap, we note that the energy of a molecule
in the container has an additional term responsible for the confinement
of the molecule to the container. This addition may be thought of as
a potential that vanishes inside the container and increases sharply to
infinity on the sides of the container (see e.g. Fig. 3.4.1 in Sec. 4.4 below).
But although it is possible to continue from here in the usual manner,
it is more convenient to calculate the thermodynamic work directly with
the help of momentum conservation arguments. We, therefore, inquire
into the relationship between the volume change of a gas in a container
and the resulting work, and convince ourselves that β−1∂ lnZ/∂V is in
fact the pressure. We do this by considering a piston that can move
along x, as depicted in Fig. 3.1.1, and assume, for the sake of simplicity,
that the system is one dimensional, so that all the velocities are directed
along x.

➤

➤➤

➤

m
v

∆x

x axis

Fig. 3.1.1 A gas molecule transferring momentum to a piston.

We start by considering a single particle, of velocity v. The microscopic
state of the particle will be characterized by the position of the particle
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and by its velocity. Clearly, if the particle hits the piston it will recoil and
change its velocity, and momentum will be transferred to the piston as
well as energy. This momentum and energy transfer will be calculated in
the following way (compare with the calculation of the pressure in Part I
and note the differences): the piston’s position changes by ∆x = u∆t (see
Fig. 3.1.1), where u is its speed during that interval. If the particle’s recoil
is elastic, the momentum it transfers to the piston is

∆p = 2m(v − u) . (3.1.15)

Exercise 1.4

Prove that a particle that collides with a moving piston transfers momen-
tum to it according to (3.1.15), and recoils from it with velocity −v+2u.

Solution on page 293

Since the velocity of the recoiled particle is reduced owing to the col-
lision, it loses energy of order

−∆ε = m

2
v2 − m

2
(2u− v)2 = 2mu(v − u) , (3.1.16)

and assuming that the piston’s velocity is not too high (namely u	 v),

∆ε � −2muv . (3.1.17)

Observe that when the piston is motionless ε does not change.

We now want to calculate the total energy loss of the gas as the piston
advances by ∆x during time ∆t. The energy loss contributed by the
molecules of velocity v is obtained, of course, by multiplying ∆ε by the
number of molecules whose distance from the piston is at most v∆t (here
as well we assume that u 	 v). If n(v) is the number of molecules of
velocity v per unit volume (see Chap. 1 of Part I), then the energy lost
by them is

(∆E)v = −(2muv)[n(v)Av∆t] = −2mv2n(v)A∆x . (3.1.18)

The contribution of all the molecules (and not only of molecules with
velocity v) to the energy loss is obtained by summing over (3.1.18):

∆E = −2m∑ v2n(v)A∆x , (3.1.19)

where the sum is carried out over all velocities whose direction is to-
wards the piston, namely over all v > 0. We should stress here the
principal difference between the discussion here and the discussion of
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the pressure in Part I. Here n(v) is not the Maxwell–Boltzmann distribu-
tion but a distribution that characterizes a specific microscopic state, i.
It is therefore proper to add an index i to n(v) and ∆E.

If in addition we note that A∆x = ∆V , we obtain

∂Ei

∂V
= −2m∑ v2ni(v) . (3.1.20)

The expression on the right is nothing but the pressure of the gas [see
Eqs. (1.1.2) and (1.1.3)] in the microscopic state i, so that

∂Ei

∂V
= −Pi . (3.1.21)

In this way we have overcome the main difficulty and found that the vol-
ume independence of the energy in the microscopic state i is only apparent,
and that actually the fact that the molecules of the gas are confined to
move inside a container of volume V gives rise to a volume dependence,
as expressed by Eq. (3.1.21). Since the energy of each microscopic state
depends on the volume, clearly the partition function must also depend
on it.

From here the continuation is clear and is carried on precisely as in
the previous case:

δW = −Z−1∑ ∂Ei

∂V
e−βEidV =

1

β
· ∂ lnZ
∂V

dV . (3.1.22)

To identify the meaning of β−1∂ lnZ/∂V we note that the middle expres-
sion in (3.1.22) may be written, using (3.1.21), in the form

Z−1
∑

Pie
−βEi .

Since Z−1e−βEi are the canonical probabilities, this expression is the av-
erage pressure, P . Hence we obtain, as for the relation between the mag-
netization and the partition function, a relation between the the pressure
and the partition function:

P =
1

β

∂ lnZ

∂V
. (3.1.23)

1.3 Entropy, free energy, the first and second laws

In the previous section we found that the thermodynamic work performed
by a system is related to the change of the internal energy in individual
microscopic states. The average change of internal energy resulting from a
change in an external macroscopic parameter is the thermodynamic work.
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This is, of course, the thermodynamic generalization of the energy conser-
vation law from mechanics. However, in addition to the average change
of the internal energy, which we may denote by 〈dE〉, we may consider
another quantity, the change of the average internal energy, which we de-
note by d〈E〉 or dE. Even though 〈dE〉+δW = 0 by definition, in general
dE + δW �= 0, as in thermodynamics. A mathematical justification for
the inequality sign is the fact that the canonical probabilities depend, via
the energies, on the macroscopic external parameter X, whose variation
characterizes the process (see Exercise 1.3 and the remark that follows),
and thus 〈dE〉 �= d〈E〉. We identify the sum dE + δW with the heat
transferred to the system in a quasistatic process, δQ, and obtain the first
law of thermodynamics [Eq. (2.0.1)]:

dE + δW = δQ . (3.1.24a)

The next step is to obtain the entropy in terms of the partition function.
To this end we have to verify that it is indeed possible to write δQ of
Eq. (3.1.24a) in the form that is required by the second law of thermody-
namics:

δQ = TdS . (3.1.24b)

First, we shall find that as a result of a change of the external parameter
by dX and a change in temperature expressed by dβ, in a quasistatic
process,

dE + δW =

(
1

β

∂ lnZ

∂X
− ∂2 lnZ

∂β∂X

)
dX − ∂2 lnZ

∂β2
dβ . (3.1.25)

Exercise 1.5

(a) Prove Eq. (3.1.25).
(b) Show that the right hand side of Eq. (3.1.25) cannot be an exact

differential of a state function.

Solution on page 294

Now, given (3.1.24), we ask: Is it possible to convert the right hand
side of (3.1.25) into an exact differential by multiplying by β? And indeed

β(dE+δW ) =

(
∂ lnZ

∂X
− β∂

2 lnZ

∂β∂X

)
dX−β∂

2 lnZ

∂β2
dβ = k−1dS , (3.1.26)
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where

k−1S = lnZ − β∂ lnZ
∂β

(3.1.27)

(k is the Boltzmann constant).

Exercise 1.6

Show that the right hand side of (3.1.26) is an exact differential, and
prove (3.1.27).

Solution on page 295

We have thus identified the entropy, and obtained its relation with the
canonical partition function, Z(T,X,N). Lastly, we obtain the Helmholtz Helmholtz

free energyfree energy F (T,X,N), defined in thermodynamics (see Part II, Sec. 0.3)
by

F = E − TS . (3.1.28)

To this end we note that the second term on the right hand side of
Eq. (3.1.27) is none other than βE [see Eq. (3.1.3)]. Hence,

S = k lnZ +
E

T
. (3.1.29)

Comparing (3.1.29) with (3.1.28), we obtain

F = −kT lnZ = −β−1 lnZ . (3.1.30)

Exercise 1.7

As is known from thermodynamics, the entropy is obtained from the free
energy by [see Eq. (2.0.27)]

S = −
(
∂F

∂T

)
X,N

.

Start from the expression (3.1.30) for F , and verify Eq. (3.1.27).

Solution on page 296

We have seen here one of the convincing successes of statistical me-
chanics (according to Gibbs): statistical mechanics created a link between
the conservation of energy in the microscopic theory and the first law of
thermodynamics. It was then found that the average values of the in-
ternal energy, the work and the heat, defined naturally within statistical
mechanics and averaged, satisfy the second law of thermodynamics. In
this manner we have obtained the internal energy, the work, the heat and
the entropy, and finally the free energy in terms of the canonical partition
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function. We know from thermodynamics that given F , a complete de-
scription of the macroscopic properties of the system is possible. Since it
is possible to calculate F from Z [Eq. (3.1.30)], the calculation of Z in the
canonical ensemble provides us with all of the thermodynamic information
on the system.

1.4 The paramagnet — revisited

To end this chapter we implement the results we obtained in the simple
case of the paramagnet.

In Chap. 5 of Part II, we saw that the canonical partition function
of the paramagnet of spin 1/2, can be written as (2.5.11) and (2.5.12),
namely

Z(T,H,N) =

[
2 cosh

(
µBH

kT

)]N
, (3.1.31)

where N is the number of spins in the system.
The Helmholtz free energy is, therefore,

F (T,H,N) = −kT lnZ = −NkT ln

(
2 cosh

µBH

kT

)
(3.1.32)

and the entropy

S = −
(
∂F

∂T

)
H,N

= Nk

[
ln

(
2 cosh

µBH

kT

)
− µBH

kT
tanh

µBH

kT

]
.

(3.1.33)

Exercise 1.8

Show that from F and S it is possible to obtain E in Eq. (2.5.13), with
the help of thermodynamic relationships.

Solution on page 296

Exercise 1.9

Show that from S it is possible to obtain the expression for the specific
heat, at a constant field H, given in (2.5.18).

Solution on page 296

Exercise 1.10

Is it possible to obtain from F the entropy as a function of the energy,
the field and the number of spins? That is, is it possible to pass from
F (T,H,N) to S(E,H,N) as given by Eq. (2.3.13)?

Solution on page 297
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Exercise 1.11

If the energy of the microscopic states changes by the addition of a con-
stant which is independent of the state

Ei → Ei + C ,

how do the partition function, the average energy, the free energy and the
magnetization change?

Solution on page 298

1.5 On the statistical meaning of the free energy

In an isolated system in which the energy is constant, a state of ther-
modynamic equilibrium is attained when the entropy is maximal. You
have seen an example of this in Part II, Chap. 4, where we discussed two
systems a and b (of spins, for example) which are isolated from the rest
of the universe but which interact thermally with each other. In this case
the entropy of each of the systems is a function of the magnetic field, the
number of spins and the energy of each system where the fact that the
systems are isolated is expressed by the constancy of Ea +Eb. Neverthe-
less, the energy of each system is free to change. Equilibrium between
the two systems is attained at the most probable macroscopic state of the
composite system, where the total entropy attains its maximum. If we
choose the energy Ea as a variable that characterizes the partition of the
total energy between the two systems, the condition for equilibrium is

∂

∂Ea
[S(Ea,Ha,Na) + S(E −Ea,Hb,Nb)] = 0 . (3.1.34)

Actually this line of argument is completely general, and may be ap-
plied to any system, provided the entropy is expressed in terms of the
appropriate variables (volume instead of magnetic field, pressure instead
of magnetization, etc.).

Now we ask, what happens in a nonisolated system which instead has
a given temperature, namely that is free to exchange energy with a heat
bath. What is the quantity that attains its maximum at the most probable
state?

Clearly the entropy (or the number of states Γ) is related to the answer,
since the larger the entropy, the larger the probability of the macroscopic
state. But here there is an additional factor acting in the opposite direc-
tion, which is the Boltzmann factor, e−βE. This factor expresses the fact
that lower energy states have higher probability.
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Hence the probability for the system to be in a macroscopic state of
energy E is

P (E) = Z−1e−βEΓ(E) . (3.1.35)

Now, we can write Γ = eS/k, and from here it is immediately clear that
the most probable state is the one in which the sum S − E/T is max-
imal. We have seen therefore that a system that is held at a constant
temperature finds its way to equilibrium subject to two opposing factors:
the entropy’s tendency to increase and the energy’s tendency to decrease.
The compromise is that equilibrium is determined by the combination
S −E/T .

But this is nothing more than the free energy in disguise:

S − E
T

= −F
T
, (3.1.36)

so that the probability for a system coupled to a heat bath to have energy
E is

P (E) = Z−1e−βF (E) . (3.1.37)

Note that we have suppressed the dependence of F and Z on all other
variables, such as V,N, T .

The most probable state of a system in which all the variables are fixed
except for the energy is therefore the state in which −F (E) is maximal
or F (E) is minimal. In this case, one has

1

T
=
∂S

∂E
, (3.1.38)

which is the relation we use to pass from the microcanonical ensemble to
the canonical one.

Exercise 1.12

Prove (3.1.38).

Solution on page 298

The free energy is therefore the fundamental function of the canonical
ensemble and satisfies

dF = dE − TdS − SdT = −SdT − δW . (3.1.39)

This is the origin of the name “free energy.” In a process that occurs
without the transfer of heat, a system can perform work at the expense of
its internal energy. But if the process takes place at a constant tempera-
ture, it must be accompanied by the transfer of heat, so that the work is
performed at the expense of the free energy: δW = −(dF )T .
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At the temperature of absolute zero the free energy becomes identical
to the internal energy, so that any changes in the free energy are equivalent
to internal energy changes, as expected from a state without any thermal
fluctuations. At higher temperatures, the free energy decreases with T ,
as is easy to see from the relation [obtained from (3.1.39)]

∂F

∂T
= −S , (3.1.40)

since the entropy is always nonnegative.

In order to illustrate the fact that the free energy attains its mini-
mum at equilibrium, we return to the paramagnet which is coupled to a
heat bath at temperature T . The free energy of a configuration of the
paramagnet having energy E is

F (E) = E + kT

{(
N

2
− E

2µBH

)
ln

(
1

2
− E/N

2µBH

)

+

(
N

2
+

E

2µBH

)
ln

(
1

2
+
E/N

2µBH

)}
, (3.1.41)

where we have used Eq. (2.3.13) for S.

F (E) as a function of E and the probability P (E) of a configuration
of energy E are depicted in Fig. 3.1.2, for a system with N = 200. Note
that the minimum of the free energy and the maximum of the probability
are attained at the same energy.

Exercise 1.13

(a) Verify that the energy at which F (E) attains its minimum in Fig. 3.1.2
is in fact consistent with the known energy of a paramagnet obtained,
for example, in Exercise 1.8.

(b) Compare the minimum of F (E) as well against Eq. (3.1.32).
(c) Show that from the requirement that F (E) be minimal at thermody-

namic equilibrium the known expressions for E and F are obtained.

Solution on page 299

Another quantity that should be mentioned here is the chemical poten-
tial. We reached the concept of temperature in a natural manner through chemical

potentialthe requirement that the equilibrium state between two isolated systems,
that are in thermal contact and can exchange energy, be the state in which
the entropy of the composite system is maximal. In this state the quantity
∂S/∂E must be equal in the two systems. We identified this quantity as
1/T .
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F/NkT

E/µBHN

–0.4621–1.00 1.00

–0.8133

P(E)

–0.4621–1.00 1.00

E/µBHN

(a)

(b)

Fig. 3.1.2 (a) The probability of a configuration of energy E, for a paramagnet with
N = 200 where µBH/kT = 0.5. The units of the vertical axis are arbitrary. (b) The
free energy of a configuration of energy E. Note that the minimum free energy is at
the most probable energy.
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We now ask the analogous question concerning the number of particles.
Suppose that both systems contain particles that are free to move (for
instance, gas molecules) and that a partition separates the two systems
but allows the transfer of particles between them. We shall also assume,
for simplicity, that the two systems contain the same type of particles.

The number of states of such a system depends of course on the energy,
the volume and the number of particles, and hence so does the entropy
S(E,V,N). The total entropy of the composite system depends on all
six variables Ea, Va,Na, Eb, Vb,Nb, but only three will be independent, as
the total energy, the total number of particles N and the total volume V
remain constant.

From the requirement of maximum entropy we obtain not only the
condition of equal temperatures (and the condition of equal pressures by
differentiating with respect to Va, for example, if Va varies) but also the
condition that the chemical potentials of the two systems should be equal,
namely µa = µb where µ is defined by [see Eq. (2.0.23)]

µ = −T
(
∂S

∂N

)
E,V

. (3.1.42)

Exercise 1.14

Prove that the chemical potentials are equal at equilibrium between the
systems.

Solution on page 300

We now complicate matters a bit, and assume that both systems are
not isolated from the rest of the universe but are at equilibrium with a
heat bath at temperature T . In this case equilibrium is attained when the
free energy is minimal, and in the same way as for the isolated system we
obtain µa = µb, where [see e.g. Eq. (2.0.27)]

µ =

(
∂F

∂N

)
T,V

. (3.1.43)

In order to better understand the meaning of the chemical potential, let
us also check what happens in a state that is not an equilibrium state. In
such a state the free energy of the system is not minimal, and hence the
system tends to decrease it by redistributing N between a and b. Suppose
that the number of particles in system a changes (increases or decreases)
by dNa. The free energy will change by

dF =

(
∂Fa
∂Na

+
∂Fb
∂Na

)
dNa = (µa − µb)dNa . (3.1.44)

Recall that since the free energy must decrease, dF < 0.
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This means that Na increases (dNa > 0) as long as µa < µb. In
other words, particles will flow from b to a if the chemical potential of
b is larger than that of a. We have therefore found that the chemical
potential determines the direction of particle flow between systems just
as the temperature determines the direction of energy flow: particles will
flow from the higher chemical potential to the lower one.

We demonstrate this property with the help of the ideal gas. In
Chap. 5, Eq. (3.5.9) below, we find that the chemical potential of an
ideal gas is given by

µ = kT ln


( h2

2πmkT

)3/2

n


 = kT ln

[
h3

(2πm)3/2
· P

(kT )5/2

]
, (3.1.45)

where P is the pressure of the gas substituted from the equation of state.
It is clear from this that the chemical potential increases with the density
of the gas or with its pressure, and thus that molecules of the gas will flow
from regions of high density to regions of lower density or from regions of
high pressures to those of low pressures.

Compare the discussion here to the discussion of self-diffusion — Secs. 3.3–3.5 of
Part I.

Finally, we note that the magnitude of the chemical potential is of
no physical significance; only the differences in the chemical potential are
meaningful, as is the case for the energy.



Chapter 2

Harmonic Oscillator and Einstein

Solid

2.1 Microscopic states

In Part II we have treated the paramagnet in a magnetic field in which
each degree of freedom, each spin, had a finite number of energy levels: two
states for spin 1/2, or 2J+1 states for spin J . This kind of quantization is
absent in the classical case, where the degrees of freedom have a continuum
of values. Before treating such a problem, we treat an intermediate case,
in which the degrees of freedom take discrete values, but the number of
different values is infinite. The case we shall treat here has also some
practical applications for the calculation of the specific heat of solids.

For us, the sole importance of the quantum aspect is that the energy
levels of the microscopic states take discrete values. It may be worth
mentioning once more that the fact that in quantum theory the energy
levels are discrete, makes the statistical interpretation of such systems
more natural than their classical counterparts.

The degree of freedom, replacing the spin from Part II, is a harmonic
oscillator. The system we shall discuss is a lattice which has at each of
its sites a harmonic oscillator with angular frequency (or angular veloc-
ity) ω in place of the magnetic moment in Part II. You may think of this
system as a lattice of masses m, each connected at the lattice site to a
spring with spring constant K, so that ω =

√
K/m. The interest in such

a system stems from the fact that in many respects this is a good approx-
imation for a crystal whose atoms are oscillating around their equilibrium
positions. When the oscillations are small their motion is approximately
harmonic.

Before turning to calculate the partition function of the canonical en-
semble, in accordance with the discussion in Chap. 1 of this part, we
must discuss the states of a single oscillator. Because the system we are
thinking of is a lattice of atoms, the oscillators discussed here are quan-
tum oscillators. The quantum discussion of the harmonic oscillator may
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be summarized for our purposes by the fact that the energy levels of the
one-dimensional harmonic oscillator are characterized by a nonnegative
integer n:

εn =

(
n+

1

2

)
h̄ω, n = 0, 1, 2, 3 . . . (3.2.1)

Note that all the values of εn are positive, just as for a classical oscillator,
but this is where the similarity ends. The amplitude A of a classical
harmonic oscillator can take a continuum of values, and hence its energy,
ε = 1

2mω
2A2, takes a continuum of values, starting from the minimal value

ε = 0. The energies of the quantum oscillator are quantized in intervals
of h̄ω, starting from the minimal value, which is not zero but ε = 1

2 h̄ω.

As n increases, the energy of the oscillator increases. It is thus natural
to refer to n as the degree of excitation of the oscillator. n characterizes
the state of the oscillator just as the number σ used for the magnetic
moment in Part II.

Fig. 3.2.1 The energy levels of a harmonic oscillator: Dashed lines — the quantized
levels; full line — energy of classical oscillator vs amplitude A.

The next step is to investigate the microscopic states of a lattice of
N harmonic oscillators as a whole. Since each oscillator is characterized
by a degree of excitation n, the microscopic state of N oscillators will
be characterized by N degrees of excitation (n1, n2, n3, . . . , nN ), similar
to the specification of all the spin values in terms of the N numbers
(σ1, σ2, . . . , σN ) in the paramagnet in Part II. The energy of a microscopic
state in which oscillator 1 has a degree of excitation n1, the second a degree
of excitation n2 and so on, will be the sum of all the oscillator energies:

E(n1, n2, . . . , nN ) = ε(n1) + ε(n2) + · · ·+ ε(nN ) . (3.2.2)
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Fig. 3.2.2 A state of a system of six oscillators: n1 = 1, n2 = 3, n3 = 0, n4 = 4, n5 =
3, n6 = 2.

All this is, of course, based on the assumption that the N oscillators are
unaffected by each other, and that all are vibrating at the same frequency
in an independent manner. Figure 3.2.2 schematically describes a state of
a system with N = 6.

2.2 Partition function for oscillators

We now write the partition function and obtain

Z =
∑

n1,n2,...,nN

e−βE(n1,n2,...,nN ) =
∑

n1,n2,...,nN

e−βε(n1)e−βε(n2) . . . e−βε(nN ) ,

(3.2.3)
and each summation variable varies between 0 and ∞. We can write the
sum of products as a product of sums, in precisely the same way as was
done for Eq. (2.5.9):

Z =


 ∞∑
n1=0

e−βh̄ω(n1+1/2)




 ∞∑

n2=0

e−βh̄ω(n2+1/2)




× · · · ×

 ∞∑
nN=0

e−βh̄ω(nN+1/2)


 . (3.2.4)

Since all the factors in the product on the right hand side of (3.2.4) are
identical, we write the partition function in the form

Z = zN , (3.2.5)

where z may be thought of as a partition function of a single oscillator:

z =
∞∑
n=0

e−βεn =
∞∑
n=0

e−βh̄ω(n+1/2) . (3.2.6)
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Exercise 2.1

In order to demonstrate the equality of (3.2.3) and (3.2.4), let us study
the system of three identical oscillators, each of them having three energy
levels. Verify for this case that (3.2.3) and (3.2.4) are indeed identical.

Solution on page 300

Our problem is therefore reduced to calculating the partition function
of a single oscillator which is nothing more than the summation of a
geometric series:

z = e−βh̄ω/2
∞∑
n=0

e−βh̄ωn =
e−βh̄ω/2

1− e−βh̄ω . (3.2.7)

Reminder: the sum of an infinite geometric series

∞∑
n=0

xn =
1

1− x
, x < 1 .

Now we can use the general formula (3.1.3) to calculate the average
energy of an oscillator. The result is

〈ε〉 = h̄ω

2
+

h̄ω

eh̄ω/kT − 1
. (3.2.8)

Exercise 2.2

Prove (3.2.8).

Solution on page 302

Another interesting question is the average value of n, the degree of
excitation of the oscillators. The answer is

〈n〉 = 1

eh̄ω/kT − 1
, (3.2.9)

which is the celebrated Bose–Einstein distribution. More on this in theBose
Einstein
distribution

parts that follow.

Exercise 2.3

Prove (3.2.9) in two ways:

(a) By a direct calculation of the average.
(b) From (3.2.8).

Solution on page 302
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Fig. 3.2.3 The temperature dependence of the average degree of excitation of a har-
monic oscillator.

Analyzing the temperature dependence of 〈n〉 (Fig. 3.2.3), we find that

〈n〉 ∼


e−h̄ω/kT , kT 	 h̄ω (low temperatures) ,

kT

h̄ω
, kT 
 h̄ω (high temperatures) .

(3.2.10)

Exercise 2.4

Verify that (3.2.9) has the asymptotic behaviors (3.2.10).

Solution on page 303

Namely, at low temperatures 〈n〉 vanishes faster than any power of
T . This means that the oscillator cannot be excited from its ground
state n = 0 since the energy kT supplied by the heat bath is insufficient
to overcome the difference h̄ω to the state n = 1. In contrast, at high
temperatures states may be excited up to a certain value of n, given
approximately by the thermal energy divided by h̄ω. Thus, we may expect
that

〈n〉 ∼ kT

h̄ω
, e−h̄ω/kT kT/h̄ω kT/h̄ω

which is the relation (3.2.10) for high T .

In the professional jargon, instead of saying that the oscillator is excited to degree of
excitation n, we say that there are n “bosons” or “phonons,” each with energy h̄ω. The phonons
calculation of 〈n〉 is described in this language to be the average number of phonons
as a function of T . Equation (3.2.10) states that the phonons disappear as T → 0 and
rapidly grow in number with increasing temperature.
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Exercise 2.5

(a) Calculate the free energy of a harmonic oscillator as well as its entropy,
and sketch their temperature dependence.

(b) If the frequency of the oscillator is 1013 s−1, what is the transition
temperature from low temperature behavior to high temperature be-
havior?

Solution on page 304

The discerning reader will probably have noticed that our discussion
in this section began with a system of N oscillators and drifted after
Eq. (3.2.5) to a discussion of a single oscillator and to the calculation of
its thermal averages, which are, at least at first sight, of doubtful sig-
nificance. To make things clear we note that the single oscillator upon
which our discussion concentrated may be thought of as an oscillator in
thermodynamic equilibrium with a heat bath with which it may exchange
energy. You may, for example, picture for yourself as a concrete exam-
ple a situation in which a single harmonic (quantum) oscillator resides
in a container full of gas at a given temperature. The concepts of sin-
gle particle partition functions and of thermal averages with respect to
such ensembles are to be understood from this point of view. Such a
description is made possible by the absence of interaction between the
oscillators.

2.3 Einstein’s solid

We now describe a model for the vibrations of a solid. If the crystal
is made up of N atoms, the motion of each of them has three indepen-
dent components. The atoms cannot move freely; instead they vibrate
about equilibrium positions, which determine the geometric structure of
the crystal. The possible vibrations of each atom are described by a model
of three harmonic oscillators, so that N atoms are equivalent to 3N har-
monic oscillators.

To make things simple, we choose, as Einstein did, the same frequency
for all the oscillators. This simplifying assumption can and must be im-
proved, as was done by Debye. However, we shall continue with the sim-
plified model for the time being, namely the model of 3N oscillators, all
of which have the same frequency, ω.

If the 3N oscillators do not affect one another, we may describe a
microscopic state of the system by 3N numbers nα (α = 1, . . . , 3N), which
describe the state of excitation of oscillator number α (or the number of
bosons of type α; see Fig. 3.2.2).
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From now on we can use the partition function, obtained in the preced-
ing sections, for calculating the relevant thermodynamic quantities, such
as the average energy, free energy and specific heat. The only change
we will have to make is to change the meaning of N : N , which was the
number of oscillators, will here denote the number of atoms in the crystal,
so that we replace N by 3N .

The partition function of our crystal is

Z = z3N , (3.2.11)

where z is as given by (3.2.7).
Using (3.1.30) we find for the free energy

F = −kT lnZ = −3NkT ln z = 3N

[
h̄ω

2
+ kT ln(1− e−βh̄ω)

]
. (3.2.12)

Of course, we could have obtained this result by multiplying f as cal-
culated in Exercise 2.5, by 3N . In this way we also obtain the average
energy:

〈E〉 = −∂ lnZ
∂β

= −3N ∂ ln z
∂β

= 3N

(
h̄ω

2
+

h̄ω

eβh̄ω − 1

)
. (3.2.13)

We now investigate the behavior of the average energy at high tempera-
tures and at low temperatures:

(a) At high temperatures kT 
 h̄ω, or βh̄ω 	 1, so that

eβh̄ω � 1 + βh̄ω +
1

2
(βh̄ω)2 · · · ,

and expanding the denominator on the right hand side of Eq. (3.2.13)
in powers of βh̄ω we find, as in (3.2.10),

〈E〉 � 3NkT , (3.2.14)

which is the equipartition law of classical kinetic theory (see Secs. 1.3
and 1.6 of Part I): Each degree of freedom of a harmonic oscillator has
a kinetic energy term 1

2mv
2, and a potential energy term 1

2Kx
2. As

we will find in Sec. 4.3, each of these terms contributes 1
2kT . Hence

3N oscillators have an average energy of 3NkT .
It is important to note also that the result (3.2.14) does not involve

Planck’s constant, h̄. Thus, its origin cannot be quantum-mechanical.
A different way of understanding this result is to interpret it as

the limit h̄ → 0 of the quantum energy Eq. (3.2.13), at constant
temperature. If h̄ → 0, the separation between successive energy
levels vanishes and the classical continuum returns. Since only the
ratio h̄ω/kT determines the behavior (3.2.14), the limit of large T is
equivalent to the limit of small h̄.
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(b) At low temperatures kT 	 h̄ω, or βh̄ω 
 1. In this case

eβh̄ω 
 1 ,

so that
1

eβh̄ω − 1
� e−βh̄ω .

and the average energy is

〈E〉 � 3Nh̄ω

(
e−h̄ω/kT +

1

2

)
. (3.2.15)

This means that at low temperatures the average energy tends very
rapidly to the minimal value, 3N h̄ω

2 , allowed by quantum theory. The
excited states are “frozen.”

From (3.2.13), with N taken as Avogadro’s number, it is possible
to calculate the molar specific heat:

C =
∂〈E〉
∂T

=
3R(h̄ω)2

(kT )2
eh̄ω/kT

(eh̄ω/kT − 1)2
, (3.2.16)

where R is the gas constant.

Exercise 2.6

(a) Deduce (3.2.16) from (3.2.13).
(b) Deduce (3.2.16) from the entropy.

Solution on page 305

We can obtain the behavior of the specific heat at high temperatures
and at low temperatures by checking the two limits of (3.2.16) or (simpler)
from Eqs. (3.2.14) and (3.2.15), respectively. Thus, at high temperatures

C � 3R , (3.2.17)

and at low temperatures

C � 3R

(
h̄ω

kT

)2
e−h̄ω/kT . (3.2.18)

The result (3.2.17) is the Dulong–Petit law. Dulong and Petit found (inDulong
Petit law 1819) that many solids have a constant molar specific heat of 3R. The

fact, found later, that as the temperature decreases so does the specific
heat, caused grave difficulties for classical physics. This phenomenon was
also found at intermediate temperatures, but only in hard crystals. These
are different manifestations of the “heat capacity problem” which we have
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already met in Part I (Sec. 1.3) on the molecular level. Einstein’s model, as
presented here, explains the decrease of the specific heat with decreasing
temperature — Eq. (3.2.16). The decrease with stiffness is also explained,
since the frequency ω of a stiffer crystal will be higher. But high and
low temperatures are determined, as we have seen, by the ratio of kT
and h̄ω, so that if h̄ω is large, the crystal reaches the behavior that is
characteristic of low temperatures in a temperature range in which a softer
crystal behaves classically.

Exercise 2.7

(a) If the oscillators have angular frequency ω = 107 s−1, how much heat
must be supplied to a mole of crystal in order to raise its temperature
by 10−2 degrees in the vicinity of 1 K, and in the vicinity of 100 K?

A crystal with such a frequency is extremely soft and unrealistic. The crystal
appearing in (b) has a realistic frequency.

(b) Repeat (a), with ω = 1012 s−1.

Solution on page 306

The characteristic temperature for each material is the Einstein tem-
perature, ΘE = h̄ω

k , which we can use to rewrite Eq. (3.2.16) in the form Einstein
temperature

C = 3R

(
ΘE

T

)2 exp(ΘE/T )

[exp(ΘE/T )− 1]2
. (3.2.19)

For lead ΘE � 90 K, whereas for diamond ΘE � 2000 K. Hence at room
temperature the specific heat of lead will behave classically, according to
the equipartition law, or the Dulong–Petit law. The diamond will behave
in a very different manner; its specific heat will be much smaller than the
classical value.

Both cases can be identified in Fig. 3.2.4, which depicts the specific
heat as a function of T/ΘE. For lead at room temperature T/ΘE � 3 and
C/R � 3. In contrast, for diamond at the same temperature T/ΘE � 0.15,
and the specific heat is small.

A study of Fig. 3.2.4 reveals that Einstein’s theory indeed gives a
qualitative description of the temperature variation of the specific heat
and constitutes an interpolation between the classical, high temperature,
value (3R per mole) and zero, as the temperature tends to zero. However,
the quantitative correspondence with the experimental results is not very
good. The reason for this is the unrealistic assumption that all the oscil-
lators have the same frequency. Debye constructed a theory that accounts
correctly for the vibrations of the crystal, taking into account the fact that
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the motion of one atom will, necessarily, affect its neighbors. Thus the vi-
brations which must be taken into account are the collective vibrations of
many atoms, vibrational modes, having many different frequencies. When
the frequency distribution is used to modify Einstein’s theory, the result
is in very good quantitative agreement with experiment, as may be seen
in Fig. 3.2.4. More on the Debye model in the next part.

Debye theory
Einstein theory

Experiment

➤

➤
0 0.5 1.0 1.5 T/ΘE

C
V
/ R

0

1

2

3
Dulong-Petit law

Fig. 3.2.4 The specific heat vs temperature — theory and experimental results. Al-
though Einstein’s theory describes the qualitative behavior well, quantitatively it is the
Debye theory that is accurate.

Finally, we note here that what interested Einstein was not a full
quantitative theory of crystals, but the sensational fact that the exten-
sion of Planck’s assumption concerning the quantization of the modes of
electromagnetic radiation to the vibrations of matter suffices to solve, in
principle, the nagging problem of the decrease of the specific heat of solids
with decreasing temperature.



Chapter 3

Statistical Mechanics of Classical

Systems

3.1 Statistical mechanics of a single particle

So far we have treated quantum systems whose states may be enumerated,

so that it was easy to assign them probabilities. When dealing with clas-

sical systems (surprisingly!) an extension of these concepts is required,

but the extension does not require more than the probability densities

introduced in the kinetic theory (Part I, Chap. 1).

We open with the following question: What is required in order to

characterize the state of a particle?

The particle itself is defined by a mass (possibly also an electric charge,

nuclear charge, etc.), and might be confined to a box. But it can be any-

where inside the box. We therefore need, at least, to know the particle’s

position in order to characterize its state.

At every point inside the box there may be forces acting (forces of

gravity, electric forces, etc.). The particle’s motion will be determined by

Newton’s laws, Maxwell’s laws, etc. But even given the particle’s position

and the forces acting upon it, its velocity remains undetermined. We

know from mechanics that the particle’s initial position and initial velocity

must be given in order to determine its motion under the influence of the

given forces. Thus, as part of the characterization of the state of the

particle, its velocity must be given. It turns out that the discussion is

more symmetrical if instead of the velocity the momentum is used. In

the cases we shall treat, this change amounts merely to multiplication by

the mass. However, in more complicated cases involving, for example,

magnetic forces that depend on the velocity, the relation is less simple.

Anyway, the position and momentum at a given instant characterize the

particle’s state. The acceleration, for instance, is determined by Newton’s

laws: It does not add independent information.

253
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Given the particle’s position and velocity, it is possible to calculate its

energy, which is

E =
1

2
mv2 + U(r) =

p2

2m
+ U(r) , (3.3.1)

i.e. the sum of the kinetic energy mv2/2, or p2/2m, and the potential

energy U(r) which depends on the position of the particle.

Thus, apparently, we can speak of the canonical ensemble of a single

particle in a region with a potential U , i.e. of a particle at equilibrium with

a heat bath and under the influence of a potential U . The probability of

finding the particle in a state (r,p) (namely at point r with momentum

p) would be proportional to the Boltzmann factor:

exp

{
−β
[
p2

2m
+ U(r)

]}
. (3.3.2)

But how do we sum over states?

The answer is that since r and p are continuous variables, we are to

discuss the probability density and not the probability. That is, we must

say that the probability for the particle to be found in a small volume dV

around r, and for its momentum to be found in a small volume dτ around

p, is proportional to

exp

{
−β
[
p2

2m
+ U(r)

]}
dV dτ . (3.3.3)

In Part I dτ denoted the volume element in velocity space. Here it denotes the volume
element in momentum space.

Hence, instead of summing over states we shall have to integrate over

all the values of position and momentum that are allowed by the conditions

of the problem.

The picture is, therefore, that we have a six-dimensional space (this

space is called phase space): three dimensions for position and three forphase space

momentum. This space is divided into small cells of size dV dτ , which

is a six-dimensional volume element. The probability for the particle to

be in one of the cells is proportional to the volume of the cell and to the

Boltzmann factor, corresponding to the total energy of the particle in that

cell.

It is simpler, of course, to illustrate the phase space when its dimen-

sionality is less than 6. If the particle moves in one dimension, it is

described by one coordinate x, and one velocity v, and therefore one mo-

mentum p. The phase space of such a particle will be two-dimensional.

This space is depicted in Fig. 3.3.1.
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dx=dV
➤

➤
E/mg

2mE

dp=dτ

p

x

dVdτ

cell

constant

energy surface

Fig. 3.3.1 The phase space of a particle whose motion in a gravitational field is confined
to one dimension.

If the particle has mass m, and is attracted by a gravitational field

along −x with acceleration g, then its energy is

E =
p2

2m
+mgx . (3.3.4)

The parabola in the figure describes a surface of constant energy.

Exercise 3.1

The energy of a classical harmonic oscillator is given by

E =
p2

2m
+

1

2
Kx2 , (3.3.5)

where the time dependence of x is

x = x0 cosωt , (3.3.6)

with ω =
√

K
m .

Sketch the phase space, and describe in it the trajectory of a particle

that moves according to (3.3.6).

Solution on page 307

The calculation of the averages will be performed as in Part I. That is,

if A(r,p) is some function of the particle’s position and momentum (an

observable of its state), then

〈A〉 = 1

zc

∫
A(r,p) exp

{
−β
[
p2

2m
+ U(r)

]}
dV dτ , (3.3.7)
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where the normalization constant may be thought of as a partition func-

tion of a single particle:

zc =

∫
exp

{
−β
[
p2

2m
+ U(r)

]}
dV dτ . (3.3.8)

Examples

(a) The average kinetic energy of the particle: equipartition. In this case

A(r,p) = p2

2m ,

〈
p2

2m

〉
=

∫ p2
2me

−βp2/2md3p
∫
e−βU(r)d3r∫

e−βp2/2md3p
∫
e−βU(r)d3r

= − ∂

∂β
ln

[∫
e−βp

2/2md3p

]
=

3

2
kT . (3.3.9)

What has happened here? First, we have noticed that for our specific

choice of A, both integrals, in the numerator and in the denominator,

can be decomposed as a product — one integral over the position

and another over the momentum. We wrote dV = d3r, dτ = d3p,

and noted that the integral over the position cancels out. Using the

methods we developed in Sec. 1.6, we immediately obtain the result

(3.3.9) — the equipartition law for the kinetic energy, namely 1
2kT

per momentum component.

Exercise 3.2

Calculate 〈p2x/2m〉. How is this result connected with equipartition?

Solution on page 308

(b) The average potential energy A(r,p) = U(r). We find that

〈U(r)〉 =
∫
U(r)e−βU(r)d3r∫
e−βU(r)d3r

. (3.3.10)

Note that this time the integral over the momentum cancels out and

we obtain

〈U(r)〉 = − ∂

∂β
ln

[∫
e−βU(r)d3r

]
. (3.3.11)
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We cannot proceed any further without making some assumptions

concerning U . However, we can deduce that the right hand side will

depend on the temperature, the volume in which the particle is con-

fined (since the integral is only over the coordinates inside the vol-

ume in which the particle is contained) and the parameters which

characterize U . Actually, the volume to which the particle is con-

fined is also one of the parameters of the potential, since it is pos-

sible to describe the confinement of the particle to a certain region

of space with the help of a “step potential,” as already mentioned

in Sec. 1.2. Usually, however, it is customary to write explicitly

only the potential that is unrelated to the walls of the container and

to represent the container by the limits of the integration over the

position.

If the potential U limits the particle to a spatial region that is

very small compared to the size of the container, then it is possible to

perform the calculation as if the container extended to infinity. Thus,

for example, if

U(r) =
1

2
Kr2 , (3.3.12)

namely the potential of a harmonic oscillator, then the energy of the

particle increases rapidly with its distance from r = 0 (see Fig. 3.3.2).

Hence its probability to be far from r = 0 becomes very small, unless

the temperature is very high.

➤

➤

L/2–L/2 0 x

U(x)

Fig. 3.3.2 Harmonic potential of a particle in a box.
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Exercise 3.3

A three-dimensional box of length L contains a particle in a harmonic

“potential well” (3.3.12), at the center of the box.

(a) At what temperature will the particle begin to feel the existence of

the walls?

(b) What will 〈U(r)〉 be if we extend L to infinity?

Solution on page 309

In a similar manner, given any function of the particle’s state A(r,p),

it is possible to calculate the average 〈A〉. The integrals may get more

complicated, but the principle remains the same.

3.2 Statistical mechanics of a classical gas

Usually there is not much interest in the statistical mechanics of a sin-

gle particle, but rather in a system of many particles — a macroscopic

system. Suppose, therefore, that in a box of volume V there are N

particles. The particles may be under the influence of some external

field (other than the container) and they may interact with one another.

What is required in order to characterize the macroscopic state of the

system?

The answer is, of course, that we require the coordinates and momenta

of each and every particle of the gas. If we label the particles by num-

bers from 1 to N , we require all N pairs of vectors (r1,p1), (r2,p2), . . . ,

(rN ,pN ) at a given instant in order to specify a state of a system.

Each component of ri can take any value in the confining volume. Each component
of pi can vary between −∞ and ∞.

We have found, therefore, that it is possible to think of the state of a

system of N particles as a point in a 6N -dimensional space — the system’s

phase space. The temporal evolution of the system, namely the variation

of (r1,p1), . . . , (rN ,pN ) with time, corresponds from this point of view

to a continuous transition from point to point in phase space, i.e. to a

motion along a curve in phase space. But here we are not interested in

the details of the trajectories but, as already mentioned several times, in

various averages along them. To this end we must calculate the energy of

a given microscopic state. This will be made up of a kinetic energy,

Ek =
1

2
m1v

2
1 +

1

2
m2v

2
2 + . . .+

1

2
mNv

2
N =

N∑
i=1

1

2mi
p2i , (3.3.13)
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where mi is the mass of particle number i, and a potential energy that

depends, in most cases, on the positions of the particles:

U =
N∑
i=1

U1(ri) +
N∑

i,j=1

U2(ri, rj) + . . . (3.3.14)

The expression for the potential energy is to be read in the following

manner: the potential energy is the sum of potential energies experienced

by each particle separately (as a result of external forces), of potential

energies originating from the mutual forces between pairs of particles, po-

tential energies originating from the mutual interactions of three particles,

etc. In order to clarify (3.3.14) we discuss two simple cases.

Examples

(a) Suppose that N particles, which do not interact with one another, are

contained in a box in a gravitational field. In this case only the first

contribution to the potential energy will appear — the single particle

potential. What is it composed of? Well, each particle will feel the

gravitational force, independently of the position of all other particles

and of its own velocity. Hence U will have the form

U =
N∑
i=1

U1(ri) =
N∑
i=1

migzi , (3.3.15)

where we have chosen the z axis to be “up.”

(b) Suppose that the particles are charged, and that the charge of the ith

particle is qi. In this case, the electrostatic potential energy of particle

number j, due to particle number i, is

U2(ri, rj) =
kqiqj
|ri − rj| , (3.3.16)

i.e. the product of the charges divided by the distance between then.

Here, k is the electrostatic constant.

Thus, the total potential energy is

U =
∑
i,j

(i<j)

kqiqj
|ri − rj| , (3.3.17)

where the sum is organized in such a way that it excludes self-interactions

and that the potential of a pair of particles is not counted twice.
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Given the energy of a microscopic state of the system, we can assign

to it a probability in phase space, where again the space is partitioned

into small cells. Since this time the space has 6N dimensions, the cells

are small, 6N -dimensional volumes. The probability for the system to be

in a microscopic state, inside the infinitesimal volume around the point

(r1,p1), (r2,p2), . . . , (rN ,pN ), is proportional to

exp [−βE(r1,p1, r2,p2, . . . , rN ,pN )] dV1dτ1dV2dτ2 . . . dVNdτN . (3.3.18)

This is the probability for particle 1 to be in the small volume dV1 around

the point r1, and for its momentum to be in the volume dτ1 around the

momentum vector p1; for particle 2 to be in the volume dV2 around the

point r2, and in the volume dτ2 around p2; and so on. Compare with

Eq. (1.1.50).

The normalization factor of the distribution is of course the partition

function of the classical system:

Zc =

∫
(dV dτ)Ne−βE(ri,pi) , (3.3.19)

where, for brevity, we have written the energy of the microscopic state as

E(ri,pi), and the infinitesimal volume as (dV dτ)N .

Note: the dimensions of the “classical” single-particle partition function zc are
(length × momentum)3, and those of Zc are (length × momentum)3N , in contrast to
the quantum cases of discrete degrees of freedom, for which the partition function is
dimensionless.

Now that we have defined the probability density of every microscopic

state it is possible to calculate the average of any observable, i.e. of every

function of ri and pi.

Given such a function,

A(ri,pi) = A(r1,p1; r2,p2; . . . ; rN ,pN ) , (3.3.20)

the average of A is

〈A〉 = 1

Zc

∫
(dV dτ)NA(ri,pi)e

−βE(ri,pi) . (3.3.21)

These are all simple generalizations of Eqs. (3.3.7) and (3.3.8), etc., of the

previous section.



Chapter 4

Statistical Mechanics of an Ideal Gas

4.1 The ideal gas

The classical system that is simplest to treat, using the methods formu-

lated in Chap. 3, is the ideal gas. This system is defined by the require- ideal gas

ment that the collection of particles be confined to a given volume, and

the particle energies be purely kinetic. As a second step, it is possible to

add external forces, but interactions between particles are still neglected.

Such a description is reasonable for a dilute gas of neutral particles. The

forces between neutral particles are short-ranged, and when the gas is di-

lute the probability for one particle to be found close to another, to feel

the force exerted by it, is very small.

In a gas at standard conditions the mean free path is much larger than the intermolec-
ular distance, and thus also much larger than the characteristic size of a molecule. See
Exercise 3.5 of Part I.

The first important result: If the energy of the system can be written

as a sum of energies, each depending only on the state of one particle,

then the probability for a given state of the system is given as a product

of the probabilities of the separate particles, i.e. if

E(r1,p1, r2,p2, . . . , rN ,pN ) =
N∑
i=1

εi(ri,pi) , (3.4.1)

then

exp[−βE(r1,p1, r2,p2, . . . , rN ,pN )]dV1dτ1 . . . dVNdτN

= exp[−βε1(r1,p1)]dV1dτ1 · exp[−βε2(r2,p2)]dV2dτ2 ·

. . . exp[−βεN (rN ,pN )]dVNdτN . (3.4.2)

In other words, in the canonical distribution single particle states are

independent of each other.

261
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As we saw in Part II [Eq. (2.3.11)], in a microcanonical ensemble there can exist de-
pendence between the single particle probabilities, even though there are no interaction
forces between them. It is, however, negligibly small.

The second result: If the particles are identical, the partition function

is a power of a single particle partition function. Namely,

Zc = zNc , (3.4.3)

where zc is as given in Eq. (3.3.8).

Equation (3.4.3) will be corrected in Chap. 5 below — Eq. (3.5.3).

Exercise 4.1

Prove (3.4.3).

Solution on page 309

Given the partition function, the free energy is determined by

Eq. (3.1.30). From the free energy it is possible to deduce all the thermo-

dynamic properties of the system. That was the moral of Chap. 1.

Thus, we now calculate zc from Eq. (3.3.8), for the case of a particle

moving freely in the entire volume of the box. In the calculation the inte-

gral separates into a product of an integral over position and an integral

over momentum:

zc =

∫
dV e−βU(r) ·

∫
dτe−βp

2/2m . (3.4.4)

Since r is confined to the volume of the box and the particle is free,

U = 0, the first integral is equal to V — the volume of the box. The

second integral is a Gaussian integral, the like of which we calculated in

Part I (Exercise 1.13, for instance). Hence

zc = V

(
2πm

β

)3/2
= V (2πmkT )3/2 . (3.4.5)

Exercise 4.2

Prove (3.4.5).

Solution on page 310

Substituting (3.4.5) into the expression for the free energy (3.1.30), we

obtain

F = − 1

β
lnZc = −N

β
ln zc = −NkT

[
lnV +

3

2
ln(2πmkT )

]
. (3.4.6)
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From F we can immediately obtain the pressure and the entropy, as

P = −
(
∂F

∂V

)
T,N

=
NkT

V
(3.4.7)

and

S = −
(
∂F

∂T

)
V,N

= Nk

[
lnV +

3

2
ln(2πmkT ) +

3

2

]
. (3.4.8)

Note that (3.4.7) is the ideal gas equation of state!

It is of interest to recall the way in which the volume enters the par-

tition function. As already mentioned in Sec. 1.2, the volume does not

appear explicitly in the kinetic energy of the particles; nevertheless the

partition function depends upon it. Here it enters into the partition func-

tion via the limits of the integration over the particles’ positions.

From the expression for S it is possible to obtain the specific heat at

constant volume:

CV = T

(
∂S

∂T

)
V,N

=
3

2
Nk , (3.4.9)

and at constant pressure:

CP = T

(
∂S

∂T

)
P,N

=
5

2
Nk . (3.4.10)

Exercise 4.3

Prove (3.4.9) and (3.4.10).

Solution on page 310

Exercise 4.4

Use the partition function to obtain the average internal energy. How is

it related to the specific heat?

Solution on page 311

4.2 Mixtures of ideal gases Dalton’s law

Consider a system which is a mixture of M gases, i.e. there are M groups

of particles, with different masses, for instance. In group number j there

are Nj particles, of mass mj. The whole mixture is confined to a box of

volume V .

The energy of the system is given by Eq. (3.4.1), written in a slightly

different form. In group number j particle number i will have energy εij.
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The energy of the jth group will be given by the sum over i of εij, from

1 to Nj. Therefore, the total energy will be

E =
M∑
j=1

Nj∑
i=1

εij . (3.4.11)

All particles of all gases share the same constraint, namely they are con-

fined to the box. The difference is in the kinetic energies: Every particle

in group number j, which has momentum p, has kinetic energy p2/2mj .

The first result that we can deduce is that instead of (3.4.3),

Zc = (z1)
N1(z2)

N2 · . . . · (zM )NM . (3.4.12)

Equation (3.4.12) has a correction in Chap. 5 — Eq. (3.5.4).

Exercise 4.5

Prove (3.4.12).

Solution on page 311

Hence the free energy, (3.4.6), is replaced by

F = −kT (N1 ln z1 +N2 ln z2 + . . .+NM ln zM ) . (3.4.13)

As we observed, the difference between the different zj is only in the

particles’ mass. That is,

zj = V (2πmjkT )
3/2 . (3.4.14)

Substituting in (3.4.13), we obtain

F = −kT
{
N1

[
lnV +

3

2
ln(2πm1kT )

]
+N2

[
lnV +

3

2
ln(2πm2kT )

]

+ · · ·+ NM

[
lnV +

3

2
ln(2πmMkT )

]}

= −kT

N lnV +

3

2

M∑
j=1

Nj ln(2πmjkT )


 , (3.4.15)

where we have used the fact that

M∑
j=1

Nj = N ,



4.3 Maxwell Boltzmann distribution and equipartition 265

which is the total number of particles. From the expression for F it is

possible to obtain the pressure, as in (3.4.7):

P = −
(
∂F

∂V

)
T,N

=
(N1 +N2 + . . . NM )kT

V
=
NkT

V
. (3.4.16)

That is, the pressure depends only on the total number of particles in the

container and not on the number of particles of each type. However, note

the form of the intermediate expression in (3.4.16). This expression is the

sum of the pressures of each of the constituents had it filled the container

alone:

P =
M∑
j=1

Pj , Pj =
NjkT

V
. (3.4.17)

This is Dalton’s law: The total pressure of the mixture is equal to the

sum of the partial pressures.

See also Exercise 1.5 of Part I.

Exercise 4.6

Show that the specific heat of the mixture is the sum of partial specific

heats. Is this true of the entropy?

Solution on page 312

4.3 Maxwell Boltzmann distribution and
equipartition

In Chap. 1 we have shown that the central relations of thermodynamics

can be fully identified in statistical mechanics. Were we to ask a similar

question with respect to the possibility of identifying the kinetic theory

of gases in the formulation of statistical mechanics, we would not be able

to answer in the same generality, since the validity of the kinetic theory

is not general but is restricted to dilute gases. It is to be expected that

the central results of the kinetic theory be derivable from the statistical

mechanics of ideal gases. We shall treat, therefore, an ideal gas that can

reside in an external potential field U(r).

First, we discuss the momentum and position distributions of a single

particle. Without limiting the generality of our discussion, we choose par-

ticle number 1. The general distribution of the system’s states is given by

(3.4.2), after normalization. In other words, the (joint) probability for par-

ticle number 1 to be in dV1dτ1 around (r1,p1), and for particle number 2 to
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be in dV2dτ2 around (r2,p2), and so forth, is

P (r1,p1; . . . ; rN ,pN )dV1dτ1dV2dτ2 . . . dVNdτN

= Z−1c e−βε(r1,p1)e−βε(r2,p2) . . . e−βε(rN ,pN )

×dV1dτ1dV2dτ2 . . . dVNdτN . (3.4.18)

Clearly, if we sum the probabilities over all the particle states, namely

integrate P over all 6N variable, we will obtain 1.

In order to obtain the probability for a given particle (say, number 1)

to be in dV1dτ1 around (r1,p1), we must allow all the other particles to be

in the whole volume and to possess every possible momentum. Namely,

P (r1,p1) =

∫
P (r1,p1; . . . ; rN ,pN )dV2dτ2 . . . dVNdτN . (3.4.19)

Exercise 4.7

Prove that P (r1,p1) is a normalized probability distribution.

Solution on page 313

In order to calculate P (r1,p1) and to obtain its explicit form, we shall

use the fact that the partition function satisfies Zc = zNc , so that the right

hand side factors into a product of

P (r1,p1; . . . ; rN ,pN ) =
e−βε(r1,p1)

zc
. . .

e−βε(rN ,pN )

zc
. (3.4.20)

Thus the integration in (3.4.19) over the N − 1 vectors of position and

momentum, of particles 2, . . . ,N , will factor into a product of N − 1

identical integrals of the form

z−1c

∫
exp[−βε(r,p)]dV dτ = 1 . (3.4.21)

Hence we obtain

P (r1,p1) = z−1c exp

{
−β
[
p21
2m

+ U(r1)

]}
, (3.4.22)

which is the Maxwell–Boltzmann distribution formulated in terms of mo-

menta. [Cf. Eq. (1.1.50).]

Another result of the kinetic theory is easily obtained here. This is

the equipartition theorem: every variable of phase space on which theequipartition
theorem energy depends quadratically, contributes 1

2kT to the average energy (the
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variable may be any component of the coordinate or of the momentum of

any particle).

We have used this theorem without proof in Sec. 1.3 of Part I, referring

to the proof to be given here, and to the conclusion to be derived from it.

Proof: Let us calculate the average energy contributed by one of the

momentum components, p1x, for instance. p1x represents here a variable

that appears in the expression for the energy in the form ap21x and does not

appear anywhere else. The total energy of the state is written therefore

as the sum

E = ap21x +E′ , (3.4.23)

where E′ is the rest of the energy and it depends on all the variables of

phase space except p1x. We have chosen the momentum as an example

because it usually appears in the energy as a separate quadratic term.

The constant a is then of course 1/2m. A quadratic dependence of the

energy upon the coordinates is less common, and is characteristic only of

a harmonic potential.

Now, since p1x appears in the energy only once, its probability distri-

bution function is proportional to exp(−βap21x). It is of course possible to
obtain this by integrating the total distribution function over all variables

except p1x.

The average energy corresponding to p1x is thus

〈ap21x〉 =
∫
dp1x exp(−βap21x)ap21x∫
dp1x exp(−βap21x)

. (3.4.24)

Exercise 4.8

Derive (3.4.24) directly from the distribution function in phase space.

Solution on page 313

We have already calculated expressions such as the one on the right

hand side of (3.4.24) many times (see, for example, Exercise 3.2), and the

result is indeed 1
2kT , as the theorem asserts.

Finally we note that, as we have already seen in Solution 4.8, the

equipartition theorem is valid for every system provided that we can iden-

tify a variable that satisfies Eq. (3.4.23). A good example of such a variable

is the momentum of an atom of a gas molecule. If the forces acting be-

tween this atom and the other atoms are independent of its momentum,

then the conditions of the theorem are satisfied, and thus the average ki-

netic energy of each atom in the molecule is given by the equipartition

theorem, namely 1
2kT per component and a total of 3

2kT . This was the

answer we gave to question (a) in Sec. 1.3 of Part I, and here at last it is

justified.



268 Ch. 4 Statistical Mechanics of an Ideal Gas

4.4 Ideal gas of quantum particles

In our discussion of the ensemble of harmonic oscillators in Chap. 2, we

treated them as a quantum system but we also dealt with the question

of the behavior of an ensemble of classical oscillators. The result is that

the classical behavior is obtained from the quantum results in the limit

of high temperatures. On the other hand, our discussion of ideal gases

has so far completely ignored the possible quantum aspects related to the

particle’s motion in the container. We would therefore end this chapter

by considering the effects that the quantization of energy has on the ideal

gas laws. We shall see that apart from a new point of view, the addition

of quantization does little, and we obtain again the ideal gas equation

(3.4.7).

➤➤

∞
U

–a/2 a/2

∞

x

Fig. 3.4.1 A potential well with height tending to infinity.

In light of all our experience so far, it is clear that our problem comes

down to calculating the partition function of a single particle of mass m

that is confined to a container of volume V . For the sake of simplicity

we assume that the container is a box of sides a, b and c. The particle’s

confinement to the box can be described by a potential that vanishes inside

the box and jumps to infinity at the walls. Because the motion of the

particle occurs in three independent directions, we start by considering

the simple case of a particle executing a one-dimensional motion in an

“infinite potential well,” as in Fig. 3.4.1. Then we pass on to the three-

dimensional case, just as we did in Chap. 2 in our discussion of the Einstein

solid. The quantum states of a particle moving in such a potential are

described by standing de Broglie waves that vanish on the sides of the

well, x = ±a/2. The allowed wavelengths are quantized according to

λn =
2a

n
, n = 1, 2, 3, . . . , (3.4.25)
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and the corresponding energy values are thus

εn =
h2n2

8ma2
, n = 1, 2, 3 . . . , (3.4.26)

where m is the particle’s mass and h is the Planck constant.

The particle’s states in the well are thus characterized by a natural

number n similarly to the states of the harmonic oscillator. The differ-

ence is of course in the dependence of ε on n. The particle’s motion in

the three-dimensional box can be considered as a sum of three indepen-

dent one-dimensional motions each taking place inside a well as the one

depicted in Fig. 3.4.1. Thus, the condition (3.4.25) must be satisfied in-

dependently in each of the directions, and to each direction of motion

there will correspond a natural number of its own. The energy values will

thus be

εnpq =
h2

8m

(
n2

a2
+
p2

b2
+
q2

c2

)
, n, p, q = 1, 2, 3, . . . , (3.4.27)

which means that a single particle state in a well is determined by three

natural numbers (n, p, q).

The next step is of course the calculation of the single particle partition

function:

z =
∑
npq

exp(−βεnpq)

=
∞∑
n=1

exp

(
−βh

2n2

8ma2

) ∞∑
p=1

exp

(
−βh

2p2

8mb2

) ∞∑
q=1

exp

(
−βh

2q2

8mc2

)
. (3.4.28)

Note again that owing to the independence of the motions in each of the

three dimensions, the partition function has factored to a product of three

one-dimensional partition functions.

We are left with the calculation of a one-dimensional partition func-

tion, and we choose the motion along the x direction:

zx =
∞∑
n=1

exp

(
−βh

2n2

8ma2

)
. (3.4.29)

Calculating the sum on the right hand side of (3.4.29) is no simple matter.

Fortunately we are mostly interested in the case in which the box is much

larger than the thermal de Broglie wavelength, λT , of the atoms of the gas.

This quantity is the wavelength, λT , of a gas particle with momentum

determined by the average thermal kinetic energy per degree of freedom,



270 Ch. 4 Statistical Mechanics of an Ideal Gas

kT/2. If we use the de Broglie relation

px =
h

λ
, (3.4.30)

then from p2x/2m = kT/2 we have

λT =

√
h2

mkT
. (3.4.31)

Exercise 4.9

(a) Helium atoms are confined to a box with a = 1 cm. Calculate λT /a

at 10 K and at 300 K.

(b) At what temperature does λT become comparable to the size of the

box?

Solution on page 314

The exponent in the terms of the sum in Eq. (3.4.29) can be written

as λ2Tn
2/8a2. Since λT /a is very small, the difference between successive

terms in this sum is also very small and the sum can be approximated by

an integral, as we now explain. The terms in the sum can be regrouped

as follows: define a variable s = λT
2a n, where n is the running index in the

sum. Even in a small interval ∆s there is a very large number of terms

of the sum (different values of n), since the corresponding ∆n = 2a
λT

∆s

is made large by the enormous value of a/λT . See Exercise 4.9. In each

interval ∆s, the terms of the sum are equal to a very good approximation.

The sum can therefore be written as

zx =
∑
s

e−
1
2
s2
(
2a

λT

)
∆s−−−−→

∆s→0

2a

λT

∫ ∞
0

e−
1
2
s2ds . (3.4.32)

The limit in the above equation is the definition the Riemann integral.

Converting s into a momentum variable, via Eq. (3.4.25) and the de

Broglie relation (1), we write

s =
λT
λn

=
λTpx
h

and zx becomes

zx =
2a

h

∫ ∞
0

exp

(
−λ

2
Tp

2
x

2h2

)
dpx =

a

h

∫ ∞
−∞

exp

(
−βp

2
x

2m

)
dpx , (3.4.33)

where the last transition has been made with the help of the fact that

the integrand is an even function. Although px was defined as a positive
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quantity (since n is positive), we have found that the sum over the positive

values of n is equivalent to an integral over all values of px, positive as

well as negative. That means that a state with a given n is equivalent to

two momentum states: one positive and one negative.

Hence the partition function of a single quantum-mechanical particle

in the three-dimensional box will be [within the approximation which led

to (3.4.32) and (3.4.33)] a product of one-dimensional partition functions:

z = zxzyzz

=
abc

h3

∫ ∞
−∞

exp

(
−βp

2
x

2m

)
dpx

∫ ∞
−∞

exp

(
−βp

2
y

2m

)
dpy

∫ ∞
−∞

exp

(
−βp

2
z

2m

)
dpz

=
V

h3

∫
exp

(
−βp

2

2m

)
d3p . (3.4.34)

In the last transition we have used the fact that the product abc is the

volume of the box V , as well as the fact that the product of the three

integrals can be written as a three-dimensional integral over all momen-

tum space. We have also used the notation d3p = dpxdpydpz instead of

dτ . The integral on the right hand side of (3.4.34) is the same integral

that appeared in the calculation of the classical partition function, e.g.

Eq. (3.4.4) and Exercise 4.2.

The quantum-mechanical point of view does not change, therefore,

the classical result except for making the partition function dimensionless

by introducing the Planck constant, which possesses precisely the dimen-

sions required for this purpose. See the remark after Eq. (3.3.19) as well.

However, we must stress that what we have done here is restricted to

the quantum effects due exclusively to the quantization of the motion of a

single particle. As we shall see in Part V, quantum mechanics requires ad-

ditional changes that are expressed by the fact that the canonical partition

function of an ideal gas cannot be written as the product of independent

single particle partition functions. These changes lead to fundamental

changes in the laws of ideal gases at low temperatures and/or high den-

sities. At regular conditions the results we shall obtain in Part V reduce

to the results of the classical treatment, so that all our discussions on

ideal gases in this part remain valid in a very wide region of densities and

temperatures.

Finally, we make several remarks.

(a) The fact that we have again obtained the classical partition func-

tion should not come as a great surprise, since we calculated the sum

in (3.4.28) only in the approximation that the thermal de Broglie
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wavelength is very small or, in other words, in the limit in which quan-

tum effects are negligible. This is also the limit of high temperatures.

(b) Indeed, we obtained (3.4.34) for a box-shaped container, but in fact

it is clear that the result cannot depend on the container’s shape as

long as the volume is large enough. Hence this result is valid for any

shape of the container, precisely as in the classical case.

(c) Concerning the partition function’s dependence on the volume: In

Sec. 4.1 we have seen that the volume dependence of the partition

function of a classical gas enters through the integration limits. Con-

versely, the energies of the quantum states depend explicitly on the

volume through the dimensions of the box [Eq. (3.4.27)]. Thus the re-

lationship between the thermodynamic work and the volume change,

found in Sec. 1.2, is now simpler to analyze and the long discussion

made there for the calculation of ∂E/∂V in the classical case becomes

redundant.

Exercise 4.10

Obtain δW arising from a volume change dV of a cube-shaped vessel that

contains an ideal gas of quantum particles.

Solution on page 314

(d) From the result (3.4.34) it is inferred that also in the quantum case it

is possible to formulate the partition function in terms of the classical

variables of phase space — position and momentum. Moreover, the

canonical probabilities are of the same form as in the classical case.

The difference is that the quantum partition function is in principle

a discrete sum and not a continuous integral. Instead of (3.4.28) we

may therefore write a sum over cells in phase space:

z =
∑
k

exp

(
−βp

2
k

2m

)
∆Vk∆τk
h3

, (3.4.35a)

where the factor ∆Vk∆τk/h
3 describes the number of states (and not

their density) in cell number k. This implies that a quantum state

of a single particle takes up a volume of h3 in phase space. Hence

the quantum state of a system of N particles will take up a volume

of h3N . In the classical calculation of Z the size of the cell could be

arbitrarily small. Here it must contain at least one quantum state.

However, the volume of the cell must still be small enough for the

continuum approximation of the sum as an integral to be valid. In

this case we can, therefore, turn (3.4.35a) into an integral, and if the
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particles are affected by an external potential U(r), we obtain for the

single particle partition function

z =
1

h3

∫
dV dτ exp

{
−β
[
p2

2m
+ U(r)

]}
. (3.4.35b)

This equation is identical to (3.3.8) except for the factor h−3. This

is the classical limit of the quantum partition function, and the sole

witness to the quantum origin of (3.4.35b) is the factor h−3. Instead

of (3.3.19) and (3.3.21) we obtain, therefore,

Z =

∫ (
dV dτ

h3

)N
e−βE(ri,pi) , (3.4.36a)

〈A〉 = 1

Z

∫ (
dV dτ

h3

)N
A(ri,pi)e

−βE(ri,pi) . (3.4.36b)

(e) The astute reader has probably noticed that in the equations we ob-

tained for the free energy and the entropy [(3.4.6) and (3.4.8)] there

is a mismatch of units and as a consequence the logarithmic functions

appearing in them are not functions of dimensionless arguments. This

mismatch stems from the fact that the classical partition function

(3.4.4) or (3.4.5) is not dimensionless. The quantum partition func-

tion, in contrast, is naturally dimensionless even in the classical limit,

as is clear from Eqs. (3.4.35) and (3.4.36), owing to the appearance of

the Planck constant in the expression for the volume element in phase

space. Usually, this difference is not significant as most thermody-

namic quantities are obtained from derivatives of the free energy and

entropy, so that the additional terms depending on Planck’s constant

cancel out and disappear. However, this is not always the case, and,

moreover, the equations are more “aesthetic” when the logarithmic

functions have dimensionless arguments. Thus, from now on we shall

write

z =
V (2πmkT )3/2

h3
(3.4.37)

so that

F = −NkT ln z = −NkT
[
lnV +

3

2
ln

(
2πmkT

h2

)]
, (3.4.38)

S = Nk

[
lnV +

3

2
ln

(
2πmkT

h2

)
+

3

2

]
. (3.4.39)
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We have written ln z as a sum of logarithmic functions, the same as before, but
it is always possible to turn these sums into logarithmic functions of a product of
dimensionless variables.

This is the first correction to the form of the free energy and entropy of

an ideal gas. In the next chapter we shall see that another correction

is required.



Chapter 5

The Gibbs Paradox and the

Third Law

5.1 Two difficulties

(a) Extensivity

In thermodynamics, the free energy and entropy are extensive quantities.

This means that doubling the system leads to a doubling of the free energy

and the entropy. If we now check the expressions obtained for F and

S, (3.4.38) and (3.4.39), we find that they are not extensive since when

V → 2V and N → 2N we obtain

F → 2F − 2NkT ln 2 ,

S → 2S + 2Nk ln 2 .

This problem, whose solution we discuss in the following section, is known

as the Gibbs paradox.

The same problem appears in a different guise in the chemical poten-

tial. As recalled [Eq. (3.1.43)], the chemical potential is the derivative of

the state function with respect to the number of particles, and must be

an intensive variable, i.e. independent of the system’s magnitude. But,

calculating it from (3.4.38) we obtain

µ = −kT
[
lnV +

3

2
ln

(
2πmkT

h2

)]
, (3.5.1)

which is not an intensive quantity.

(b) The third law of thermodynamics

One way of stating the third law of thermodynamics is that the entropy

tends to zero as T → 0. (See e.g. Part II, Sec. 0.4) Not only does the

entropy Eq. (3.4.39) not tend to zero, it diverges when T → 0. We return

275
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to this problem in Sec. 5.3. Here we only note that this problem finds its

solution in the framework of the quantum theory.

Exercise 5.1

Both problems mentioned here do not appear in calculating the properties

of the paramagnet or of the Einstein solid. Verify this.

Solution on page 314

5.2 The Gibbs paradox and its resolution

The first difficulty mentioned in the preceding section was presented in

a dry, formal manner: The entropy of an ideal gas, as obtained from

classical statistical mechanics, is not an extensive quantity. But the same

problem can be presented in a more intuitive manner.

➤➤

➤➤ ➤ ➤

2V

V V

N

T

N

T

Fig. 3.5.1 The double container and the Gibbs paradox.

Imagine a container divided into two identical parts by a partition

(Fig. 3.5.1). On both sides of the partition there is the same number of

identical particles and the same temperature. We perform an experiment

in which the partition is removed. Such a process is definitely reversible.

The removal of the partition will not change the temperature, and there

is no reason for the number of particles to change on either side. Hence,

according to thermodynamics, the entropy should not change upon the

removal of the partition.

But the entropy in the presence of the partition is the sum of the

entropies of the two sides, which is given by twice (3.4.39),

S = 2Nk

[
lnV +

3

2
ln

(
2πmkT

h2

)
+

3

2

]
, (3.5.2a)
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but in the absence of the partition, the entropy is obtained from (3.4.39)

by replacing V and N with 2V and 2N :

S′ = 2Nk

[
ln 2V +

3

2
ln

(
2πmkT

h2

)
+

3

2

]
. (3.5.2b)

Hence there is a change in entropy, given by

∆S = 2Nk ln 2 �= 0 ,

which is the paradox.

It is not hard to find the origin of the paradox. To this end we shall

change the conditions a bit, and assume that there is a different type

of gas on each side of the partition, but the volumes, the temperatures

and the numbers are identical. Removing the partition this time is not

a reversible process, since clearly particles of one type will cross over to

the other side and vice versa. The gases will get mixed, and returning the

partition to its place will not return the system to its original state. It is,

of course, not surprising that removing the partition leads to an increase

in the entropy. The increase in the entropy is related to the mixing, which

increases the disorder.

Exercise 5.2

Describe a process by which it is possible to separate two types of mole-

cules, each to its original side of the partition. Does this process return

the system to its original state?

Solution on page 315

It turns out, therefore, that there exists a contradiction between

(a) our feeling that returning the partition to its place, in the case of

identical gases on both sides of the container, returns the original state,

and (b) the fact that we treat the particles as if it were possible to dis-

tinguish between them. Indeed, it is clear that upon the removal of the

partition, particles cross from one side to the other, and that upon its

return the particles on both sides will not be the same ones as before.

Since we stand by (a), based on experience, we have no option but to

give up (b).

If indeed it is not possible to distinguish between molecules (or atoms)

of the same gas, so that doubling the volume is simply doubling the en-

tropy, then we have not calculated the partition function, Z, correctly.

When we integrate over the position and momentum of each of the

molecules, along with each state there also appears the state in which

two molecules have interchanged their position and momentum. In the
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integration, each molecule covers the entire volume, and its momentum

assumes all allowed values. Hence, in counting different states in Z there

appears the state in which particle number i is in state (ri,pi) and par-

ticle number j in (rj ,pj), as well as the state in which particle number j

has (ri,pi) and particle number i has (rj ,pj). In Fig. 3.5.2 two states are

depicted, differing from each other only in a permutation of two particles.

➤

➤

➤

➤

pj rj

pj rj

pi
ri

pi
rij

i

i

j

Fig. 3.5.2 Two states differing only by the permutation of two particles.

But if there is no way of distinguishing between these particles, then

two such states must be counted as a single state. This means that we have

counted too many states in Z. Along with every state (r1,p1; . . . ; rN ,pN )

there appear all the states in which all the particles have the same list of

coordinates and momenta, but the order of particles is different. Namely,

each microscopic state (r1,p1; . . . ; rN ,pN ) must be identified with the N !

states obtained by changing the order of the particles.

Fortunately it is very easy to correct the mistake: two states differing

from each other only by changing the position of the particles have the

same energy, and hence the same probability. In each microscopic state

it is possible to change the positions of the particles in N ! ways, where

the velocities remain unchanged. Each of these N ! states, which are to

be counted as a single state, has contributed to the partition function, as

calculated so far, whereas there should have been only one contribution

due to all of them. But since all N ! terms are equal, and all terms in the

canonical partition function have an equal number of particles, it suffices

to divide by N ! in order to obtain the corrected partition function. Thus,

instead of (3.4.3) we write

Z =
1

N !
zN (3.5.3)

and instead of (3.4.12) we write

Z =
(z1)

N1

N1!
· (z2)

N2

N2!
· . . . (zM )NM

NM !
(3.5.4)
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in the case where there are M groups of molecules, and it is not possible

to distinguish between molecules belonging to the same group, but it is

possible to distinguish between molecules of different groups.

The concept of a microscopic state has thus undergone a significant

change following this discussion. We can continue to denote a state by

the 2N vectors (r1,p1; . . . ; rN ,pN ) but this notation does not signify that

particle number 1 is located at r1 with momentum p1, etc., but the fact

that there is one particle in position r1 with momentum p1, etc. In order

to calculate the partition function employing the methods that we devised,

we imagine that it is possible to distinguish between particles and then

correct, dividing by N !.

Exercise 5.3

Show that the above change does not affect the calculation of thermal

averages.

Solution on page 316

Exercise 5.4

Deduce Eq. (3.5.4).

Solution on page 317

Exercise 5.5

Explain why there is no need to correct the partition function of the

paramagnet and the system of oscillators.

Solution on page 317

What will the form of the free energy and entropy be? Well, after

substituting (3.5.3) into (3.1.30) and using the explicit form of the single

particle partition function (3.4.37), we obtain

F = −NkT
[
lnV +

3

2
ln

(
2πmkT

h2

)
− 1

N
lnN !

]
. (3.5.5)

In the thermodynamic limit, when N is very large, we can approximate

the last term on the right hand side of (3.5.5) using Stirling’s formula

(2.3.12) to write
1

N
lnN ! � lnN − 1 , (3.5.6)

and hence Eq. (3.5.5) reduces to

F = −NkT
[
ln

(
V

N

)
+

3

2
ln

(
2πmkT

h2

)
+ 1

]
. (3.5.7)
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The entropy is derived from the newly found F and instead of (3.4.39) we

obtain

S = Nk

[
ln

(
V

N

)
+

3

2
ln

(
2πmkT

h2

)
+

5

2

]
, (3.5.8)

both of which are of course extensive, as expected.

It is important to note that even though we have shown in Exercise 5.3

that the change in the partition function, (3.5.3), does not affect the

thermal averages, the free energy F , the entropy S and the chemical

potential µ (see below) all change. This implies that these quantities

cannot be expressed as averages.

Exercise 5.6

Prove, by using the free energy and the entropy, that the pressure and the

specific heat are not affected by Gibbs’ correction.

Solution on page 317

We can also write the chemical potential that replaces (3.5.1). The

result is

µ = kT

[
lnn− 3

2
ln

(
2πmkT

h2

)]
, (3.5.9)

where n (= N/V ) denotes the number of particles per unit volume. This

is, of course, an intensive expression.

Exercise 5.7

Deduce Eq. (3.5.9).

Solution on page 318

And, finally, in a mixture of M different types of molecules,

F = −kT
M∑
j=1

Nj

[
ln

(
V

Nj

)
+

3

2
ln

(
2πmjkT

h2

)
+ 1

]
. (3.5.10)

Exercise 5.8

Prove that Dalton’s law remains valid regardless of the changes in F .

Solution on page 318

Exercise 5.9

Calculate the expression for the entropy of a mixture of gases.

Solution on page 319
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Exercise 5.10

What is the change in entropy due to the removal of the partition if in

Fig. 3.5.1 there are different types of gases on both sides of the partition?

Consider the case in which the number of molecules and the volume on

each side are different.

Solution on page 319

5.3 Remarks on the third law of thermodynamics

The macroscopic formulation of the third law of thermodynamics —

Nerst’s law — is sometimes presented in the following form: It is im-

possible to cool a system down to absolute zero. And sometimes in the

following equivalent form: The entropy of a system at zero temperature

does not depend on the parameters that characterize the system’s equi-

librium state.

The assertion that the two forms are equivalent relies on the fact that

if the entropy depends on external parameters, it is possible to continue

adiabatic cooling and to lower its temperature in finite steps, even near

absolute zero.

We have already seen that the entropy we obtained for an ideal gas,

(3.4.39), does not obey this law. The corrected entropy according to

Gibbs, (3.5.8), is no better in this sense. A hint of the direction in which

we have to search for the answer is the fact that in a system at low

temperatures quantum effects must be taken into account. This hint is

supported by the fact that the entropy of the Einstein solid, derived in

Exercises 2.5 and 2.6, goes to zero quite fast as T → 0. Consider, therefore,

the entropy of a quantum system at temperatures tending to zero. The

fact that the system is quantum-mechanical is expressed by the fact that

the microscopic energies of the system are discrete. We denote by Ei

the energy of the microscopic state i. Of course, there can be many

microscopic states with the same energy. Such a state of affairs is called

a degeneracy, and the number of microscopic states with energy E is degeneracy

denoted by g(E), and called the “degree of degeneracy,” or simply the

number of states at energy E.

In Chap. 6 of Part II we saw [Eq. (2.6.7)] that the entropy can be

written in the form

S = −k∑
i

Pi lnPi , (3.5.11a)
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where

Pi =
e−βEi∑
n e
−βEn

(3.5.11b)

is the probability of the microscopic state i.

If E0 is the system’s lowest energy, we can also write Pi in the form

Pi =
e−β(Ei−E0)∑
n e
−β(En−E0)

. (3.5.12)

Thus for each state not corresponding to the lowest energy, Ei > E0,

we find in the limit T → 0 (β → ∞) that Pi → 0, because Ei − E0 is

positive. There is, of course, one exception: the states for which Ei = E0.

For these states we find in the limit T → 0 that Pi → 1/g0, where g0 is

the degeneracy of E0, i.e. the number of different microscopic states with

energy E0.

This is so since for these states the numerator in (3.5.12) is unity

whereas the denominator contains, in addition to the sum of zeros, g0
terms each contributing unity, and a total of g0 in all. We have, therefore,

obtained

Pi =

{
0 , Ei �= E0 , T → 0 ,

1/g0 , Ei = E0 , T → 0 .
(3.5.13)

Now, we can calculate the entropy in the limit T → 0 by direct substitu-

tion in (3.5.11a):

S → k ln g0 , T → 0 . (3.5.14)

Exercise 5.11

Prove Eq. (3.5.14).

Solution on page 319

If the degeneracy of the ground state is not too large, and this is the

common case, S/k tends to a value of order unity when T → 0. Such a

value is negligible compared to the typical values of S/k at temperatures

above absolute zero which are of order N (since S is extensive and pro-

portional to N), and hence we can say that S tends to 0, in such common

systems, when T → 0. In doing this we have identified the microscopic,

statistical source of the third law.

We immediately identify two exceptions to the third law:

(1) Classical systems, in which Ej − E0 can be arbitrarily small. In

such systems when T → 0, or β →∞, there always exists a j such

that β(Ej −E0) will be finite, and then (3.5.13) will no longer be

valid, nor will (3.5.14). This actually happens in an ideal gas; see

Eq. (3.5.8).
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(2) Quantum systems, in which the degeneracy of the ground state

is very high, so that the right hand side of (3.5.14) is of the order

of the number of the system’s degrees of freedom.

Exercise 5.12

Calculate the entropy of a system of N classical three-dimensional har-

monic oscillators (“classical Einstein solid”), and show that it diverges at

T → 0 and that quantum considerations “save the situation.”

A similar phenomenon occurs in a classical paramagnet (see Self-

Assessment Exercise 8).

Solution on page 320

5.4 Summary

As a result of Gibbs correction we obtain for an ideal gas

z =
V (2πmkT )3/2

h3
,

Z =
1

N !
zN ,

F = −NkT
[
ln

(
(2πmkT )3/2

nh3

)
+ 1

]
,

S = Nk

[
ln

(
(2πmkT )3/2

nh3

)
+

5

2

]
,

µ = −kT ln

[
(2πmkT )3/2

nh3

]
.

In spite of the appearance of Planck’s constant, these results are valid only

as long as quantum effects are negligible, i.e. far enough from absolute

zero.



Chapter 6

Fluctuations and Thermodynamic

Quantities

So far we have assumed in all the calculations that the distributions of

the physical quantities are very narrow around the average so that, at

thermodynamic equilibrium, these variables always obtain their values

at the maximum of the distribution. To justify this assumption, be-

yond the pictorial justification given in Secs. 3.3 and 4.1–4.3 of Part II,

we shall discuss deviations from the average of two typical quantities,

the magnetization and the energy, and demonstrate that indeed the rel-

ative width of their distributions tends to zero in the thermodynamic

limit.

6.1 Paramagnet: fluctuations in the magnetization

The average magnetic moment of a paramagnet at equilibrium with a heat

bath at temperature T is

〈M〉 = 1

Z

∑
i

Mie
−βEi =

1

β

∂ lnZ

∂H
, (3.6.1)

where Mi is the magnetization in the microscopic state i and Ei is the

energy of that state [see (2.5.8) and Exercise 5.2 of Part II].

The magnetization varies with the magnetic field H. Namely, 〈M〉 is
a function of H. The derivative of 〈M〉 with respect to H is the suscep-

tibility,

χ =
1

N

∂〈M〉
∂H

. (3.6.2)

This quantity measures the ease with which the magnetization (per spin)

can be affected by varying the field. It is an example of a whole family ofresponse
coefficient quantities that are known as response coefficients.

284



6.1 Paramagnet: fluctuations in the magnetization 285

Equation (3.6.2) is a generalization of the definition (2.5.15), which was given for
small H, where 〈M〉 is a linear function of H. Note: N was denoted there by n.

Clearly, when χ is large, small changes in H will lead to large changes

in 〈M〉. It is then to be expected that the distribution of M around

the average is not narrow. In other words, states with different M ’s do

not differ significantly in their probabilities. Thus one expects that the

deviations around the average will be significant. Namely, there must be

a relationship between the susceptibility and the width of the distribution

of M , around the average 〈M〉.
This is indeed the case. It turns out that χ is proportional to the

average square deviation of M from its average.

In order to establish this, we recall that the energy of the microscopic

state Ei in (3.6.1) is

Ei = −HMi . (3.6.3)

Hence, differentiating (3.6.1) with respect to H we obtain for χ in (3.6.2)

Nχ =
∂〈M〉
∂H

=
β

Z

∑
i

M2
i e
−βEi − 1

Z2

∂Z

∂H

∑
i

Mie
−βEi

= β(〈M2〉 − 〈M〉2)

and hence

Nχ = β〈(M − 〈M〉)2〉 = (∆M)2

kT
. (3.6.4)

Except for the temperature factor, the right hand side measures the av-

erage square deviation of the magnetization from its average value. The

larger the square deviation, the larger the susceptibility, and vice versa.

The quantity ∆M ≡ √(∆M)2 is also called the fluctuation of M . In fluctuation

the language of probability theory, ∆M is the standard deviation of the

distribution of M and (∆M)2 is its variance.

See also Exercise 3.5 of Part II.

Equation (3.6.4) leads to several important conclusions:

(a) The susceptibility of a paramagnet must be positive: (∆M)2 is

the average of a positive quantity, and hence χ is positive.

(b) The relative width of the distribution of the magnetization,

namely ∆M/〈M〉, tends to zero in the thermodynamic limit

(N → ∞), which justifies the assertion that M is always at its

average value, 〈M〉.
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In order to show that conclusion (b) is indeed valid, we write

∆M

〈M〉 =
√
NkTχ

〈M〉 =

√
kTχ

〈µB〉 ·
1√
N
, (3.6.5)

where 〈µB〉 denotes the average magnetization per spin (Chap. 4, Part II)

and we use Eq. (2.2.15), 〈M〉 = µBN〈σ〉. This means that if χ is finite,

then when N →∞, the width of the distribution tends to 0.

A word of caution: For a paramagnet at H = 0, 〈σ〉 = 0 and the

right hand side of Eq. (3.6.5) diverges. The difficulty is not very grave.

In the presence of the smallest field, 〈M〉 becomes large, proportional to

N . [See Eq. (2.5.14), Part II.] But even at H = 0 strictly, what we find

in Eq. (3.6.4) is that the standard deviation of M is of order
√
N , while

any thermodynamically significant quantity is proportional to N . Hence,

this width is irrelevant in the thermodynamic limit.

We will meet a similar phenomenon in the next section, for the fluctua-

tions in energy, and see that they are proportional to the specific heat. In

a paramagnet, the fluctuations in energy are the same as the fluctuations

in the magnetization, because the two are proportional to each other.

6.2 Energy fluctuations and the specific heat

The relationship we found in the previous section between the fluctuation

in the magnetization and the susceptibility is one example of the rela-

tionship between fluctuations and response coefficients. We will now see

another example.

The average energy in a canonical system is

〈E〉 = 1

Z

∑
i

Eie
−βEi = −∂ lnZ

∂β
, (3.6.6)

which is, of course, extensive. The specific heat (per particle) measures

the energy’s responsiveness to change in the temperature. It is, therefore,

a kind of susceptibility of the energy.

c =
1

N

∂〈E〉
∂T

. (3.6.7)

That is, the easier it is to change 〈E〉 by changing T , the larger is the

specific heat and it is to be expected that the distribution around the

average energy will be wider. We show this explicitly:

Nc =
∂〈E〉
∂T

=
1

kT 2
(〈E2〉 − 〈E〉2) ,
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and from here

Nc =
(∆E)2

kT 2
. (3.6.8)

We have found, therefore, that the fluctuations in energy are proportional

to the response of the energy to changes in the temperature, namely to the

specific heat, just as the fluctuations in the magnetization are proportional

to the response of the magnetization to changes in the magnetic field,

namely the susceptibility.

Exercise 6.1

Complete the deduction of (3.6.8).

Solution on page 321

We obtain again a similar dependence as a function of N :

∆E

〈E〉 =
√
NckT 2

N〈ε〉 =

√
ckT

〈ε〉 ·
1√
N
, (3.6.9)

where ∆E =
√
(∆E)2 and 〈ε〉 is the average energy per degree of freedom.

That is, the specific heat is positive, like the susceptibility, and its fluctu-

ations increase with the specific heat, as expected. In the thermodynamic

limit (N →∞) the width of the distribution becomes negligible compared

to the average. Almost all of the systems in the canonical ensemble have

the same energy, 〈E〉. From here also it is inferred that the canonical

description is equivalent to the microcanonical description.

Exercise 6.2

Calculate the relative energy fluctuation of an ideal gas ∆E/E.

Solution on page 321

6.3 Summary

(a) The fluctuation of an extensive thermodynamic quantity is propor-

tional to the response of this quantity to changes in its conjugate

variable.

(b) As a result of this relationship it is possible to directly measure the

fluctuation.

(c) All the response coefficients are positive.

(d) In the thermodynamic limit, the widths of the distributions of exten-

sive quantities become negligible with respect to the average values

(except for extreme cases — a divergence of the response, or the van-

ishing of the average).
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Exercise 1 Solution on page 322

(a) Show that the Gibbs free energy,Gibbs free
energy

G = E − TS + PV ,

can be derived from the partition function by

G = kTV 2 ∂

∂V

(
lnZ

V

)
.

(b) Show that the enthalpy,

H = E + PV ,

is given by

H =
1

β

(
V
∂ lnZ

∂V
− β∂ lnZ

∂β

)
.

Exercise 2 Solution on page 322

What is the form of the partition function Z of a crystal, described by a

model in which the harmonic oscillators have different energies from one

another? What is the expression for the free energy?

Exercise 3 Solution on page 323

We define a bounded harmonic oscillator by energy levels like the ones

given in Eq. (3.2.1),

En = ε0 + nε ,

with the additional condition

n < n0 .

288
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(a) Calculate the average energy and the average degree of excitation of

the bounded oscillator at temperature T .

(b) Calculate the entropy and the specific heat of a bounded oscillator.

(c) Compare with the harmonic oscillator. When can we expect, from

qualitative considerations, a difference between the two, and when

should they behave similarly.

(d) What is the asymptotic behavior of the specific heat at low tempera-

tures and at high temperatures?

Exercise 4 Solution on page 325

The table below contains values of the specific heat of crystalline sodium.

T (K) 1 2 4 6 8 10 12 16 20 25

CV (cal/mole ·K) 0.0001 0.0009 0.0072 0.024 0.058 0.114 0.18 0.46 0.91 1.78

(a) The asymptotic behavior of CV of a solid in the Einstein model, at

low temperatures, is given by (3.2.18):

CV � 3R

(
h̄ω

kT

)2
e−h̄ω/kT .

Draw a graph of CV , as a function of kT/h̄ω, and find ΘE and ω using

the value of CV at 10 K.

(b) Use the graph from (a) to describe CV as a function of T for the

ΘE = h̄ω/k you obtained there. Add to the graph the experimental

values given in the table.

Is it possible to assert that the values in the table can be described

by the graph?

(c) Do the temperatures in the table justify a low temperature approxima-

tion (namely, is T 	 ΘE?)? Sketch a graph of the ratio CV (Einstein)/

CV (table) as a function of T .

Exercise 5 Solution on page 326

In the Debye model (Part IV, Sec. 3.3) it is found that the specific heat

per mole, at low temperatures, is given by

CV =
12π4

5
R

(
T

ΘD

)3
.
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Using the table from the previous exercise, determine ΘD from the value

of CV at T = 10 K.

Draw in a single figure CV of the Debye approximation and CV of the

Einstein approximation as a function of T , for the ΘD determined above,

and the experimental values in the table.

Exercise 6 Solution on page 327

Suppose that the following explicit formulas for the partition function

were found (say, in an excavation):

(a)

Z = V N (2πmkT )5N/2 ,

(b)

Z = (V −Nb)N (2πmkT )3N/2eaN
2/V kT .

For both cases calculate the equation of state and the specific heat at

constant volume.

From the results identify the systems described by these partition

functions.

Exercise 7 Solution on page 330

Calculate the average energy, the equation of state, and the specific heat

of a gas of extremely relativistic particles satisfying ε = cp, where c is the

speed of light.

Exercise 8 Solution on page 331

Classical paramagnet: We return to the system of magnetic ions from

Part II. This time we treat the magnetic moment of each ion as a classical

vector, with constant magnitude, µ, which can point in any direction.

Namely, the tip of the magnetic moment can point in any direction or, in

other words, can be found at any point on a sphere.

The summation over the different states of the system goes over, nat-

urally, to an integration over all the directions along which the magnetic

moment can point (see figure). Such a direction is described by the two

angles of the spherical system, θ and φ. The integration over all the di-

rections is carried out using the fact that an infinitesimal surface element

on a sphere of radius R is given by

da = R2 sin θdθdφ .
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➤

➤

➤

➤x

y

z

φ

θ
µ

(a) Write the energy of a system of N spins in a magnetic field H directed

along the z axis, as a function of the angles.

(b) Calculate the canonical partition function.

(c) Calculate the average magnetization, the average energy and the en-

tropy.

(d) Compare with the discrete paramagnet and show that the magnetiza-

tion and the energy obtained are identical to the results of the discrete

paramagnet in the limit where J →∞.

(e) Does the third law of thermodynamics apply here?

Exercise 9 Solution on page 334

(a) Show that the work performed by an ideal gas at temperature T as it

expands from volume V1 to volume V2 is equal to the decrease ∆F in

its free energy.

(b) Is ∆F larger or smaller than the decrease in the internal energy of the

gas? What is the origin of the difference?

Exercise 10 Solution on page 334

(a) Calculate the specific heat of a paramagnet and the fluctuations of

the energy and show that the relation (3.6.8) indeed holds.

(b) If N = 100 and µH = 0.01eV, at what temperature will the average

energy lose its thermodynamic meaning?



Solutions to exercises in the text

Solution 1.1 Exercise on page 227

The dependence onN is hidden insideEi, which is the sum of energies ofN

particles, and also implicitly in the sum over states
∑

i. The dependence

on V is in the summation over all possible positions as well as in the

energies of the particles. To the kinetic energy of a classical particle

we must add the condition which confines its motion to the volume V ,

and this can be done by adding a “step potential” which is zero inside

the container and infinite outside. The energy of a quantum particle of

mass m inside a three-dimensional box of side d is quantized in quanta of

h̄2/8md2, which, of course, leads to a dependence on the volume d3.

Solution 1.2 Exercise on page 227

〈E〉 is given by definition as

〈E〉 =∑
i

EiPi , (i)

where Pi is the probability of microscopic state i. This probability, as we

have seen, is proportional to e−βEi . Namely (after normalization),

Pi =
e−βEi∑
i e
−βEi

≡ e−βEi

Z
, (ii)

where we have used the definition (3.1.2) of Z.

The average of E is thus written as

〈E〉 = ∑
i

Ei
e−βEi

Z
=

1

Z

∑
i

Eie
−βEi =

1

Z

(
− ∂

∂β

∑
i

e−βEi

)

= − 1

Z

∂Z

∂β
= −∂ lnZ

∂β
. (iii)
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But β = 1/kT or T = 1/βk. We replace the differentiation with respect

to β by a differentiation with respect to T in the following manner:

∂

∂β
=
dT

dβ

∂

∂T
= − 1

kβ2
∂

∂T
= −kT 2 ∂

∂T
,

and obtain from (iii), for the average of E

〈E〉 = kT 2 ∂ lnZ

∂T
. (iv)

Solution 1.3 Exercise on page 230

The work performed by the macroscopic system upon the external body

is an average of (3.1.6) over the canonical ensemble. Namely,

δW =
1

Z

∑
i

(
−∂Ei

∂X
dX

)
e−βEi .

But
∂

∂X
(e−βEi) = −βe−βEi

∂Ei

∂X
,

so that we may write

δW =
1

Z

∑
i

1

β

∂

∂X
(e−βEi)dX .

Interchanging the differentiation and the summation we obtain

δW =
1

Z

1

β

∂

∂X

(∑
i

e−βEi

)
dX =

1

β

1

Z

∂Z

∂X
dX =

1

β

∂ lnZ

∂X
dX .

Solution 1.4 Exercise on page 232

We denote by m and M the masses of the molecule and of the piston,

respectively, by v and u their respective velocities before the collision,

and by v′ and u′ their velocities after. p and P are the momenta of the

molecule and of the piston before the collision, and p′ and P ′ after.
For an elastic collision the kinetic energy is conserved:

p2

2m
+
P 2

2M
=
p′2

2m
+
P ′2

2M
(i)

or
p2 − p′2
2m

= −P
2 − P ′2
2M

. (ii)

Making use of the conservation of momentum,

p+ P = p′ + P ′ ⇒ p− p′ = −(P − P ′) , (iii)
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dividing (ii) by (iii) we obtain another first order equation:

p+ p′

m
= −P + P ′

M
. (iv)

Equations (iii) and (iv) are two equations for the two unknowns p′ and
P ′. The quantity of interest is p′, for which we find

p′ =
2mP − (M −m)p

M +m
. (v)

Now, the momentum ∆p gained by the piston is equal to the momentum

lost by the molecule, and thus

∆p = p− p′ = 2m(v − u)
1 +m/M

, (vi)

and since the mass of the molecule is negligible compared to the mass of

the piston m/M 	 1, we obtain (3.1.15). The molecule’s velocity after

the collision is obtained using (v):

v′ =
p′

m
, (vii)

and for m	M ,

v′ � 2u− v .
Solution 1.5 Exercise on page 234

(a) The work performed by the system due to a change dX in the param-

eter is given by Eq. (3.1.8):

δW =
1

β

∂ lnZ

∂X
dX . (i)

The internal energy E is given by (3.1.3):

E = −∂ lnZ
∂β

. (ii)

The energy change dE is made of a part that is due to the change in

temperature, and a part that is due to the volume change:

dE =
∂E

∂X
dX +

∂E

∂β
dβ = −∂

2 lnZ

∂β∂X
dX − ∂2 lnZ

∂β2
dβ . (iii)

From (i) and (iii) we obtain

dE + δW =

(
1

β

∂ lnZ

∂X
− ∂

2 lnZ

∂β∂X

)
dX − ∂2 lnZ

∂β2
dβ , (iv)

which is Eq. (3.1.25).
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(b) For the right hand side of (3.1.25) to be the change of a state function

it should be an exact differential.

The condition for the expression M(x, y)dx +N(x, y)dy to be an

exact differential is

∂M

∂y
=
∂N

∂x
⇒ ∂N

∂x
− ∂M

∂y
= 0 . (v)

(See e.g. Part II, Chap. 0.) Writing the right hand side of (3.1.25) in

the form

MdX +Ndβ , (vi)

we have to calculate

∂N

∂X
− ∂M

∂β
= − ∂

3 lnZ

∂β2∂X
− 1

β

∂2 lnZ

∂β∂X
+

1

β2
∂ lnZ

∂X
+
∂3 lnZ

∂β2∂X

= − ∂

∂β

(
1

β

∂ lnZ

∂X

)
.

This expression does not vanish in general, hence (vi), and conse-

quently the right hand side of Eq. (3.1.25), is not an exact differential.

Solution 1.6 Exercise on page 235

First we write (3.1.26) as

β(dE + δW ) =MdX +Ndβ (i)

and calculate

∂N

∂X
− ∂M

∂β
= −β ∂

3 lnZ

∂X∂β2
− ∂2 lnZ

∂β∂X
+

∂

∂β

(
β
∂2 lnZ

∂X∂β

)
= 0 .

Thus (i) is an exact differential, and we must seek the function from which

it is derived. We shall denote this function by S/k. We note that

N = −β∂
2 lnZ

∂β2
=

∂

∂β

(
lnZ − β∂ lnZ

∂β

)
. (ii)

The coefficientM of dX in (3.1.26) can be derived from the same function:

M =
∂

∂X

(
lnZ − β∂ lnZ

∂β

)
, (iii)

so k−1S is given by Eq. (3.1.27).



296 Solutions to exercises in the text

Solution 1.7 Exercise on page 235

S = −
(
∂F

∂T

)
X,N

= k
∂

∂T
(T lnZ) = k lnZ + kT

∂ lnZ

∂T
.

Here we change variables from T to β, and as

T
∂ lnZ

∂T
= −β∂ lnZ

∂β

we obtain

S = k lnZ − kβ∂ lnZ
∂β

,

which is the required equation.

Solution 1.8 Exercise on page 236

The Helmholtz free energy is F = E − TS. Substituting for F and S the

expressions (3.1.32) and (3.1.33), respectively, we obtain

E = F + TS = −NkT ln

(
2 cosh

µBH

kT

)

+NkT

[
ln

(
2 cosh

µBH

kT

)
− µBH

kT
tanh

µBH

kT

]

= −NµBH tanh
µBH

kT
,

as we obtained in (2.5.13).

Remark: In (2.5.13) n denotes the number of spins in the system.

Solution 1.9 Exercise on page 236

The specific heat at constant field can be found from the energy as in

(2.5.17) or, alternatively, with the help of the entropy. Since δQ = TdS,

the specific heat at constant field will be [cf. Eq. (2.0.13)]

cH =
1

N
T

(
∂S

∂T

)
H,N

.

Differentiating S in Eq. (3.1.33) and substituting it here, yields

cH = kT

[
(−µBH/kT 2) sinh(µBH/kT )

cosh(µBH/kT )
+
µBH

kT 2
tanh

µBH

kT

− µBH

kT
· −µBH/kT 2

cosh2(µBH/kT )

]
=

µ2BH
2

kT 2 cosh2(µBH/kT )
,

which is Eq. (2.5.18).
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Solution 1.10 Exercise on page 236

We first obtain S(T,H,N) from F , as in Eq. (3.1.33), and then convert

the dependence on T into a dependence on E. To this end we use the

relation between E and T as given by (2.5.13); see Solution 1.8 as well.

We also use the identity

1 + tanhx

1− tanhx
= e2x , (i)

which is obtained by writing

tanhx =
sinhx

coshx
=
ex − e−x
ex + e−x

=
e2x − 1

e2x + 1
,

and solving for e2x. Equation (i) implies that

x =
1

2
ln(1 + tanhx)− 1

2
ln(1− tanhx)

=
1

2
ln

(
1

2
+

1

2
tanhx

)
− 1

2
ln

(
1

2
− 1

2
tanhx

)
. (ii)

In addition, since cosh2 x− sinh2 x = 1 we can write

coshx = (1− tanh2 x)−1/2 = (1 + tanhx)−1/2(1− tanhx)−1/2 ,

which implies that

ln coshx = −1

2
ln(1 + tanhx)− 1

2
ln(1− tanhx)

= −1

2
ln

(
1

2
+

1

2
tanhx

)
− 1

2
ln

(
1

2
− 1

2
tanhx

)
− ln 2 . (iii)

Now, for convenience, we denote x = µBH/kT in the equation for the

entropy (3.1.33), obtained from F , and find

S = Nk[ln(2 cosh x)− x tanhx]

= −Nk
[
1

2
ln

(
1

2
+

1

2
tanhx

)
+

1

2
ln

(
1

2
− 1

2
tanhx

)

+
1

2
ln

(
1

2
+

1

2
tanhx

)
tanhx− 1

2
ln

(
1

2
− 1

2
tanhx

)
tanhx

]

= −Nk
[(

1

2
+

1

2
tanhx

)
ln

(
1

2
+

1

2
tanhx

)

+

(
1

2
− 1

2
tanhx

)
ln

(
1

2
− 1

2
tanhx

)]
, (iv)

where we have used the identities (ii) and (iii).
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From the expression for the energy

E = −NµBH tanh
µBH

kT

we obtain

tanhx = −E/N
µBH

, (v)

and then S in (iv) takes the form

S = −k
[(
N

2
− E

2µBH

)
ln

(
1

2
− E/N

2µBH

)

+

(
N

2
+

E

2µBH

)
ln

(
1

2
+
E/N

2µBH

)]
,

which is Eq. (2.3.13).

Solution 1.11 Exercise on page 237

First, we calculate ZC with the shifted energies:

ZC =
∑
i

e−β(Ei+C) = e−βC
∑
i

e−βEi = Ze−βC ,

where Z is the partition function of the system with the energies Ei.

The average energy, (3.1.3), is

〈E〉C = −∂ lnZC

∂β
= − ∂

∂β
(lnZ − βC) = −∂ lnZ

∂β
+ C = 〈E〉 + C .

Namely, the average energy has changed by C, i.e. by the same constant

that we added to the microscopic energies.

The new free energy FC [Eq. (3.1.30)],

FC = − 1

β
lnZC = − 1

β
(lnZ − βC) = F + C ,

and the magnetization (2.5.8) is unchanged:

〈M〉C =
1

β

∂ lnZC

∂H
= −∂FC

∂H
= − ∂F

∂H
= 〈M〉 .

Solution 1.12 Exercise on page 238

F (E) = E − TS is minimal when

∂F

∂E
= 0 .
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The dependence on E appears in the first linear term and is also hidden

in the entropy and thus, since T is constant,

∂F

∂E
= 1− T ∂S

∂E
= 0 ,

and from here (3.1.38) is immediately obtained.

Solution 1.13 Exercise on page 239

(a) Substituting µBH/kT = 0.5 into (2.5.13) we obtain

〈E〉
µBHN

= − tanh(0.5) = −0.4621 ,

which is exactly the same result as obtained from Fig. 3.1.2.

(b) Substituting into Eq. (3.1.32) we obtain

F

NkT
= − ln[2 cosh(0.5)] = −0.8133 ,

and this is exactly the value obtained from the figure or from direct

substitution of 〈E〉 of (a) into Eq. (3.1.41).

(c) The requirement that F be minimal yields an equation for the energy

at the minimum,

0 =
∂F

∂E
= 1− kT

2µBH
ln

(
µBHN −E
µBHN +E

)
, (i)

so that
µBHN −E
µBHN +E

= exp

(
2µBH

kT

)
(ii)

or

E = −µBHN tanh

(
µBH

kT

)
, (iii)

and this is the familiar expression for the average energy of the para-

magnet at temperature T . In order to obtain the value of F at equi-

librium, we have to substitute into (3.1.41) the expression for E which

mimimizes F (E), namely (iii).

Denoting
µBH

kT
= x (iv)

we can write F in the form

F = NkT

{
−x tanhx+ 1

2
(1− tanhx) ln

[
1

2
(1− tanhx)

]

+
1

2
(1 + tanhx) ln

[
1

2
(1 + tanhx)

]}
= NkT

{
− x tanhx

+
1

2
ln

[
1

4
(1− tanh2 x)

]
+

1

2
tanhx ln

(
1 + tanhx

1− tanhx

)}
. (v)
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We now use the identities

1− tanh2 x =
1

cosh2 x
, (vi)

1 + tanhx

1− tanhx
= e2x , (vii)

and obtain

F = NkT

[
−x tanhx− 1

2
ln(4 cosh2 x) + x tanhx

]

= −NkT ln(2 cosh x) , (viii)

and this is exactly Eq. (3.1.32).

Solution 1.14 Exercise on page 241

The requirement of maximum entropy implies that

∂

∂Na
[S(Ea, Va,Na) + S(Eb, Vb,Nb)] = 0 .

Performing the differentiation and using the fact that ∂Nb/∂Na = −1, we
obtain

∂Sa
∂Na

− ∂Sb
∂Nb

= 0

or
∂Sa
∂Na

=
∂Sb
∂Nb

;

namely, the equality of the quantity ∂S/∂N determines the equilibrium

between the systems.

Now
∂S

∂N
= −µ

T

and since the temperatures must be equal so do the chemical potentials.

Solution 2.1 Exercise on page 246

The partition function in our example is obtained from Eq. (3.2.3):

Z =
∑

n1,n2,n3

e−βE(n1,n2,n3) ,

where each of the summation variables takes the values 0, 1 and 2.

Now, the energy of a given state described by the triplet (n1, n2, n3)

is

E(n1, n2, n3) = h̄ω

(
3

2
+ n1 + n2 + n3

)
=

3

2
h̄ω + h̄ω(n1 + n2 + n3) .
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Note that the first term, 3
2 h̄ω, is common to all states and is independent

of (n1, n2, n3). Hence

e−βE(n1,n2,n3) = e−3βε/2e−β(n1+n2+n3)ε ,

where we have denoted h̄ω = ε.

In order to find the partition function, we have to sum over all states

of the system: Each oscillator has three possible states. Thus a system of

three oscillators has 33 = 27 microscopic states which are described by all

the triplets (n1, n2, n3) in the table below.

(0,0,0)

(0,0,1) (0,1,0) (1,0,0)

(0,0,2) (0,2,0) (2,0,0) (0,1,1) (1,0,1) (1,1,0)

(0,1,2) (0,2,1) (1,0,2) (1,2,0) (2,0,1) (2,1,0) (1,1,1)

(0,2,2) (2,0,2) (2,2,0) (1,1,2) (1,2,1) (2,1,1)

(1,2,2) (2,1,2) (2,2,1)

(2,2,2)

Note that all the states that appear in the same row have the same

energy.

To conclude,

Z = e−3βε/2(1 + 3e−βε + 6e−2βε + 7e−3βε + 6e−4βε + 3e−5βε + e−6β) .

Let us check if indeed this result is obtained from (3.2.4), i.e. from the

cube of the single particle partition function. For a single oscillator

z =
2∑

n=0

e−βεn = e−βε/2(1 + e−βε + e−2βε) ,

z3 = e−3βε/2
(
1 + e−3βε + e−6βε + 3e−βε + 3e−2βε + 3e−2βε + 3e−4βε

+ 3e−4βε + 3e−5βε + 6e−3βε
)

= e−3βε/2
(
1 + 3e−βε + 6e−2βε + 7e−3βε + 6e−4βε + 3e−5βε

+e−6βε
)
= Z ,

where we have used the identity

(1 + x+ y)3 = 1 + x3 + y3 + 3x+ 3y + 3x2 + 3y2 + 3x2y + 3xy2 + 6xy .

Equations (3.2.3) and (3.2.4) are indeed equal.
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Solution 2.2 Exercise on page 246

The average energy is given by Eq. (3.1.3):

〈E〉 = −∂ lnZ
∂β

= −N ∂ ln z
∂β

,

where the partition function of a single oscillator, z, is given by Eq. (3.2.7):

z = e−βh̄ω/2(1− e−βh̄ω)−1 .

Hence the average energy per oscillator 〈E〉/N can be derived directly

from the single particle partition function:

〈ε〉 = − ∂

∂β
ln

e−βh̄ω/2

1− e−βh̄ω = − ∂

∂β

[
−βh̄ω/2− ln(1− e−βh̄ω)

]

=
h̄ω

2
+

h̄ω

eh̄ω/kT − 1
,

where we have substituted β = 1/kT .

Solution 2.3 Exercise on page 246

(a) Direct calculation of 〈n〉:
First we derive the probability for a given oscillator to be in the nth

energy level, in a way similar to the calculation of the probability for

a given magnetic moment to be found in state σ = +1 or σ = −1
in Part II. To do this we recall that the probability of a microscopic

state i, given by the set of excitation numbers (n1, n2, . . . , nN ), is

P (n1, n2, . . . , nN ) = Z−1e−βE(n1,n2,...,nN ) .

Now, since E is the sum of single oscillator energies εn and Z is the

product of N identical factors Z = zN , we can write the probability

for a microscopic state as the product of N probabilities:

P (n1, n2, . . . , nN ) = P (n1)P (n2) · . . . · P (nN ) ,

where

P (n) = z−1e−βεn .

Using the excitation probabilities we calculate the average according

to

〈n〉 = z−1
∑
n=0

ne−βεn .
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Substituting εn from (3.2.1) and z from (3.2.6) with the notation

ε = h̄ω, we obtain

〈n〉 = e−βε/2
∑∞

n=0 ne
−βnε

e−βε/2
∑∞

n=0 e
−βnε .

To calculate the right hand side we use a trick similar to the one used

to prove Eq. (3.1.3) (Solution 1.2). Note that the numerator is the

derivative of the denominator with respect to the variable x = βε. We

thus write

〈n〉 =
∑∞

n=0 ne
−xn∑∞

n=0 e
−xn = − d

dx
ln

( ∞∑
n=0

e−xn
)
= − d

dx
ln

(
1

1− e−x
)

=
e−x

1− e−x =
1

ex − 1
.

Substituting x = βε, β = 1/kT, ε = h̄ω, we obtain Eq. (3.2.9):

〈n〉 = 1

eh̄ω/kT − 1
.

(b) Calculation of 〈n〉 from (3.2.8).

Averaging Eq. (3.2.1) for a given oscillator yields

〈ε〉 =
〈
h̄ω

2

〉
+ 〈nh̄ω〉 = h̄ω

2
+ h̄ω〈n〉 .

This result must be equal to (3.2.8), and hence

〈n〉 = 1

eh̄ω/kT − 1
,

as obtained above.

Solution 2.4 Exercise on page 247

(a) At low temperatures h̄ω/kT 
 1 and eh̄ω/kT 
 1. Hence

〈n〉 ∼ 1

eh̄ω/kT
= e−h̄ω/kT .

(b) At high temperatures h̄ω/kT 	 1, so it is possible to use the power

expansion of the exponential function,

ex � 1 + x+
x2

2!
+ . . . ,
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and to take only the first two terms,

eh̄ω/kT � 1 +
h̄ω

kT
,

so that

〈n〉 ∼ 1

1 + h̄ω/kT − 1
=
kT

h̄ω
.

Solution 2.5 Exercise on page 248

(a) The free energy of a single harmonic oscillator is F/N :

f =
F

N
= −kT ln z ,

where z is the partition function (3.2.7):

z =
e−βh̄ω/2

1− e−βh̄ω .

Hence

f =
h̄ω

2
+ kT ln(1− e−h̄ω/kT ) .

The entropy of a single harmonic oscillator

s =
S

N
= − ∂f

∂T
= −k ln(1− e−h̄ω/kT )− kT (−h̄ω/kT 2)e−h̄ω/kT

1− e−h̄ω/kT

= −k
[
ln(1− e−h̄ω/kT )− h̄ω

kT

1

eh̄ω/kT − 1

]
.

It is worth noting that we could have obtained the same result by

using the relation S = (E − F )/T [(3.1.28) or (3.1.29)].

The free energy (in units of h̄ω) of a single harmonic oscillator as a function of the
temperature (in units of h̄ω/k).
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The entropy (in units of k) of a single harmonic oscillator as a function of the temper-
ature (in units of h̄ω/k).

(b) The transition temperature between the two types of behavior is in

the region in which the quantity kT/h̄ω is not very large and not very

small, namely kT/h̄ω � 1. This can also be seen from both graphs

above. The transition temperature is thus

T � h̄ω

k
� 10−34 × 1013 × 2π

1.4× 10−23
� 450 K .

Solution 2.6 Exercise on page 250

(a) Differentiating the average energy with respect to the temperature in

Eq. (3.2.13) gives the specific heat:

C =
∂〈E〉
∂T

= 3Nh̄ω
h̄ω/kT 2eh̄ω/kT

(eh̄ω/kT − 1)2
.

The molar specific heat is the specific heat calculated for N = N0

atoms, where N0 is the Avogadro number. Recalling that N0k = R,

we obtain

C = 3R

(
h̄ω

kT

)2 eh̄ω/kT

(eh̄ω/kT − 1)2
.

(b) The entropy S can be calculated by differentiating the free energy

given in (3.2.12):

S = −
(
∂F

∂T

)
,

or with the help of the relation S = (E −F )/T , but the simplest way

is to use the result from Exercise 2.5.

S = −3Nk
[
ln(1− eh̄ω/kT )− h̄ω/kT

eh̄ω/kT − 1

]
.
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Now, since δQ = TdS, the specific heat can also be derived from the

entropy [Eq. (2.0.14)].

C = T

(
∂S

∂T

)
N

= − 3NkT

[
(−h̄ω/kT 2)e−h̄ω/kT

1− e−h̄ω/kT +
h̄ω/kT 2

eh̄ω/kT − 1

− (h̄ω/kT )2(1/T )eh̄ω/kT

(eh̄ω/kT − 1)2

]
,

in which the first two terms cancel. We denote N0k = R, and obtain

the molar specific heat

C = 3R

(
h̄ω

kT

)2 eh̄ω/kT

(eh̄ω/kT − 1)2
.

Solution 2.7 Exercise on page 251

(a) ω = 107 s−1:
The amount of heat (per mole) required in order to raise the temper-

ature of the crystal by ∆T is

∆Q = C∆T ,

where C is the specific heat (per mole) of the crystal. Around T = 1 K

h̄ω

kT
� 10−34 × 107

1.4 × 10−23 × 1
� 7× 10−5 	 1 .

This is, therefore, a very high temperature for this crystal, and it is

possible to approximate (3.2.16) by (3.2.17):

C � 3R � 25 J/K .

For ∆T = 10−2 K

∆Q = 3R∆T � 0.25 J .

Around T = 100 K we certainly have

h̄ω

kT
	 1 ,

so that there as well

∆Q � 0.25 J .

In both cases we have used the high temperature approximation.
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(b) ω = 1012 s−1:
In this case, for T = 100 K,

h̄ω

kT
� 7× 10−2 	 1 .

Still 100 K is a high temperature. Hence we have again

∆Q = C∆T � 3R∆T � 0.25 J .

But, for T = 1 K,
h̄ω

kT
� 7 .

Hence we must use the low temperature approximation to obtain

C � 3R

(
h̄ω

kT

)2
e−h̄ω/kT = 3R · 49 · e−7 � 1.25 J/K

and

∆Q � 1.25 × 10−2 J .

Solution 3.1 Exercise on page 255

The energy of a harmonic oscillator has the form

E =
p2

2m
+

1

2
mω2x2 . (i)

A particle that moves in that potential will conserve its energy, and hence

its trajectory will be a curve of constant E. Curves of constant energy in

phase space (x, p) are ellipses. We can identify the elliptic structure by

rewriting (i) in the form

p2

2mE
+

x2

2E/mω2
= 1 .

The axes of the ellipse are thus

a =
√
2mE ,

b =
√
2E/mω2 .

This description of the ellipse does not expose the time dependence. This

is provided by the parametric description of the ellipse, namely writing

x and p as functions of a quantity that varies from one point to another

along the particle’s trajectory in phase space. This variable is of course
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the time, and if we choose the time such that at t = 0 x is maximal, we

obtain

x = x0 cosωt ,

p = mẋ = −mωx0 sinωt .

x0, of course, is not another free variable. It is the axis of the ellipse,

determined by the energy. Substituting x and p in (i) gives

x0 = b =

√
2E

mω2
.

The next figure illustrates several trajectories of the (classical) harmonic

oscillator in phase space.

Each of five radial lines intersects all the trajectories at points corre-

sponding to one of five times: (0, 18T,
1
6T,

1
4T,

1
2T ).

➤

➤➤
➤

➤

t=T/2

p

t=T/4 t=T/6
t=T/8

t=0

x

Solution 3.2 Exercise on page 256

The average kinetic energy corresponding to the motion along x is

〈
p2x
2m

〉
=

∫
(p2x/2m)e−βp2/2md3p

∫
e−βU(r)d3r∫

e−βp2/2md3p
∫
e−βU(r)d3r

=

∫
(p2x/2m)e−βp2/2md3p∫

e−βp2/2md3p

=

∫
(p2x/2m)e−βp2x/2mdpx

∫
e−βp2y/2mdpy

∫
e−βp2z/2mdpz∫

e−βp2x/2mdpx
∫
e−βp2y/2mdpy

∫
e−βp2z/2mdpz

=

∫
(p2x/2m)e−βp2x/2mdpx∫

e−βp2x/2mdpx
.
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We have already calculated such expressions in Chap. 1 of Part I. The

result is 〈
p2x
2m

〉
=

1

2
kT ,

which is in accord with the equipartition law (an energy of kT/2 per degree

of freedom).

Solution 3.3 Exercise on page 258

(a) The particle’s potential is

U(r) =
1

2
Kr2 .

As long as the vibrational amplitude of the particle is less than L/2

or, alternatively, its total energy is less than 1
2K(L/2)2, it will not

“feel” the existence of the walls of the box.

In order for the particle to reach the wall of the box, it needs at

least this amount of energy. If the origin of this energy is thermal,

then

kT =
1

2
K

(
L

2

)2
or

T =
KL2

8k
.

(b) If the box becomes infinite, the average of U(r) is given by (3.3.10)

or (3.3.11), where the integration over the particle’s position extends

from −∞ to +∞, in each of the three spatial directions.

〈U(r)〉 =
∫
(Kr2/2)e−βKr2/2dV∫

e−βKr2/2dV
= − ∂

∂β
ln

(∫
dV e−βKr2/2

)
.

Since the integration over r is over the entire space, it is possible to cal-

culate the last expression as in Chap. 1 of Part I. See also Eq. (1.1.60).

The integral has the dimensions of volume or (length)3, and since the

only quantity with the dimensions of length in the integral is 1/
√
βK,

it is clear that the integral is proportional to (βK)−3/2. Differentiating

with respect to β yields

〈U(r)〉 = 3

2
kT .

Solution 4.1 Exercise on page 262

Since the particles are identical, the functions ε1(r1,p1), ε2(r2,p2), etc.,

have the same dependence upon the position of the particles and upon
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their momentum, and hence the partition function will take the form

Zc =

∫
dV1dτ1 . . . dVNdτNe

−β[ε(r1,p1)+...+ε(rN ,pN )] .

The exponent is a product of exponents of the type e−βε(r,p), one factor

for each particle. As a result the integral is a product of integrals and we

can write

Zc =

∫
dV1dτ1e

−βε(r1,p1)
∫
dV2dτ2e

−βε(r2,p2) · . . . ·
∫
dVNdτNe

−βε(rN ,pN ) .

All of the integrals in the product are identical, as ri, pi are variables of

integration, and thus

Zc =

[∫
dV dτe−βε(r,p)

]N
= zN .

Solution 4.2 Exercise on page 262

The single particle partition function (3.4.4) is

zc =

∫
dV e−βU(r)

∫
dτe−βp

2/2m .

The first integral is over the volume of the box. Since the particle moves

freely within the box, namely U(r) = 0 in the region of integration, we

have ∫
dV e−βU(r) =

∫
box

dV = V .

For the calculation of the second integral we write A = β/2m, and then

we have to calculate an integral of the form

I =

∫
dpxdpydpze

−A(p2x+p2y+p2z) ,

whose value, as found for instance in Exercise 1.13 of Part I, is (π/A)3/2.

Hence

I =

(
2πm

β

)3/2
,

so that

zc = V

(
2πm

β

)3/2
= V (2πmkT )3/2 .

Solution 4.3 Exercise on page 263

The specific heat at constant volume is obtained directly from the tem-

perature derivative of S(T, V,N) in Eq. (3.4.8):(
∂S

∂T

)
V,N

=
3Nk

2T
⇒ CV =

3

2
Nk .
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In contrast, to obtain the specific heat at constant pressure from the

entropy, we first have to express the entropy as a function of the pressure

instead of the volume. This is done using the ideal gas equation (3.4.7).

We thus obtain

S(T, P,N) = Nk

{
ln

[
(2πm)3/2(kT )5/2N

P

]
+

3

2

}

and from here (
∂S

∂T

)
P,N

=
5Nk

2T
⇒ CP =

5

2
Nk .

Solution 4.4 Exercise on page 263

The internal energy is obtained from the derivative of the partition func-

tion [Eq. (3.1.3)]:

〈E〉 = − ∂

∂β
lnZ = −N ∂

∂β
ln z = NkT 2 ∂

∂T
ln z =

3

2
NkT .

Since in an isochoric process δE = δQ,

CV =

(
∂E

∂T

)
N,V

.

And indeed differentiation yields the previous result. In contrast, CP

cannot be simply related to the energy since δE �= δQ in an isobaric

process. For the terminology see Part II, Chap. 0.

Solution 4.5 Exercise on page 264

The partition function of a mixture of gases is written in the form

Zc =

∫
dV1dτ1 . . . dVNdτNe

−βE ,

where E is the energy in Eq. (3.4.11).

Since the energy is a sum of the energies of each particle separately, and

there are no terms connecting the position variables and the momentum

variables, the integral factors into a product as in Solution 4.1, this time

of different factors:

Zc =

[∫
dV1dτ1 exp

(
− βp

2
1

2m1

)]N1
[∫

dV2dτ2 exp

(
− βp

2
2

2m2

)]N2

. . .

[∫
dVMdτM exp

(
− βp

2
M

2mM

)]NM

.
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Each of the factors in the product can be identified as the partition func-

tion of a single particle of type j raised to the power of the number of

particles of that type Nj .

Thus we have obtained

Zc = (z1)
N1(z2)

N2 . . . (zM )NM ,

where

zj =

∫
dV dτ exp

(
− βp

2

2mj

)
.

Solution 4.6 Exercise on page 265

The free energy of the mixture is

F = −kT

N lnV +

3

2

M∑
j=1

Nj ln(2πmjkT )


 .

and the entropy

S = −
(
∂F

∂T

)
V,Ni

= Nk

(
3

2
+ lnV

)
+

3

2
k

M∑
j=1

Nj ln(2πmjkT ) .

The specific heat at constant volume is

CV = T

(
∂S

∂T

)
V,Ni

=
3

2
kT

M∑
j=1

Nj

T
=

M∑
j=1

CVj ,

where CVj = 3
2Njk, as we obtained for a monocomponent gas in

Eq. (3.4.9); namely, the specific heat of a mixture of gases is equal to the

sum of the partial specific heats.

The specific heat at constant pressure is obtained in a similar way (see

also Solution 4.3), and again

CP = T

(
∂S

∂T

)
P,Ni

=
M∑
j=1

CPj ,

where

CPj =
5

2
NjkT .

The expression for the entropy can be written in the form

S =
M∑
j=1

Njk

[
3

2
+ lnV +

3

2
ln(2πmjkT )

]
=

M∑
j=1

Sj ,
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where Sj is the partial entropy of the jth constituent of the gas — the

expression we obtained in Eq. (3.4.8). Namely, the entropy of the mixture

is equal to the sum of partial entropies. Actually, we could have started

from this result to derive the additivity of both specific heats.

Solution 4.7 Exercise on page 266

We have to show that ∫
P (r1,p1)dV1dτ1 = 1 .

Using (3.4.19) the left hand side can be written as∫ [∫
P (r1,p1, . . . , rN ,pN )dV2dτ2 . . . dVNdτN

]
dV1dτ1

=

∫
P (r1,p1, . . . , rN ,pN )dV1dτ1 . . . dVNdτN = 1 ,

since P (r1,p1, . . . , rN ,pN ) has been defined in (3.4.18) as normalized over

the full N -particle space.

Solution 4.8 Exercise on page 267

The probability distribution function of any system, not necessarily an

ideal gas, is

P (r1,p1, . . . , rN ,pN ) = Z−1c exp [−βE(r1,p1, . . . , rN ,pN )] .

Now, the assumption (3.4.23) implies that

P = Z−1c exp(−βap21x − βE′) .
Hence the average of ap21x will be

〈ap21x〉 =
∫
dV1dτ1 . . . dVNdτNap

2
1x exp(−βp21x) exp(−βE′)∫

dV1dτ1 . . . dVNdτN exp(−βp21x) exp(−βE′)
.

In the denominator and the numerator there appears a product of 6N

integrals (over 3N position variables and 3N momentum variables).

The integrals in the denominator and in the numerator are equal,

except for the integral over the x component of the momentum of particle

number 1 which factors out. We therefore obtain

〈ap21x〉 =
∫
dp1xap

2
1x exp(−βap21x)∫

dp1x exp(−βap21x)
,

which is Eq. (3.4.24).
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Solution 4.9 Exercise on page 270

(a) We have λT /a =
√

h2

mka2
· T− 1

2 . In SI units: h = 6.6 × 10−34;
k = 1.38 × 10−23; mHe = 6.7 × 10−27 and a = 10−2, we have

λT /a = 2.17 × 10−8 × T− 1
2 .

Hence: at T = 300 K, λT /a = 1.3 · 10−9;
at T = 10 K, λT /a = 7.1 · 10−9.

(b) λT /a = 1 implies that T = 4.7 · 10−16 K.

Solution 4.10 Exercise on page 272

The energy levels of a single particle of mass m inside a cubic container

of volume V are

εnpq =
h2

8mV 2/3
(n2 + p2 + q2)

and the energy of a microscopic state of N such particles is

E(n1, p1, q1, . . . , nN , pN , qN ) =
h2

8mV 2/3
(n21+p

2
1+q

2
1+ . . .+n

2
N+p2N+q2N ) .

Since E explicitly depends on the volume, we can repeat precisely the

same arguments that brought us from (3.1.6) to (3.1.8) (with X = V )

and write

δW =−Z−1 ∑
(n1,p1,q1,...)

∂E(n1, p1, q1, . . .)

∂V
e−βE(n1,p1,q1,...)dV =

1

β

∂ lnZ

∂V
dV .

Solution 5.1 Exercise on page 276

(a) Paramagnet

The free energy of the paramagnet has the form (3.1.32):

F = −NkT ln

[
2 cosh

(
µBH

kT

)]
.

F in this case is proportional to N and is independent of the volume.

Namely, it is definitely extensive:

F (2N) = 2F (N) .

The same is true of its derivatives with respect to intensive parameters.

Among others, the entropy S = −(∂F/∂T )H,N must be extensive. This
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may be seen explicitly from the expression we obtained for the entropy,

(3.1.33):

S = Nk

{
ln

[
2 cosh

(
µBH

kT

)]
−
(
µBH

kT

)
tanh

(
µBH

kT

)}
,

which is also proportional to N and independent of the volume.

The behavior of the entropy at low temperatures is obtained by noting

that 2 cosh x ∼ ex, tanh x → 1 for x → ∞, and thus we obtain in this

limit

S � Nk
[
ln exp

(
µBH

kT

)
− µBH

kT

]
= 0 .

(b) System of oscillators

The free energy (3.2.12) is

F = 3N

[
h̄ω

2
+ kT ln(1− e−βh̄ω)

]
.

As in the case of the paramagnet, the extensivity is due to the explicit

proportionality to N and the independence of the volume. The same

applies to S, which was calculated in Solution 2.6(b):

S = −3Nk
[
ln(1− e−h̄ω/kT )− h̄ω/kT

eh̄ω/kT − 1

]
.

Now, at low temperatures the first term tends to ln 1 = 0. The second

term is of the form xe−x (x = h̄ω/kT ) and in the limit x → ∞ vanishes

as well. Thus, here as well, when T → 0, S → 0. See also the figure in

Solution 2.5.

Solution 5.2 Exercise on page 277

We start from a state in which two gases, of type A and type B, are in

volumes, VA and VB, respectively at equal pressure, P , and temperature,

T .

MB MAM

B A
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When the partition M is removed, the gases mix and a uniform state

forms in the joint volume. This is Joule’s expansion: no work is performed,

the energy does not change, and hence the temperature does not change.

The pressure of each of the two gases in the combined volume is

PA = P
VA

VA + VB
,

PB = P
VB

VA + VB
,

respectively, and hence the total pressure (according to Dalton’s law) re-

mains

PA + PB = P .

We now insert, as described in the figure, two partitions,MA andMB. MA

is only permeable to molecules of type A, and MB is only permeable to

molecules of type B. We separate the two gases by bringing the partitions

MA and MB to the position of the partition M . Obviously, after the

partitions reach this location, each gas will be in its original volume. But

work has been performed upon both of them — the work required to

decrease the volume of each of the gases and to increase its pressure. This

work raises the temperature of both gases, and they do not return to their

original state.

Solution 5.3 Exercise on page 279

In a canonical ensemble, the probability of the microscopic state i is

Pi =
1

Z
e−βEi .

The partition function is the normalization coefficient of the probability.

The average of a physical quantity A is given by (3.4.36b):

〈A〉 = Z−1
∫ (

dV dτ

h3

)N
A(ri,pi)e

−βE(ri,pi) ,

where the correction that we have introduced necessitates changing the

integration region in phase space to the region of states that are not

connected by the exchange of identical particles. Since the exchange of

identical particles does not change the value of A (if this were not so,

they would not be identical), the reduction of the region of integration is

equivalent to a division by N ! of the integral performed over the entire

phase space. Thus in calculating 〈A〉 we can leave the region of integration

unchanged and correct for this by dividing the integral by N !.
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The average of A will be given by the ratio between the corrected

integral and the corrected Z. But the two are multiplied by an identical

factor, and thus the new average is equal to the original one.

Solution 5.4 Exercise on page 279

It is possible to distinguish between molecules of different groups; how-

ever, it is not possible to distinguish between molecules of the same group.

That is, in each group j there are Nj particles that are indistinguishable

from one another, and thus each microscopic state has Nj ! internal per-

mutations which are to be considered as a single state.

In the calculation of (3.4.12) we counted a total number of states that

is N1!N2!N3! . . . NM ! times larger than the number of microscopic states.

Hence, the corrected partition function is obtained by dividing (3.4.12)

by this number:

Z =
(z1)

N1

N1!

(z2)
N2

N2!
. . .

(zM )NM

NM !
.

Solution 5.5 Exercise on page 279

The paramagnet is a system of N spins in fixed positions. Hence the

position of each spin does not count as a degree of freedom, as witnessed

by the fact that the energy of each spin does not include a kinetic term.

Such spins cannot exchange positions. Therefore, the summation over the

states of the spins does not include a summation over their positions, so

that no allowance has to be made for states in which the positions of two

spins have been exchanged.

The situation in the system of oscillators is similar. Here each oscil-

lator does have a kinetic term; however, each oscillator (atom) vibrates

around its own center of force, and again it is impossible to exchange two

oscillators.

Solution 5.6 Exercise on page 280

The pressure is given by the volume derivative of the free energy:

P = −
(
∂F

∂V

)
T,N

.

Substituting Eq. (3.5.7), we obtain again the equation of state of an ideal

gas.

The reason why there is no change in P is that the additive change in

F , due to the Gibbs correction, (3.5.5), is independent of the volume.

Similarly,

CV = T

(
∂S

∂T

)
V,N

, CP = T

(
∂S

∂T

)
P,N

.
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Substituting (3.5.8) we obtain

CV =
3

2
Nk ,

which is the usual result.

In order to calculate CP we have to express S in terms of T , P and

N instead of T , V and N , and this we do as in Solution 4.3 using the

equation of state.

S(T, P,N) = Nk

{
ln

[
(2πm)3/2(kT )5/2

Ph3

]
+

3

2

}

and thus we obtain

CP =
5

2
Nk .

The difference between S in (3.5.8) and S in (3.4.39) is independent of T ,

and hence CV and CP do not change.

Solution 5.7 Exercise on page 280

F = −NkT
[
ln

(
V

N

)
+

3

2
ln

(
2πmkT

h2

)
+ 1

]
,

µ =

(
∂F

∂N

)
T,V

= −kT
[
ln

(
V

N

)
+

3

2
ln

(
2πmkT

h2

)
+ 1− 1

]

= −kT
[
ln

(
V

N

)
+

3

2
ln

(
2πmkT

h2

)]
.

Denoting n = N/V (the density of molecules) we obtain (3.5.9).

Solution 5.8 Exercise on page 280

The free energy of a mixture of M different types of molecules (3.5.10) is

F = −kT
M∑
j=1

Nj

[
ln

(
V

Nj

)
+

3

2
ln

(
2πmjkT

h2

)
+ 1

]

and the pressure is

P = −
(
∂F

∂V

)
T,N

= kT
M∑
j=1

(
Nj

V

)
=

M∑
j=1

Nj
kT

V
=

M∑
j=1

Pj ,

where Pj is the partial pressure of the gas of type j.
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Solution 5.9 Exercise on page 280

The entropy is obtained from the free energy:

S = −
(
∂F

∂T

)
V,N

= k
M∑
j=1

Nj

[
ln

(
V

Nj

)
+

3

2
ln

(
2πmjkT

h2

)
+ 1

]
+ kT

M∑
j=1

3

2
Nj

1

T

= k
M∑
j=1

Nj

[
ln

(
V

Nj

)
+

3

2
ln

(
2πmjkT

h2

)
+

5

2

]
.

This is of course the sum of the partial entropies of each of the gases.

Solution 5.10 Exercise on page 281

The entropy before the removal of the partition is

S = k
2∑

j=1

Nj

[
ln

(
Vj
Nj

)
+

3

2
ln

(
2πmjkT

h2

)
+

5

2

]
,

where Vj and Nj represent the volume and the number of molecules on

each side of the partition.

After the removal of the partition, the volume of each of the gases is

V = V1 + V2, and the entropy is

S′ = k
2∑

j=1

Nj

[
ln

(
V

Nj

)
+

3

2
ln

(
2πmjkT

h2

)
+

5

2

]
.

The change in entropy is

∆S = S′ − S = k
∑
j

Nj ln

(
V

Vj

)
= k

(
N1 ln

V

V1
+N2 ln

V

V2

)
,

and of course ∆S > 0.

Solution 5.11 Exercise on page 282

The only contribution to the right hand side of (3.5.11a) is from the g0
states with Ei = E0, all of which have the same probability, 1/g0. Hence

the sum consists of g0 identical terms (1/g0) ln g0 so that in the limit

T → 0

S → −kg0
[
1

g0
ln g0

]
= −k ln

(
1

g0

)
= k ln g0 .
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Solution 5.12 Exercise on page 283

First we have to calculate the partition function of the classical (three-

dimensional) harmonic oscillator zc. The partition function of N classical

oscillators will, of course, be (zc)
N . zc can be calculated directly from

(3.4.35b):

zc =
1

h3

∫
dV dτ exp

[
−β
(
p2

2m
+
mω2

2
r2
)]

. (i)

This integral is a product of two three-dimensional Gaussian integrals

(see Solution 4.2). From the integration over the momentum we obtain

(2πmkT )3/2 and from the integration over space, (2πkT/mω2)3/2, so that

the overall result is

zc =

(
2πkT

hω

)3
=

(
kT

h̄ω

)3
. (ii)

Now, the free energy is

Fc = −NkT ln zc = −3NkT ln

(
kT

h̄ω

)
(iii)

and the entropy

Sc = −
(
∂Fc
∂T

)
N

= 3Nk

[
ln

(
kT

h̄ω

)
+ 1

]
. (iv)

This expression, of course, diverges when T → 0.

In order to see the behavior of the quantum Einstein solid we use the

result of Exercise 2.5:

S = −3Nk
[
ln(1− e−h̄ω/kT )− h̄ω

kT

1

eh̄ω/kT − 1

]
. (v)

At high temperatures

eh̄ω/kT − 1 � h̄ω

kT
, 1− e−h̄ω/kT � h̄ω

kT
, (vi)

and we recover the classical result:

S � −3Nk
[
ln

(
h̄ω

kT

)
− 1

]
= 3Nk

[
ln

(
kT

h̄ω

)
+ 1

]
. (vii)

At low temperatures we find this time that the entropy is bounded and

tends to zero, as can also be seen in the figure in Solution 2.5. When

T → 0, we have

e−h̄ω/kT 	 1 , eh̄ω/kT 
 1 . (viii)
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Thus, the first term in the brackets of (v) vanishes as e−h̄ω/kT . The second
term becomes

S � 3Nk ·
(
h̄ω

kT

)
exp

(
− h̄ω
kT

)
, (ix)

since the exponential dominates the denominator and when T → 0, S → 0.

Solution 6.1 Exercise on page 287

The average energy is

〈E〉 = 1

Z

∑
i

Eie
−βEi

and the specific heat is

Nc =
∂〈E〉
∂T

= − 1

kT 2

∂〈E〉
∂β

= − 1

kT 2

(
− 1

Z2

∂Z

∂β

∑
i

Eie
−βEi − 1

Z

∑
i

E2
i e
−βEi

)
.

We now note that the average energy appears in the first term once as

an explicit sum and a second time in the form −∂ lnZ/∂β, hence it is

proportional to 〈E〉2. The second term is 〈E2〉. Hence

Nc =
1

kT 2
(〈E2〉 − 〈E〉2) = 1

kT 2
〈(E − 〈E〉)2〉 = (∆E)2

kT 2
.

Solution 6.2 Exercise on page 287

The average energy per molecule of an ideal gas is

〈ε〉 = 3

2
kT

and the specific heat per molecule (at constant volume) is

c =
3

2
k .

Hence the substitution into (3.6.9) yields

∆E

E
=

√
2

3N
.
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Solution 1 Exercise on page 288

(a) The Gibbs free energy is

G = E − TS + PV = F + PV .

Substituting the expressions for F and P , (3.1.30) and (3.1.23), we

obtain

G = −kT lnZ + kTV
∂ lnZ

∂V
.

Since lnZ appears once with a derivative and once without it, we can

write G in the form

G = kT

(
V
∂ lnZ

∂V
− lnZ

∂V

∂V

)
= kTV 2 ∂

∂V

(
lnZ

V

)
.

(b) The enthalpy:

H = E + PV .

Substituting (3.1.3) and (3.1.23) we obtain

H = −∂ lnZ
∂β

+
1

β
V
∂ lnZ

∂V
=

1

β

(
V
∂ lnZ

∂V
− β∂ lnZ

∂β

)
.

Solution 2 Exercise on page 288

We denote the frequency of the oscillator number α by ωα. Its energy εα
takes the following values:

εα =

(
nα +

1

2

)
h̄ωα , (i)

A microscopic state of a system of 3N oscillators is described by 3N

excitation numbers (n1, n2, . . . , n3N ). Its energy is

E(n1, n2, . . . , n3N ) =
3N∑
α=1

εα . (ii)

322
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The partition function is the usual sum over all values of all nα. It factors

into a product of sums:

Z =
∑

n1,n2,...,n3N

exp[−βE(n1, n2, . . . , n3N )]

=
∑

n1,n2,...,n3N

exp

[
−βh̄ω1

(
n1 +

1

2

)]
exp

[
−βh̄ω2

(
n2 +

1

2

)]
· . . . ·

× exp

[
−βh̄ω3N

(
n3N +

1

2

)]

= z1z2 . . . z3N . (iii)

Each of the factors zα on the right is a partition function of a single

oscillator with frequency ωα, given by (3.2.7):

zα =
exp(−βh̄ωα/2)
1− exp(−βh̄ωα) . (iv)

The free energy will be

F = −kT lnZ = −kT
3N∑
α=1

ln zα =
h̄

2

3N∑
α=1

ωα + kT
3N∑
α=1

ln(1− e−βh̄ωα) . (v)

Note that the first term is the sum of all the zero point (ground state)

energies of all the oscillators and is a quantity which does not affect the

thermodynamic quantities that are derived from the partition function

such as the entropy, specific heat etc.

Solution 3 Exercise on page 288

The energy levels of the bounded oscillator are

En = ε0 + nε , 0 ≤ n < n0 . (i)

The partition function of a single oscillator will be

z = e−βε0
n0−1∑
n=0

e−βnε = e−βε0
1− e−βεn0
1− e−βε , (ii)

where this time we have used the expression for the sum of a finite geo-

metric series:
n0−1∑
n=0

xn =
1− xn0
1− x .

Note that the right hand side of (ii) tends to (3.2.7) when n0 →∞.
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(a) The average energy of the oscillator

〈E〉 = −∂ ln z
∂β

= ε0 − εn0e
−βεn0

1− e−βεn0 +
εe−βε

1− e−βε

= ε0 +
ε

eβε − 1
− εn0
eβεn0 − 1

. (iii)

The average degree of excitation is easily calculated from the average

energy, since

〈E〉 = ε0 + 〈n〉ε .
Hence

〈n〉 = 1

eβε − 1
− n0
eβεn0 − 1

. (iv)

(b) The entropy

S =
E − F
T

= E/T + k ln z

= k[ln(1− e−βεn0)− ln(1− e−βε)]− ε

T

(
n0

eβεn0 − 1
− 1

eβε − 1

)
(v)

and the specific heat

c = T
∂S

∂T
= −β∂S

∂β
= kβ2ε2

[
eβε

(eβε − 1)2
− n20

eβεn0

(eβεn0 − 1)2

]
. (vi)

Note that all the quantities E,S, c refer here to a single oscillator.

(c) All of the expressions (ii)–(vi) give the corresponding quantities for

the harmonic oscillator in the limit n0 →∞. When the temperature

is very low, the thermodynamic behavior of the oscillator is controlled

by the lowest levels. If the number of thermally relevant levels is much

smaller than n0, it is expected that there will be no difference between

the bounded oscillator and the regular oscillator. Namely, there is no

qualitative difference when kT 	 n0ε. On the other hand, if the

temperature is high, kT 
 ε, all the states are equally important,

and then the difference is significant.

(d) At low temperatures we obtain from (vi)

c � k
[(

ε

kT

)2
e−ε/kT −

(
n0ε

kT

)2
e−n0ε/kT

]
.

It is clear that when n0ε/kT 
 1, the second term is negligible com-

pared to the first one, and we obtain (3.2.18). At high temperatures,

εn0/kT 	 1, the two terms in (vi) tend to the same limit, which is k,

so that the specific heat tends to 0 instead of the classical value k of

an unbounded oscillator.
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Remark. If these calculations seem familiar it is because the bounded

oscillator has the same structure of energy levels as the spin in a magnetic

field. The sole difference is in the location of the zero level. Hence all

the results obtained here could have been obtained from our discussion in

Sec. 5.4 of Part II.

Solution 4 Exercise on page 289

At low temperatures, the asymptotic behavior of CV in the Einstein model

of a solid is given by

CV � 3R

(
h̄ω

kT

)2
e−h̄ω/kT . (i)

(a) We denote x = kT/h̄ω. A sketch of CV /3R as a function of x is given

in the figure. R � 2 cal/K. The temperature scaling of the horizontal

axis is discussed in (b) and (c), below.

➤

➤0

0.1

0.2

0.3

0.4

0.1 0.2 0.3
5 15 2510 20 T(K)

x

CV/3R

For T = 10 K, CV = 0.114 cal/K, and thus we obtain an equation

for x:
1

x2
e−1/x = 0.0191 .

This equation can be solved numerically, to give x = 0.1227. Hence

ΘE =
10

x
� 81 K
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and thus

ω � 1013 s−1 .

This frequency is of the order of typical lattice frequencies.

(b) Scaling the horizontal axis according to x = T/81 K leads to the graph

for CV , now as a function of T , plotted in the figure. The points in

the figure depict the experimental results given in the table. It is clear

that not all the values in the table can be described by the graph.

(c) According to our determination, ΘE = 81 K, and thus the tempera-

tures in the table justify a low temperature approximation. However,

the Einstein approximation does not describe the experimental results

well.

The ratio of CV in the Einstein approximation to CV in the table,

as a function of T , is depicted in the next figure.

We see that when T decreases below 10 K the deviations of the

theory from the experiment increase, instead of decreasing, as we

would expect from the low temperature approximation. The Einstein

approximation yields values that are much smaller than the experi-

mental values.

Solution 5 Exercise on page 289

In the Debye model (see Part IV, Sec. 3.3), the specific heat behaves at

low temperatures according to

CV =
12π4

5
R

(
T

ΘD

)3
.
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We calculate ΘD from CV in the table at T = 10 K:

ΘD = 10

(
12π4

5
· 2 · 1

0.114

)1/3

� 160 K .

In the next figure both approximations are depicted along with the experi-

mental results. A study of the figure reveals that the Debye approximation

provides a good description of the experimental results. The Einstein ap-

proximation does not provide a good quantitative description even if we

use the Debye value of 160 K for ΘE.

Solution 6 Exercise on page 290

(a) The partition function is

Z = V N (2πmkT )5N/2 .

In order to find the equation of state we must calculate the pressure

as a function of the volume and temperature. The pressure is given

by

P = −∂F
∂V

= kT
∂ lnZ

∂V
=
NkT

V
.

Namely, the equation of state

PV = NkT ,

of an ideal gas.
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In order to calculate the specific heat at constant volume, we first

calculate the internal energy:

E = −∂ lnZ
∂β

= kT 2 ∂ lnZ

∂T
=

5

2
NkT .

Comparing this expression to the internal energy obtained in Part I,

we can interpret the result as the energy of N particles, as can also

be deduced from the equation of state, each having average energy
5
2kT , and hence five degrees of freedom. The gas is not monoatomic.

A simple argument, that will be extended in the next part, leads to

the conclusion that this is a diatomic gas, in which the atoms in the

molecule are bound to each other in a rigid manner. A pair of atoms

has, as we have seen in Part I, six degrees of freedom. But because

the distance between the two atoms in the molecule is constant, one

degree of freedom is frozen, leaving five degrees of freedom.

The specific heat at constant volume is given by

CV =

(
∂E

∂T

)
V,N

=
5

2
Nk .

(b) The partition function is

Z = (V −Nb)N (2πmkT )3N/2eaN
2/V kT . (i)

The pressure is given by

P = kT
∂ lnZ

∂V
=

NkT

V −Nb −
N2

V 2
a (ii)

hence the equation of state,(
P +

N2

V 2
a

)
(V −Nb) = NkT , (iii)

which is the Van der Waals equation.

This equation can be interpreted in the following manner: It is a

gas of N particles whose “active” volume is less than the total volume

V . The decrease in volume can be attributed to the fact that each

molecule has a finite rigid spherical volume of magnitude b. Hence

the free volume for each molecule is V −Nb.
The pressure factor is also modified with respect to the ideal gas.

The fact that the measured pressure P is smaller than the pressure of

free molecules moving in the active volume V −Nb can be explained

by the fact that there exist attraction forces between the molecules,

beyond their rigid volume. These forces are derived from the potential

energy of the molecules, which is depicted qualitatively in the next

figure:
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➤

➤

U(r)

r0

r

r0 is the radius of the rigid sphere of a molecule, which determines b.

Beyond r0, the potential is attractive, which decreases the pressure.

Next we study how this interpretation is expressed in the internal

energy and in the specific heat.

The internal energy is

E = −∂ lnZ
∂β

= kT 2∂ lnZ

∂T
=

3

2
NkT − N

2

V
a (iv)

and the specific heat is

CV =

(
∂E

∂T

)
V

=
3

2
Nk . (v)

Namely, this is a monoatomic gas — each atom contributes 3
2k to the

specific heat.

The form of the internal energy indicates that there exist attrac-

tion forces that decrease the energy below its value for an ideal gas.

Is the magnitude of the decrease in energy reasonable? In order to

check this we approximate the potential in the figure as follows: Sup-

pose that each molecule produces an equal attraction potential, of

magnitude ε0, at the position of every other molecule, which is not

further away than some constant distance r1. Thus, each molecule

feels an average potential of attraction, which is proportional to the

depth of the well ε0 and to the density N/V . The higher the density,

the more molecules there are within range r1 of a certain molecule.

Hence the contribution of a given molecule, due to the attraction of

its neighbors, to the total energy will be

−ε0
(
N

V

)
· r31 .
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There are a total of N molecules. Hence the total contribution of the

attraction to the energy will be

−1

2
Nε0

(
N

V

)
r31 = −N

2

V

ε0r
3
1

2
. (vi)

The 1/2 appears because we are counting the attraction energy be-

tween each pair of molecules twice. Comparing (vi) to the last term

in (iv) we find that a has the meaning of the depth of the potential

times the volume of its region of attraction.

Solution 7 Exercise on page 290

The single particle partition function is

z = h−3
∫
dV dτe−βcp = V h−3

∫
d3pe−βcp = 4πV h−3

∫ ∞
0

p2e−βcpdp . (i)

The last transition was made after integrating over the angles in momen-

tum space, which is equivalent to viewing dτ or d3p as the volume of a

spherical shell of thickness dp and radius p, that is 4πp2dp. Performing a

change of variables to x = βcp, we obtain

z =
4πV

(βch)3

∫ ∞
0

x2e−xdx . (ii)

We still have to find the value of the integral on the right hand side of

(ii). Looking it up in tables, or calculating it with the help of integration

by parts, we find 2. In fact there is no need to calculate it, as the physical

variables are not sensitive to the multiplication of the partition function

by a constant. In any event we have obtained

z =
8πV

(βch)3
. (iii)

The average energy is

E = −∂ lnZ
∂β

= −N ∂ ln z
∂β

=
3N

β
= 3NkT . (iv)

We have found, therefore, that the average energy of an extremely rel-

ativistic particle moving at a speed close to the speed of light is 3kT ,

compared to 3
2kT for a nonrelativistic particle. The reason is that the en-

ergy of such a particle is not proportional to the square of its momentum

but is linear in the momentum. The equation of state is

P = −∂F
∂V

= kT
∂ lnZ

∂V
= NkT

∂ ln z

∂V
=
N

V
kT . (v)
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Thus, the equation of state for the relativistic gas is unchanged. (See also

Part I, Exercise 1.2.)

The specific heat at constant volume is (∂E/∂T )V , and we again ob-

tain, as in (iv), a magnitude which is twice the nonrelativistic magnitude:

CV = 3Nk . (vi)

For the calculation of the specific heat at constant pressure we shall use

the enthalpy H = E + PV and the relation CP = (∂H/∂T )P . We thus

obtain

H = 3NkT +NkT = 4NkT ⇒ CP = 4Nk . (vii)

Solution 8 Exercise on page 290

(a) We denote the magnetic moment by µ and its magnitude by µ. The

energy of a single magnetic moment in a field H is

ε = −µ ·H .

We assumed that all ions have magnetic moments of constant mag-

nitude, and that the difference between them is in the orientation.

Namely, the state of ion number i is characterized by φi and θi, which

are angles that describe its orientation in space. The field is directed

along the z axis, and the energy of ion number i is

εi = −µH cos θi

and is independent of the azimuthal angle φi. The energy of the sys-

tem of N ions, for a given microscopic state (specifying the orientation

of every spin), is given by

E = −µH
N∑
i=1

cos θi .

(b) The partition function is written as an integral over all possible values

of the 2N angles θi and φi, which factors into a product of integrals

because there are no interactions between the different spins.

Z(β,H,N)

=

∫ 2π

0
dφ1

∫ π

0
dθ1 sin θ1 . . .

∫ 2π

0
dφN

∫ π

0
dθN sin θNe

−βE

=

(∫ 2π

0
dφ

∫ π

0
dθ sin θeβµH cos θ

)N
= [z(β,H)]N .

We shall now calculate z.
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The integration over φ simply gives 2π, as there is no dependence

upon this angle. Hence

z = 2π

∫ π

0
dθ sin θeβµH cos θ .

In calculating this integral we note that the integrand is a derivative

of eβµH cos θ. Hence

z = 2π
eβµH − e−βµH

βµH
=

4π

βµH
sinh(βµH) .

And hence

Z(β,H,N) =

[
4π

βµH
sinh(βµH)

]N
. (i)

(c) The average magnetization is, according to Eq. (2.5.8),

M =
1

β

∂ lnZ

∂H
= Nµ

[
coth(βµH)− 1

βµH

]
. (ii)

The function in the square brackets is called Langevin’s function:

L(x) ≡ coth(x)− 1

x
,

so that we may write

M = NµL(βµH) .

The average energy of the paramagnet is

E = −HM = −NµHL(βµH) .

The entropy is derived from the partition function, or from the free

energy, using

S = −
(
∂F

∂T

)
H,N

=
∂

∂T
(kT lnZ)H,N . (iii)

Substituting Z we obtain

S =
∂

∂T

{
kTN ln

[
4π

βµH
sinh(βµH)

]}

= Nk

{
ln

[
4π

βµH
sinh(βµH)

]
+ 1− βµH coth(βµH)

}
.
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(d) In order to compare with the discrete paramagnet we check the behav-

ior of the magnetization as a function of H or T . At low temperatures,

or high fields, the coth in Eq. (ii) tends to 1 and the second term tends

to 0, so the magnetization saturates: M → Nµ, as in the quantum

case. At high temperatures, or low fields, we must study the Langevin

function L(x) for x 	 1, just as we studied the Brillouin function in

Solution 5.7 of Part II. To this end we use the result obtained in

Eq. (viii) in Solution 5.7 of Part II:

coth x � 1

x
+
x

3
, x	 1 ,

so

L(x) � x

3
, for x	 1 ,

which is again similar to the behavior of the Brillouin function. We

thus find that for small µH/kT

M =
Nµ2

3kT
H , χ =

µ2

3kT
,

and this is Curie’s law again.

We have found that the dependence of the magnetization upon

the variable βµH is rather similar to that obtained in the quantum

case, in which each magnetic moment has a finite number of states.

Moreover, it is possible to show that the magnetization found here

is the classical limit of the one found in Part II. The classical limit is

obtained not when the temperatures is high or when the field weak,

but when the quantum spin becomes a classical spin, namely when

J 
 1.

The quantum result we obtained was

M = NgµB

{(
J +

1

2

)
coth

[(
J +

1

2

)
βgµBH

]

−1

2
coth

(
βgµBH

2

)}
.

If we compare the expressions for the susceptibility, it is clear that

when J is very large it is possible to identify gµBJ with µ. Hence

the limit J →∞ must be taken in such a manner that gµBJ remains

constant (and equal to µ). Therefore, writing M with the help of µ

and J we obtain

M = N

{(
µ+

µ

2J

)
coth

[(
µ+

µ

2J

)
βH

]
− µ

2J
coth

(
βµH

2J

)}
.



334 Solutions to self-assessment exercises

In the limit J →∞ we can write

M = N

[
µ coth(βµH)− µ

2J
· 2J

βµH

]
= N

[
µ coth(βµH)− 1

βH

]
,

and this is the magnetization we found in (c) above.

(e) We shall check how S behaves at low temperatures.

If

x ≡ βµH 
 1

then

S � −Nk lnx .
Namely, S → ∞ for x → ∞, and this is another example in which

the third law does not apply to a classical system. (See discussion in

Sec. 5.3.)

Solution 9 Exercise on page 291

(a) The work performed by the gas in an isothermal expansion is

W =

∫ V2

V1

PdV = NkT

∫ V2

V1

dV

V
= NkT (lnV2 − lnV1) .

Since the process is isothermal the work is performed at the expense

of the free energy (see Sec. 1.5), and the result must equal the decrease

in the free energy. Indeed, using (3.5.7) we obtain

−∆F = F1 − F2 = NkT ln

(
V2
N

)
−NkT ln

(
V1
N

)

= NkT (lnV2 − lnV1) .

(b) The internal energy of the ideal gas depends only on the temperature,

and hence it has not changed during the process: ∆E = 0. The origin

of the work is therefore the energy extracted from the heat bath, and

converted into mechanical energy by the gas.

Solution 10 Exercise on page 291

(a) The specific heat of a paramagnet, calculated in Part II, Eq. (2.5.18),

is

cH =
(µBH)2

kT 2 cosh2(βµBH)
. (i)
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To calculate the fluctuations we need the difference:

〈E2〉 − 〈E〉2 = Z−1
∑

{σi=±1}
E2(σ1, . . . , σN )e−βE(σ1,...,σN )

−

Z−1 ∑

{σi=±1}
E(σ1, . . . , σN )e−βE(σ1,...,σN )



2

.

This expression takes on a simpler form if we note that



〈E2〉 =

1

Z

∂2Z

∂β2
,

〈E〉2 =
1

Z2

(
∂Z

∂β

)2

⇓

〈E2〉 − 〈E〉2 =
1

Z

∂2Z

∂β2
− 1

Z2

(
∂Z

∂β

)2
=

∂

∂β

[
1

Z

(
∂Z

∂β

)]
=

∂2

∂β2
(lnZ) .

Z, calculated in Part II, Eqs. (2.5.11) and (2.5.12), is

Z = [2 cosh(βµBH)]N ,

and we obtain

〈E2〉 − 〈E〉2 = N
∂2

∂β2
ln[2 cosh(βµBH)]

= NµBH
∂

∂β
tanh(βµBH) = N

(µBH)2

cosh2(βµBH)
. (ii)

From (i) and (ii) we obtain (3.6.8), namely

〈E2〉 − 〈E〉2 = NkT 2cH .

(b) The average of the energy will lose its thermodynamic meaning when

〈E2〉 − 〈E〉2
〈E〉2 � 1 .

Namely, when

N
(µBH)2

cosh2(βµBH)

1

N2(µBH)2 tanh2(βµBH)
=

1

N sinh2(βµBH)
� 1

or √
N sinh(βµBH) � 1 .
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With N = 100, µH = 0.01eV, we are searching for a solution for

sinhx = 0.1 ,

where x = µH/kT . One finds (numerically) that

x � 0.1 .

The required temperature is thus

T =
µBH

kx
� 1160 K.
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Introduction

This part is a continuation and extension of Part III and is based on the implemen-

tation of the methods presented in the previous parts. In Chap. 1 the subject of

ideal gases of molecules devoid of internal structure, analyzed in Part III, is extended

to deal with  molecules. We learn how to take into account the internal

structure of the molecules, and its effects on the properties of the gases. We shall

dwell upon the heat capacity problem which we encountered in Part I and resolve

it here at last.

In Chap. 2 we go one step further and consider the case in which the molecules

of the gas disintegrate into their constituents or participate in chemical reactions;

also here the theory developed has much to say.

In Chap. we return to the problem of the specific heat of solids, and learn

how it is possible, with relative ease, to improve the Einstein model and obtain

a good correspondence between the theoretical explanation and the experimental

results. This chapter will prepare us for the fourth chapter, which deals with the

thermodynamics of electromagnetic radiation. Since electromagnetic radiation can

be treated as a collection of harmonic oscillators with different frequencies, it is

possible to apply to it all the methods developed in Chap. 2 of Part III for systems

of oscillators. The principal difficulty overcome in Chap. 4 is the demonstration that

the electromagnetic radiation actually behaves as a system of free oscillators. 

here on the road ahead is clear.
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Chapter 1

An Ideal Gas of Molecules with

Internal Degrees of Freedom

1.1 Center of mass and internal motions

In this chapter we continue the discussion of the ideal gas of molecules,
i.e. a gas in which it is possible to neglect the forces between molecules.
But in order to proceed a step further toward a more realistic description,
we now take into account the internal structure of the molecules. We have
already seen in Part III that if there are no forces between the molecules,
the total energy of the gas is the sum of single molecule energies, and hence
the partition function is a product of single molecule partition functions
[see, for instance, Eqs. (3.5.3) and (3.5.4)]. Thus we shall concentrate on
the energy of a single molecule.

The molecule is made up of q constituents — the nuclei of different
atoms and electrons. We denote their positions by rα and their masses by
mα, where α = 1, . . . , q. The energy of a molecule has the typical form

Emol =
q∑

α=1

1

2
mαv

2
α +

1

2

∑
α,β
α�=β

U(rα − rβ) =
q∑

α=1

p2α
2mα

+
1

2

∑
α,β
α�=β

U(rα − rβ) ,

(4.1.1)
where vα and pα are the velocity and momentum, respectively, of the
αth particle in the molecule. U(rα − rβ) is the potential energy due to
the interaction of the pair of particles α and β inside the molecule —
for example, an attractive force between an electron (negatively charged)
and a nucleus (positively charged), or a repulsive electric force between
two electrons, etc. The potential energies also depend on the types of the
interacting particles, but at this stage we shall refrain from complicating
the notations. The factor 1

2 in the potential energy term compensates for
double counting, since the sum over all values of α and β counts each
pair twice. Note that the summation excludes the terms with α = β,
i.e. a particle does not interact with itself. See also Example (b), Sec. 3.2,
Part III.

340



1.1 Center of mass and internal motions 341

When in Part III we have treated each molecule as a point, the coor-
dinate and momentum of this point corresponded to the center of mass
of the molecule it represents. Hence, in turning to treat the effects of
the internal structure of the molecules upon the statistical mechanics of
the system, it is natural that we distinguish between the center of mass
variables which we have already treated and the internal variables (see
Sec. 1.3 of Part I). We therefore decompose the total energy of a molecule
into two parts: energy related to the motion of the center of mass and
internal energy.

The center of mass is located at

R =
1

M

q∑
α=1

mαrα , (4.1.2)

where M =
∑q

α=1mα and the momentum associated with the center of
mass is given by

P =MṘ =
q∑
α

pα . (4.1.3)

This is the momentum of the entire molecule.
The internal coordinates of a particle, namely the ones measured with

respect to the center of mass, will be denoted by ρα, so that

rα = R+ ρα . (4.1.4)

The momentum of a particle relative to the center of mass is denoted by
πα and is given by

πα = mαρ̇α . (4.1.5)

Thus
pα =

mα

M
P+ πα . (4.1.6)

The definition of the center of mass implies the two identities

q∑
α=1

mαρα = 0 , (4.1.7a)

q∑
α=1

πα = 0 . (4.1.7b)

Inserting Eq. (4.1.6) for pα we obtain for the kinetic energy of the molecule

q∑
α=1

p2α
2mα

=
P2

2M
+

q∑
α=1

π2α
2mα

. (4.1.8)

The first term on the right hand side is the kinetic energy related to
the motion of the center of mass of the molecule, whereas the second
term is the kinetic energy related to the internal motions of the different
constituents.
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Exercise 1.1

Prove Eqs. (4.1.6)–(4.1.8).

Solution on page 406

Next we deal with the potential energy.
The potential energies depend only on mutual distances (rα−rβ), and

thus do not depend on the coordinate of the center of mass R, but only
on the difference between the internal coordinates, ρα − ρβ. Thus, since
there is no potential energy term dependent on R, the molecule’s center
of mass moves freely.

The energy (4.1.1) therefore takes the form

Emol =
P2

2M
+

q∑
α=1

π2α
2mα

+
1

2

∑
α,β

U(ρα − ρβ) =
P2

2M
+EI , (4.1.9)

where EI is the internal energy, i.e. the energy in the frame of reference
of the molecule’s center of mass. In all of our previous discussions of ideal
gases we assumed that EI = 0.

Note that as a result of (4.1.7) only q − 1 of the momentum variables πα are inde-
pendent. Similarly, only q − 1 spatial variables ρα are independent.

1.2 Kinematics of a diatomic molecule

At this stage we increase our resolving power and distinguish between
the atoms inside the molecule, but we still do not take the electrons into
account. For simplicity we treat a diatomic molecule. The positions of the
two atoms will be denoted by r1 and r2, the momenta by p1 and p2, and
the potential between them U(r1−r2) will have the typical form depicted
in Fig. 4.1.1.

U(r)

r
r0

Fig. 4.1.1 Illustration of a typical potential in a diatomic molecule. r0 is the equilib-
rium distance. The dashed line is the harmonic approximation.
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The energy of the molecule (or of the two atoms) is

Emol =
p21
2m1

+
p22
2m2

+ U(r1 − r2) . (4.1.10)

The coordinates of the center of mass

R =
1

M
(m1r1 +m2r2) . (4.1.11a)

The relative coordinates (in the center-of-mass reference frame) are

ρ1 = r1 −R , (4.1.11b)

ρ2 = r2 −R , (4.1.11c)

and the relative momenta πα are [see Eqs. (4.1.5) and (4.1.6)]

π1 = m1ρ̇1 = p1 −m1Ṙ = p1 − m1

M
P , (4.1.12a)

π2 = p2 − m2

M
P , (4.1.12b)

where
P = p1 + p2 =MṘ . (4.1.13)

Using the explicit forms of ρ1,ρ2,π1 and π2 it is easy to verify that
Eqs. (4.1.7) are actually satisfied, i.e.

m1ρ1 +m2ρ2 = 0 , (4.1.14a)

π1 + π2 = 0 . (4.1.14b)

In order to separate the center-of-mass variables from the internal vari-
ables, we express the energy with the help of P,πα and ρα:

Emol =
P2

2M
+
π21
2m1

+
π22
2m2

+ U(ρ1 − ρ2) , (4.1.15)

and this is a particular case of Eq. (4.1.9).
We now perform several operations that are possible due to the two-

body nature of the problem. We write π1 and π2 in the form

−π2 = π1 = µ(ρ̇1 − ρ̇2) , (4.1.16)

where
µ =

m1m2

M

is the reduced mass of the system.
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Exercise 1.2

Prove Eq. (4.1.16).

Solution on page 407

The right hand side of Eq. (4.1.16) is the relative momentum and the
argument of U in Eq. (4.1.15) is the relative position. We denote them
by π12 and ρ12, respectively, so that

π12 = µρ̇12 . (4.1.17)

We can now write the energy of the molecule as the sum of the energy of
the center of mass and the energy of the relative motion:

Emol =
P2

2M
+
π212
2µ

+ U(ρ12) . (4.1.18)

We now make three remarks that will be of use in what follows:

(a) The kinetic term in the internal energy depends on ρ̇12. Namely,
this is the rate of change of the vector that connects the two atoms.
This vector can change in magnitude — molecular vibrations. Or, it
can remain of constant magnitude and change its direction, namely a
rotation of the molecule. See Fig. 4.1.2.

(b) The potential U(ρ12) is usually a central potential, which means that
it depends only on the magnitude of the distance between the two
nuclei, which we denote by ρ.

(c) The vibrations of the interatomic distance will be centered around a
certain equilibrium distance, ρ0. When the amplitude of the vibra-
tions is small, it is possible to expand U(ρ). Namely,

U(ρ) = U(ρ0) + U ′(ρ0)(ρ− ρ0) + 1

2
U ′′(ρ0)(ρ− ρ0)2 + · · · (4.1.19)

longitudinal
vibrations

longitudinal
vibrations

➤
➤

➤

➤

➤

➤

➤➤

➤

➤

➤

M

m2m1
➤

rotations

Fig. 4.1.2 Changes in the magnitude of the vector connecting the two atoms represent
longitudinal vibrations of the molecule (like those of a spring). Changes in the direction
of this vector represent rotations of the molecule relative to its center of mass.
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The first term is independent of ρ and is simply a constant, which can
be ignored. The second term is zero, since we assumed that ρ0 is the
equilibrium distance, and the potential energy must be minimal there,
and hence U ′(ρ0) = 0. It is possible, therefore, to approximate the
potential between the two atoms by a harmonic potential, centered
on the equilibrium distance. This is the dashed line in Fig. 4.1.1.

Exercise 1.3

Consider a hypothetical molecule in which the potential between the two
atoms is of the form

U(ρ) = ε

[(
a

ρ

)2
− 2

a

ρ

]
.

(a) What is the equilibrium distance in the molecule?
(b) What is the binding energy (the energy required to separate to infinite

distance the two atoms from their equilibrium position)?
(c) Calculate the magnitude of the “spring constant,” if a is 2 Å and ε is

2.5 eV.
(d) How much energy is required to change the interatomic distance by

5% of their equilibrium distance? What temperature is required to
produce this change?

(e) What is the relative change in the molecular length at room temper-
ature?

Solution on page 407

Exercise 1.4

Prove that in a diatomic molecule the following relationships exist between
the relative position and momentum of the particles in the molecule and
between their coordinates and momenta with respect to the laboratory
frame of reference:

r1 = R+
m2

M
ρ12, r2 = R− m1

M
ρ12 ,

p1 =
m1

M
P+ π12, p2 =

m2

M
P− π12 .
Solution on page 408

Exercise 1.5

Write the total energy of a triatomic molecule as the sum of a free part
related to the center-of-mass motion and an internal part. How many
variables are required to characterize the molecule’s state? (Disregard the
motion of the electrons.)

Solution on page 409
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1.3 Gas of general composite molecules

We discuss a gas of N molecules, each having an energy of the form (4.1.9).
The energy of the whole system (recall that we assume that there are no
forces between the molecules) in a given microscopic state is

E =
N∑
ν=1

P2
ν

2M
+

N∑
ν=1

εν , (4.1.20)

where Pν is the momentum of the center of mass of molecule number ν
and εν is the internal energy of molecule ν, which was denoted before by
EI .

According to Eq. (3.4.36a) with the Gibbs’ correction, in a gas of
classical molecules, the partition function is

Z =
1

h3NN !

∫
e−βEd3NR d3NPd3N(q−1)ρ d3N(q−1)π , (4.1.21)

where E is given by Eq. (4.1.20). This is a sum over all the system’s states,
which are described by three coordinates and three momenta of the center
of mass of each molecule, along with the 3(q−1) internal coordinates and
3(q − 1) internal momenta of each molecule.

A purely classical description leads to the equipartition law and to
the difficulties in the calculation of the specific heat which we have en-
countered in Sec. 1.3 of Part I. (See also next section.) But we know
that to deal with phenomena that are taking place inside a molecule one
must apply quantum theory. The first term of Eq. (4.1.20) can still be
treated classically, since the molecules are free to move inside a container
of macroscopic dimensions. Recall Sec. 4.4 of Part III. The second term
must be treated as a sum of discrete internal molecular energies, which
are characterized according to quantum mechanics by the level number n.
The internal energy of a molecule in level n will be denoted by ε(n). The
values of these energies may in principle be obtained from the quantum-
mechanical calculation or, alternatively, from experiment. The state of
molecule number ν is therefore characterized by specifying the position
and momentum of its center of mass, Rν ,Pν , and its quantum state, nν .
A microscopic state of the gas as a whole will be characterized, therefore,
by

(R1,P1, n1,R2,P2, n2, . . . ,RN ,PN , nN )

and the energy in this state will be

E(R1,P1, n1, . . . ,RN ,PN , nN )

=
N∑
ν=1

P2
ν

2M
+ ε1(n1) + ε2(n2) + · · ·+ εN (nN ) . (4.1.22)
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The partition function of the system is obtained by summing over the
discrete states and integrating over the continuous degrees of freedom:

Z =
1

h3NN !

∫
d3R1d

3P1 . . . d
3RNd

3PN
∑

n1,...,nN

× exp[−βE(R1,P1, n1, . . . ,RN ,PN , nN )] . (4.1.23)

The right hand side of (4.1.23) may be decomposed into a product of
N factors of the form of a single molecule partition function:

zν =
1

h3

∫
d3Rνd

3Pνe
−βP 2

ν /2M
∑
nν

e−βεν(nν) . (4.1.24)

Since the molecules are identical, they all have the same sequence of energy
levels. Namely, the energy of a molecule does not depend on the molecule’s
number ν but only on the level it occupies (Fig. 4.1.3), so that the right
hand side of (4.1.23) decomposes into a product of N identical factors.
We can therefore write the partition function as

Z =
1

N !
zN . (4.1.25)

The single molecule partition function, z, can be further factored into the
center-of-mass variables and the internal variables:

z(T, V,N) = zc.m.(T, V,N)ζ(T ) , (4.1.26)
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Fig. 4.1.3 A collection of identical molecules having the same energy levels. Molecules
1 and 3 in the figure, for instance, have the same energy, ε1(5) = ε3(5) = ε(5), whereas
molecule 2 has ε2(3) = ε(3).
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where

zc.m. =
1

h3

∫
d3Rd3P exp

(
−βP

2

2M

)
=
V (2πMkT )3/2

h3
, (4.1.27a)

ζ =
∑
n

e−βε(n) =
∑
n

e−ε(n)/kT . (4.1.27b)

The internal structure of the molecules is expressed by the additional
multiplicative factor, ζ, in the single molecule partition function. Since ζ
depends only on the molecule’s internal structure, we may refer to it as
the internal partition function. In the following sections we shall calculateinternal

partition
function

it explicitly for some simple cases.
We now calculate the free energy, and obtain Eq. (3.5.7) with an ad-

ditional term depending on ζ:

F = −kT lnZ = −NkT
[
ln
V

N
+

3

2
ln

(
2πMkT

h2

)
+ 1+ ln ζ

]
. (4.1.28)

The equation of state

The pressure P is calculated from (4.1.28). The result is

P = −∂F
∂V

=
NkT

V
, (4.1.29a)

from which we obtain again the equation of state:

PV = NkT . (4.1.29b)

It appears as if the internal degrees of freedom have no effect at all. But
we are again faced with the questions that arose in Sec. 1.3 of Part I.
Namely, how is it possible to decide which is the molecule and which are
the constituents? After all we could have chosen to treat each nucleus and
each electron separately!

This time we have an answer at hand: The reason why the equation
does not change is that we assumed that ζ depends only on the temper-
ature and does not depend on the volume of the container. Namely, the
forces acting inside the molecule determine its size, and hence the dis-
tances between its different parts. When a part of the molecule hits the
wall of the container, the other parts are found at a microscopic distance
from the wall and do not wander freely in the container. This assumption
will lose its validity as the temperature rises, since then the probabil-
ity for very high energy states in the molecules to be occupied increases.
Among the high energy states there will also be states of the disintegrated
molecule, and in these states the energy depends on the volume. It goes
without saying that in this case the constituents of the molecule come into
play.
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Entropy and internal energy per molecule

We use (4.1.28), and write

s =
S

N
= − 1

N

(
∂F

∂T

)
V,N

= k

[
ln
V

N
+

3

2
ln

(
2πMkT

h2

)
+

5

2

]
+

d

dT
(kT ln ζ) . (4.1.30)

Comparing to (3.5.8), we find that there is an additional entropy per
molecule of magnitude:

∆s =
d

dT
(kT ln ζ) . (4.1.31)

The internal energy per molecule

〈ε〉 = E

N
=

3

2
kT + kT 2 d

dT
ln ζ . (4.1.32)

Exercise 1.6

Deduce Eq. (4.1.32).

Solution on page 410

An important consequence is that although the form of the energy
changes, owing to the internal structure of the molecules, the gas will still
satisfy Joule’s law of expansion. That is, since E depends only on T ,
expansion without the performance of work will occur without a change
of temperature.

Additional results are the expression for the specific heat at constant
volume,

CV =
3

2
Nk +Nk

d

dT

(
T 2 d

dT
ln ζ

)
, (4.1.33)

and the relationship between the specific heats at constant pressure and
at constant volume,

CP − CV = Nk , (4.1.34)

as in a gas of pointlike molecules.

Exercise 1.7

Deduce Eqs. (4.1.33) and (4.1.34).

Solution on page 410
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ε1

0

ε2

ε3

Fig. 4.1.4 The energy levels of the internal states in a molecular model.

Exercise 1.8

A model molecule has states whose energies are depicted in Fig. 4.1.4.
The energy of the ground is zero and of the first excited state it is ε1.
Suppose ε1 	 ε2, ε3, . . . . Calculate the corrections to the entropy, the
internal energy and the specific heat, resulting from the internal structure
of the molecules. How do these corrections behave when kT 	 ε1?

Solution on page 411

The chemical potential

µ =

(
∂F

∂N

)
T,V

= kT

[
ln
N

V
− 3

2
ln

(
2πMkT

h2

)]
− kT ln ζ , (4.1.35)

differing from (3.5.9) by the term −kT ln ζ.

Monoatomic gas

So far we have treated the atoms as the fundamental building blocks of
the molecules and ignored the internal structure of the atoms themselves.
That internal structure, in a monoatomic gas, consists of internal degrees
of freedom (electronic or nuclear). To take those into account one repeats
the entire discussion from the beginning of this section, with the internal
partition function (4.1.27b) now calculated as a sum over the electronic
energy levels of the (monoatomic) molecule. Nevertheless, gases such
as helium or argon, namely noble gases, are very well described as a
gas of particles devoid of internal structure. The reason is that the first
electronic excitation energy, ε1, is about 10 eV above the ground state;
namely, it corresponds to a temperature of 105 K. Thus, in a wide range
of temperature, which may be considered very low with respect to this
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temperature, we may take only the first terms of Eq. (4.1.27b), which we
write in the form

ζ(T ) = g0e
−βε0 + g1e−βε1 + · · · = e−βε0 [g0 + g1e−β(ε1−ε0) + · · ·] . (4.1.36)

Note that room temperature is safely within this range. Here g0 and g1
are the number of different atomic states having energies ε0 and ε1, re-
spectively. These numbers are called the degrees of degeneracy or, simply,
the degeneracies of the levels. degeneracy

The degeneracy of the ground state has already been mentioned in Sec. 5.3 of Part III.

In the helium atom, g0 = 1. Since kT 	 ε1 − ε0, the second term of
(4.1.36) is negligible, and the internal partition function is a multiplicative
factor of e−βε0 . The sole effect of such a factor is a constant shift of the
energy levels, which does not change the thermodynamic quantities, as we
have seen in Exercise 1.11 of Part III. If g0 = 1, S and CV will, therefore,
be as in an ideal gas, and the chemical potential will change by a constant
— ε0.

Exercise 1.9

Prove that S and CV of a monoatomic gas with g0 = 1 are identical to
those of a gas of particles with no internal structure, if the temperature is
low with respect to the first electronic excitation energy. What about µ?

Solution on page 413

Exercise 1.10

Consider a monoatomic gas, under the same conditions as in Exercise 1.9,
but with a doubly degenerate ground state. Calculate the change in S,
CV and in µ relative to their corresponding values in a gas of particles
with no internal structure.

Solution on page 413

We find, therefore, that for the monoatomic gas there appears a char-
acteristic temperature, of order 104–105 K, such that

kΘe = ε1 . (4.1.37)

Below this temperature the electronic degrees of freedom are frozen —
there is not enough thermal energy to excite them. This, of course, is the
answer to the heat capacity problem which we raised in Part I. Namely,
the question why the electronic degrees of freedom do not contribute to
the specific heat of gases. More on this in the following.
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1.4 Diatomic gas: classical treatment

The next example is the diatomic molecule, which is a system composed of
two nuclei, two large masses positively charged, and a group of electrons.
The stability of the molecule implies that both nuclei “found out” that if
they are separated by a distance ρ0, then their energy is at a minimum
— any increase or decrease of this distance increases the energy. The
calculation leading to the determination of ρ0 is extremely complicated,
since it requires the solution of the quantum-mechanical dynamics of both
nuclei and of all the electrons.

But, since the nuclei are very heavy compared to the electrons — their
mass is several thousand times larger (mp/me � 1840) — it is possible
to simplify the problem using the Born–Oppenheimer approximation (for
more details see standard text on quantum mechanics), which treats the
diatomic system (as well as the many-atomic) in two stages:

(a) First the nuclei are fixed in their positions, and one calculates the
behavior of the system of electrons. A crucial part at this stage is the
calculation of the dependence of the energy of the electrons upon the
internuclear distance.

(b) Then the motion of the nuclei is treated as a slow motion with respect
to the rapid motion of the electrons. The electrons always manage
to accommodate themselves to the instantaneous state of the slow
nuclei. The motion of the nuclei is determined by the dependence of
the electronic energy upon the internuclear distance.

When performing stage (a) one finds that only the ground state of the
system of electrons is required. The rest of the electronic states have
excitation energies of the order of 1 eV and thus are frozen, up to tem-
peratures of several thousand degrees. The ground state energy of the
electronic system ε0 depends on the distance ρ between the nuclei. This
leads to the appearance of a potential energy ε0(ρ), affecting the motion
of the nuclei, which is the U that appears, for example, in Eq. (4.1.18).

If ε0 has a sharp minimum at a distance ρ0, it is possible to approx-
imate ε0(ρ) by the harmonic approximation (4.1.19). The energy of the
molecule will then be given by

Emol =
P2

2M
+
π2

2µ
+

1

2
K(ρ− ρ0)2 , (4.1.38)

where we have used the notations π12 = π, ρ12 = ρ, U ′′(ρ0) = K, and
dropped ε0(ρ0), a constant which determines the ground state energy of
the molecule.

Note: if ε0 depends only on the distance between the nuclei and not on the direction,
the potential depends only on |ρ| = ρ.
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The free energy will thus be, according to Eq. (4.1.28),

F = Fc.m. −NkT ln ζ , (4.1.39)

where Fc.m. has the same form as the free energy of a monoatomic gas
[Eq. (3.5.7)]. The function ζ is given by (4.1.27b):

ζ(T ) =
∑
n

e−βεn . (4.1.40)

n specifies the quantum states of the system, whose energy is given by the
last two terms of (4.1.38). That is the energy of internal motions EI :

EI =
π2

2µ
+

1

2
K(ρ− ρ0)2 . (4.1.41)

In other words, after the separation of the center-of-mass energy, we are
left with an internal energy of a particle of mass µ, moving in a three-
dimensional harmonic potential. The potential energy term causes radial
vibrations around the equilibrium point ρ = ρ0. If the vibrations are small
their frequency is

ω =

√
K

µ
. (4.1.42)

In addition rotations are, of course, also allowed and we shall discuss them
in the next section. Both types of motion are illustrated in Fig. 4.1.2.

The calculation of ζ(T ) passes through a computation of the quantum
energy levels of the molecule. We perform the quantum calculation in
the next section. First, we note that if the temperature T is high with
respect to the energies of the first excited states, it is possible to treat the
variables π and ρ as classical variables. The condition imposed on the
temperature is

kT 
 h̄ω . (4.1.43)

A typical value of ω is 1013 s−1; h̄ � 10−34 J · s. Hence the classical
approximation is justified for kT 
 10−21 J or T 
 100 K. Yet we still
assume that the temperature is too low to excite the electronic states.

To calculate the internal partition function we first write it as an
integral over position and momentum:

ζ(T ) =
1

h3

∫
d3πd3ρ exp

{
−β
[
π2

2µ
+

1

2
K(ρ− ρ0)2

]}

=

(
2πµkT

h2

)3/2 ∫
d3ρ exp

[
−βK

2
(ρ− ρ0)2

]
. (4.1.44)
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In the second integral the integrand depends only on ρ and not on ρ.
Hence∫

d3ρ exp

[
−βK

2
(ρ− ρ0)2

]
= 4π

∫ ∞
0

ρ2 exp

[
−βK

2
(ρ− ρ0)2

]
dρ

(4.1.45)
after performing the angular integrations. The last integral is calculated
approximately. Since we know how to calculate the integral when the
lower limit is −∞ (instead of 0), we assume that the center of the bell-like
curve is very far from the origin (compared to its width; see Fig. 4.1.5).
This is the case if

ρ20 

1

βK
, (4.1.46a)

or

kT 	 Kρ20 . (4.1.46b)

Having assumed this, the integral is well approximated by

∫ ∞
−∞

ρ2 exp

[
−βK

2
(ρ− ρ0)2

]
dρ � ρ20

√
2π

βK
. (4.1.47)

ρo ρ

➤

➤

1/ √βK<<ρo

➤➤
➤

Fig. 4.1.5 When conditions (4.1.46) hold it is possible to treat the bell as if it extended
from −∞ to +∞.

Exercise 1.11

Prove Eq. (4.1.47).

Solution on page 414

Before proceeding to calculate the partition function, we check the
range of temperature to which condition (4.1.46) constrains us. Recalling
that ρ0 � 10−9 m, ω � 1013 s−1 and µ � 10−26 kg (about 10 proton
masses), we obtain

Kρ20 = µω2ρ20 � 10−18 J , (4.1.48)

namely kT 	 10−18 J or T 	 105 K.
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We have found that the temperature range for which both of the con-
ditions (4.1.43) and (4.1.46) are satisfied is 103–104 K. The internal parti-
tion function in this temperature range is obtained by substituting (4.1.47)
and (4.1.45) into (4.1.44):

ζ(T ) =

(
2πµkT

h2

)3/2
· 4πρ20

√
2πkT

µω2
=

2µρ20(kT )
2

h̄3ω
. (4.1.49)

Substituting the last result into Eq. (4.1.39), we obtain the free energy:

F = Fc.m. − 2NkT ln

(
kT

C

)
, (4.1.50)

where C is a constant depending on the properties of the molecules
(ω, ρ0, µ) but not on T . Using (4.1.49) we also find that the specific
heat at constant volume is given by

CV =
7

2
Nk ; (4.1.51)

namely, the specific heat of the gas of N diatomic molecules is larger
than the specific heat of the gas were the atoms free (3Nk). The bond
between the atoms increases the specific heat, as we hinted in Sec. 1.3 of
Part I.

Exercise 1.12

(a) Calculate the internal energy of a diatomic molecule, in the classical
approximation, and show that the specific heat is indeed given by
(4.1.51).

(b) If the specific heat is given by (4.1.51), what is the ratio CP /CV = γ?
(c) Compare your result with the experimental values for the diatomic

gases in Table 4.1.1. Is agreement to be expected for these gases at
room temperature? What about 1000◦C?

Table 4.1.1 Experimental values of γ.

H2 N2 CO NO O2

T = 273 K 1.410 1.400 1.400 1.384 1.397
T = 1273 K 1.349 1.314 1.310 1.303 1.295

Solution on page 414
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Exercise 1.13

(a) For the gas Cl2, ω � 1014 s−1 and the interatomic distance is about
2 Å. What is the range of temperatures for which the approximations
we made for ζ are justified?

(b) How will the integrand in (4.1.44) look, graphically, at a temperature
of 1500 K?

Solution on page 415

1.5 Diatomic molecules: vibration and rotation

The problem of the discrepancy between the theoretical and experimen-
tal values of the specific heat of a diatomic gas has been solved in the
framework of quantum mechanics. Here we shall not enter into a detailed
discussion on the quantum method. We shall turn to it only in order
to obtain the values of the energies of the different states of the internal
system, which is characterized by (4.1.41), as well as the degeneracies of
the various energy levels, namely the number of different states of equal
energy.

The solution is based, as we have already mentioned several times,
on the fact that the internal energy of the molecule is not continuous,
but assumes discrete values. In order to “feel” the excited states a high
enough temperature is required, otherwise most of the molecules remain
in the ground state and the internal degrees of freedom are frozen. But
this is not the whole story. The internal energy of a diatomic molecule has
two different sources. In addition to the molecular vibrations, discussed in
the classical context in the previous section, the molecule can also rotate
with respect to its center of mass. Hence it is natural to separate the
kinetic part of the internal energy, Eq. (4.1.41), into a (one-dimensional)
radial part and a part corresponding to the rotational (two-dimensional)
motion:

π2

2µ
=
π2ρ
2µ

+
�2

2µρ2
, (4.1.52)

where πρ is the (relative) momentum component along ρ and � is the
angular momentum of the molecule with respect to its center of mass:

πρ = µρ̇ =
π · ρ
ρ

, (4.1.53a)

� = µρ× ρ̇ = ρ× π . (4.1.53b)

This is the standard procedure used in the analysis of the two-body problem in
classical mechanics.
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Exercise 1.14

Using definitions (4.1.53), prove Eq. (4.1.52).

Solution on page 416

The internal energy (4.1.41) becomes the sum of a vibrational part
and a rotational part:

EI =
π2ρ
2µ

+
K

2
(ρ− ρ0)2 + �2

2µρ2
. (4.1.54)

The next stage is to find the quantum energy levels of the molecule de-
scribed by (4.1.54), and to calculate with their help the internal partition
function ζ(T ). The difficulty is in the fact that the energy in (4.1.54) is
not the sum of two independent terms, since the relative distance ρ ap-
pears in the vibrational energy as well as in the rotational energy. But,
since at reasonable temperatures the stretching of the molecules does not
exceed 10% of ρ0 (cf. Exercise 1.3), and anyway in applying the harmonic
approximation (4.1.19) we have already restricted ourselves to small vi-
brations around ρ0, we can treat the rotations as if they occurred for a
molecule of constant ρ, equal to ρ0.

Compare to the approximation (4.1.47), which was made for the case where the
Boltzmann factor is very concentrated around ρ = ρ0.

We may therefore write

EI =
π2ρ
2µ

+
K

2
(ρ− ρ0)2 + �

2

2I
, (4.1.55)

where I = µρ20 is the molecule’s moment of inertia with respect to its
center of mass.

Before going on, we consider the orders of magnitude involved. To this
end we use several typical values of I which are given in Table 4.1.2.

Table 4.1.2 Moments of inertia of simple molecules.

Molecule I in units of
10−47 kg ·m2

H2 0.46
HCl 2.4
Cl2 115
I2 745
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Exercise 1.15

(a) Show that µρ20 is indeed the moment of inertia of a diatomic molecule
with respect to its center of mass.

(b) Calculate µ and ρ0 for the four molecules that appear in Table 4.1.2.

Solution on page 416

Now, with the expression (4.1.55) for the internal energy of a diatomic
molecule at our disposal, we can without much effort find the quantum
states and their energy levels. Because the energy can be written natu-
rally as the sum of two types of energies, i.e. a vibrational energy and a
rotational energy, we shall discuss each of them separately.

Vibrational levels

The first two terms of (4.1.55) describe a one-dimensional harmonic os-
cillator. We have treated such an oscillator in Part III, and we already
know that its states are characterized by the degree of excitation n and
that its energies are quantized according to

Ev(n) =

(
n+

1

2

)
εv , (4.1.56)

where εv is the spacing between the vibrational levels:

εv = h̄ω = h̄

√
K

µ
. (4.1.57)

For example, in a chlorine molecule Cl2, ω = 1014 s−1 and hence the
spacing between the vibrational levels is 10−20 J, which is about 0.06 eV.
To these spacings there corresponds a characteristic temperature:

Θv =
εv
k
. (4.1.58)

Above this temperature the “frozen” vibrational levels can “unfreeze.”
For chlorine Θv � 700 K.

Rotational states

The third term of Eq. (4.1.55) describes the energy of the rotational mo-
tion of the molecule with respect to its center of mass, in terms of the
internal angular momentum of the molecule, �. Several aspects of the
quantum angular momentum have already been mentioned in Part II
(Chap. 2), but this is the place to include some additional aspects. Thus,
we present a brief summary of the main results of the quantum analysis
of the properties of the angular momentum:
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(a) The quantum angular momentum of a system assumes discrete values
only, which are characterized by a nonnegative integer or half-integer
J .

(b) The absolute value of the angular momentum is given by

|J| =
√
J(J + 1) . (4.1.59)

J is dimensionless and measures the angular momentum of the system
in units of h̄ (see Sec. 2.1 of Part II).

(c) Each of the angular momentum’s components is also quantized, as-
suming only discrete values. For instance,

Jz = −J,−J + 1, . . . , J − 1, J . (4.1.60)

(d) Due to the uncertainty principle it is impossible to obtain more in-
formation on the angular momentum than its magnitude |J| and the
value of one of its components, which is usually chosen as Jz . Thus
each state of a quantum system, for which the angular momentum is
conserved, is characterized by two numbers: J and Jz. For a given J
there are 2J +1 different possible states (all the allowed values of Jz).

We shall now use all of the above in order to find the energy levels of the
rotational quantum states — the rotational levels. The rotational levels
are obtained from the last term on the right hand side of Eq. (4.1.55),
which we call rotational energy. Since � is an orbital angular momentum
(no spin) we can write

� = h̄J . (4.1.61)

Thus we can use (4.1.59) for the allowed values of the angular momentum
squared in the notational energy

Er(J) = J(J + 1)εr , (4.1.62)

where εr,

εr =
h̄2

2I
, (4.1.63)

determines the difference between the rotational levels. This is the place
to stress that since the origin of the angular momentum here is orbital,
the allowed values of J are integers, and not half-integers, as may occur
in systems in which the energy also depends upon the electronic spins.

To obtain some orders of magnitude, we again take the example of the
chlorine molecule, whose moment of inertia appears in Table 4.1.2: I =
1.15×10−45 kg ·m2. The value of εr is 4×10−24 J, which is 2.5×10−5 eV.
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The corresponding temperature above which the rotational levels un-
freeze,

Θr =
Er(1) −Er(0)

k
=

2εr
k
, (4.1.64)

is much lower than Θv. For chlorine this temperature is 0.7 K.

Exercise 1.16

Calculate εv,Θv, εr,Θr for HCl (ω = 5.7 · 1014 s−1).

Solution on page 417

Exercise 1.17

How many rotational levels fit into one vibrational level spacing in Cl2
and in HCl?

Solution on page 417

Having investigated the properties of both types of internal energies of
a diatomic molecule, i.e. the vibrational energy and the rotational energy,
we can find the quantum energy levels of the whole molecule. The energy
levels will be characterized by two numbers, n and J , and will be a sum
of (4.1.56) and (4.1.62):

EI(n, J) = εvn+ εrJ(J + 1) , n, J = 0, 1, 2, . . . , (4.1.65)

where we have dropped the ground state vibrational energy, just as we
ignored ε0(ρ0) on the way to obtaining (4.1.38).

To characterize the quantum states of a diatomic molecule, we need to
specify the degree of excitation of the vibrational motion as well as that of
the rotational state. The energy is determined by n and J , while a state
is specified giving n, J and Jz. The vibrational state is nondegenerate,
while the rotational state has a degeneracy of 2J+1, since its energy does
not depend on Jz for a given J . Hence the energy level EI(n, J) has a
degeneracy of 2J + 1.

The next step is, of course, the calculation of the internal partition
function. This is, as usual, a sum of the Boltzmann factors of all the
quantum states. We get

ζ =
∞∑
n=0

∞∑
J=0

(2J + 1) exp{−β[εvn+ εrJ(J + 1)]} . (4.1.66)

The factor 2J + 1 is the degeneracy of the state with given J and n. It
corresponds to the summation over Jz. Since the energy is a sum of two
independent terms, the partition function becomes again a product of two
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factors, one depending only on the vibrational states and the other only
on the rotational states:

ζ = ζvζr , (4.1.67)

where

ζv =
∞∑
n=0

e−βεvn , (4.1.68a)

ζr =
∞∑
J=0

(2J + 1)e−βεrJ(J+1) . (4.1.68b)

1.6 The equipartition principle and its violation

The factorization of the internal partition function into the product of a
vibrational factor and a rotational factor is not special to the quantum
case. It was possible since the approximations we made rendered the
internal energy of the molecule a sum of a vibrational contribution and a
rotational contribution. Hence the factorization of (4.1.67) is general. The
full single molecule partition function will be a product of three factors,
obtained from substitution in Eq. (4.1.26):

z = zc.m.ζvζr . (4.1.69)

The pedant may multiply (4.1.69) by other factors corresponding to the degrees of
freedom of the electrons, the nucleons, etc.

The free energy becomes a sum of terms describing the different mo-
tions: the usual (monoatomic) term Fc.m., corresponding to the center
of mass motion, and terms corresponding to the vibrational motion, the
rotational motion, etc.:

F = Fc.m. −NkT (ln ζv + ln ζr) = Fc.m. + Fv + Fr . (4.1.70a)

The energy of the gas, or the average energy per molecule, is written in
the same manner:

〈ε〉 = − ∂

∂β
ln z = − ∂

∂β
(ln zc.m. + ln ζv + ln ζr)

= 〈εc.m.〉+ 〈εv〉+ 〈εr〉 . (4.1.70b)

The separability of the energy into independent terms lies at the very basis
of the equipartition principle (see Part III, Sec. 4.3), according to which
each degree of freedom appearing quadratically in the energy contributes
to the energy an amount 1

2kT , and thus contributes to the specific heat
an amount 1

2k.
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The center-of-mass motion of a molecule is associated with three de-
grees of freedom, which are the three components of P, and thus 〈εc.m.〉 =
3
2kT . The vibrational motion has two degrees of freedom — one is the
vibrational kinetic energy π2ρ/2µ, and the other is the harmonic potential
term. In total, 〈εv〉 = kT .

The rotational motion of the diatomic molecule as described by �2/2I
has two degrees of freedom (not three), since the diatomic molecule can
only rotate around two independent axes. Rotations around the axis
that passes through both atoms do not contribute to the energy. In
other words, the decomposition of π2/2µ in Eq. (4.1.52) was performed
in such a way that the radial component was separated and taken into
account in the vibrational energy, and there remain two momentum com-
ponents normal to the direction of ρ, which describe the rotational mo-
tion. Hence for the rotational motion, 〈εr〉 = kT . In total we find from
the equipartition principle that the average energy of a diatomic molecule
is 7

2kT , and that the specific heat at constant volume of a diatomic gas
is 7

2Nk. We have already obtained this result by direct calculation in
(4.1.51).

All of the above assertions follow from the equipartition theorem,
which is valid only for classical systems. Hence all of the above describes
the behavior of a diatomic gas in a limited range of temperatures. The ex-
tent of this range is determined by the characteristic temperatures which
have appeared in our discussion in Secs. 1.3 and 1.5 — Θe � 104 K,
Θv � 103 K, Θr � 10 K — and which determine the range of excitation
of the respective degrees of freedom.

Since we are not interested in the detailed structure of the atoms which
come into play at temperatures above Θe, we shall restrict ourselves to
temperatures below Θe. At temperatures Θv < T < Θe all the degrees of
freedom that were discussed are excited, so that the specific heat attains
its “equipartition value,” 7

2Nk.

At temperatures below Θv the specific heat problem begins to emerge:
the specific heat becomes smaller than its classical value. The reason is, of
course, that at temperatures Θr < T < Θv only the rotational degrees of
freedom are excited (in addition, of course, to the center-of-mass degrees
of freedom, which are never “frozen”). The vibrational degrees of freedom
are not excited, and the vibrational contribution to the internal energy
and to the specific heat is negligibly small. At these temperatures we are
in the range in which the vibrational contribution to the specific heat is
given by (3.2.18); it is exponentially small. This means that one k out of
the 7

2k of the specific heat per molecule disappears at these temperatures.
Thus CV becomes smaller not only than the classical value of a diatomicfrozen

degrees of
freedom

molecule but even than the classical value of two separate atoms: the
vibrational degrees of freedom are frozen.
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If we now lower the temperature further, to the range T < Θr, the
rotational degrees of freedom freeze as well. In the classical approxima-
tion two degrees of freedom correspond to the rotational motion, which
contribute a single k to the specific heat per molecule. When T 	 Θr,
CV → 3

2Nk, namely at these temperatures the diatomic molecules behave
as structureless point particles.

We therefore have three temperature scales:

(1) Electronic — 1 eV,
(2) Vibrational — 0.1 eV,
(3) Rotational — 0.001 eV,

and correspondingly temperature regions and characteristic temperatures.

1.7 Diatomic gas — quantum calculation

We have seen that the internal partition function decomposes into a prod-
uct of independent factors, which leads to the appearance of additive con-
tributions to the free energy corresponding to each of the different factors
of the partition function. We are left with the task of calculating the
separate parts of the internal partition function. The vibrational part
(4.1.68a) has in fact already been calculated in the previous part, and is
exactly the partition function of a single harmonic oscillator Eq. (3.2.7)
without the ground state energy term. It reads

ζv =
1

1− e−Θv/T
, (4.1.71)

and its contribution to the specific heat is obtained by the appropriate
substitutions in (3.2.16):

(∆CV )v
N

= k

(
Θv

T

)2 eΘv/T

(eΘv/T − 1)2
. (4.1.72)

Note that unlike the case of the Einstein solid, where the fact that all
the atoms have the same frequency is only an approximation, here all the
molecules do indeed have an identical vibrational frequency.

In order to complete the discussion we have to calculate ζr. The
summation in (4.1.68b) is hard to perform, and hence we shall treat it
in two limits:

(a) Low temperatures — T 	 Θr.
It suffices to take the first two terms in the sum, namely those with

J = 0 and J = 1:

ζr � 1 + 3e−Θr/T , (4.1.73)
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and the contribution to the specific heat will be according to (4.1.33):

(∆CV )r
N

= k
d

dT

(
T 2 d

dT
ln ζr

)
� 3k

(
Θr

T

)2
e−Θr/T ; (4.1.74)

the derivation is left to Exercise 1.18.

The right hand side of (4.1.74) tends to zero as T → 0, namely the
two rotational degrees of freedom freeze.

(b) High temperatures — T 
 Θr.
It is possible to approximate the sum (4.1.68b) by an integral, since

the terms in the sum change almost continuously. See, for example,
the derivation of Eq. (3.4.33).

ζr �
∫ ∞
0

dJ(2J + 1)e−J(J+1)Θr/2T =
2T

Θr
(4.1.75)

and the contribution to the specific heat will be k as for two classical
degrees of freedom.

Exercise 1.18

(a) Obtain the right hand side of Eq. (4.1.74).
(b) Prove (4.1.75).
(c) Prove that (4.1.75) implies a contribution of k to the specific heat per

molecule.

Solution on page 418

The behavior of the specific heat as a function of the temperature is
depicted in Fig. 4.1.6. Note that our explanation is still incomplete, and
that there are still regions in the graph that are not “covered.” Further
study of this topic will take us too far afield.

➤

➤

CV/Nk

7/2

5/2

3/2

Θr Θv T

electronic
degress of freedom

unfreeze

vibrational
degrees of freedom

unfreeze

rotational
degrees of freedom

unfreeze

experiment

(logarithmic scale)

theory

Fig. 4.1.6 The behavior of the specific heat of a diatomic gas as a function of the
temperature.
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In summary:

(1) The free energy of a gas of molecules with internal structure is a sum of
a free energy related to the center-of-mass motion and of a free energy
related to the internal motions in the molecules: F = Fc.m. + FI.

(2) The internal motion comprises the motion of the electrons and the
motion of the heavy nuclei. The motion of the nuclei may be further
reduced to notations and vibrations.

(3) The treatment of the internal motions must be quantum-mechanical
(if we are interested in temperatures which are not exceptionally high).
There appear different scales of energy spacings. Each energy spacing
— electronic, vibrational, rotational or other — determines a charac-
teristic temperature.

(4) If the temperature is very high, the specific heat can be calculated
classically. The intramolecular forces increase the specific heat above
its value for a gas of unbonded (free) atoms.

(5) As the temperature decreases, each time it crosses a characteristic
temperature of one of the internal motions, the corresponding degree
of freedom freezes, and ceases to contribute to the specific heat or to
the internal energy.



Chapter 2

Gases in Chemical Reactions

2.1 Conditions for chemical equilibrium

So far we have discussed gases whose basic building blocks are molecules.
First (Chaps. 3 and 4 of Part III) we described the molecules as pointlike
objects without any internal structure, and obtained the laws of ideal
gases. In the second stage (Chap. 1 of this part) we took into account
the internal structure of the molecules and the internal degrees of freedom
— rotation and vibration — and mentioned the possibility of electronic
excitations. We still have not considered the possibility of a molecule
disintegrating into its constituent atoms, or its participating in a chemical
reaction. In real gases collisions between molecules occur incessantly at
different energies. In some cases, due to highly energetic collisions at
least one of the molecules involved will disintegrate. On the other hand,
of course, the opposite process can also occur, i.e. two free atoms which
have lost their partners will meet and recombine to form a molecule. More
often than not, no free atoms are left. Instead new types of molecules are
created. A typical example is the process of the formation and dissociation
of water molecules, as described by the reaction between molecules (not
between atoms):

2H2 +O2 ⇀↽ 2H2O .

In the system in which this reaction is taking place there are three types of
molecules. There are molecules that disappear in the reaction, and there
are others that appear. The molecules appear and disappear at constant
proportions. Thus, if an oxygen molecule disappears, then twice as many
hydrogen molecules must disappear, and as many water molecules must
appear, etc.

Let dN1 denote the change in the number of hydrogen molecules, dN2

the change in the number of oxygen molecules, and dN3 the change in the
number of water molecules. The reaction must satisfy the relations

dN1 = 2dN2, dN3 = −dN1 (4.2.1a)

366
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or
dN1

dN2
= 2 ,

dN1

dN3
= −1 . (4.2.1b)

We can write a general formula for a chemical reaction of molecules of
types B1, . . . , BM in the following manner:

b1B1 + b2B2 + . . . + brBr ⇀↽ br+1Br+1 + . . . bMBM ,

where Bi are the chemical formulae of the molecules that appear and
disappear, and bi are the smallest integers for which there are no leftovers
from the reaction. In the above example,

B1 = H2 , b1 = 2 ,

B2 = O2 , b2 = 1 ,

B3 = H2O , b3 = 2 .

The generalization of (4.2.1) will be a relationship between the changes
in the number of molecules of the different types. If dNi (i = 1, . . . ,M) is
the change in the number of molecules of type Bi, then the relationship
that guarantees that the total number of atoms, of all types, does not
change in the reaction is

dNi

dNj
=
νi
νj
, (4.2.2)

where

νi = −bi, i = 1, . . . , r ,

νi = +bi, i = r + 1, . . . ,M .

In the above example,

ν1 = −2 ,
ν2 = −1 ,
ν3 = 2 .

Note that we assume here that the atoms do not disintegrate in the collisions.

Let us suppose that the reaction takes place under conditions of con-
stant temperature and constant volume. In this case, equilibrium will be
attained when the free energy F is minimal. Thus, changes in the num-
ber of molecules will occur only if they reduce F . When the system has
reached a state where the number of molecules of type Bi is such that F
is minimal, no more changes will occur. The condition

dF = 0 (4.2.3)
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determines the relationship between the number of molecules of different
types. Since we are assuming constant T and V and are only allowing the
number of molecules Ni to change, dF is the change in the free energy
resulting from the changes dNi in the numbers of molecules, i.e.

dF =
M∑
i=1

(
∂F

∂Ni

)
T,V

dNi =
M∑
i=1

µidNi = 0 , (4.2.4)

where µi is the chemical potential of the molecules of type Bi.
If we now substitute into Eq. (4.2.4) the relation which balances the

reaction, Eq. (4.2.2), we obtain the condition for equilibrium:

M∑
i=1

νiµi = 0 . (4.2.5)

Exercise 2.1

Prove Eq. (4.2.5).

Solution on page 419

The νi are constant integers (positive and negative). µi depend on the
number (per unit volume) of molecules of each type. Therefore, (4.2.5)
provides a relation between the densities of molecules in a state of equi-
librium, and the temperature.

Exercise 2.2

Consider the following reactions:

(a) 4NH3 + 3O2 ⇀↽ 2N2 + 6H2O ,
(b) 2C4H10 + 13O2 ⇀↽ 8CO2 + 10H2O .

What is the form of Eq. (4.2.5) in each case?

Solution on page 419

2.2 The law of mass action

In order to obtain the explicit form of the relationship between the densi-
ties of molecules and the temperature, we substitute into Eq. (4.2.5) the
explicit form of the chemical potential, Eq. (4.1.35):

kT
M∑
i=1

νi

[
lnni − 3

2
ln

(
2πMikT

h2

)
− ln ζi

]
= 0 , (4.2.6)
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where ni is the density of molecules of type i, and Mi is their mass. ζi
contains the information about the internal structure of the molecules,
namely, to what extent they tend to participate in chemical reactions.
From here we can immediately obtain the law of mass action: law of mass

action

nν11 · · ·nνMM =
n
|νr+1|
r+1 · · ·n|νM |M

n
|ν1|
1 · · · n|νr|r

= K(T ) . (4.2.7)

The right hand side, which is called the chemical equilibrium constant, is
given by chemical

equilibrium
constant

K(T ) =
M∏
i=1

[(
2πMikT

h2

)3/2
ζi(T )

]νi
, (4.2.8)

Note that for a given reaction the equilibrium constant depends only on
the temperature.

Exercise 2.3

Deduce (4.2.7) and (4.2.8) from (4.2.6).

Solution on page 420

The law of mass action is a very important tool in physical chemistry
(it was discovered by Guldberg and Waage in 1867). For instance, if the
equilibrium constant in (4.2.7) K(T ) is known, then it is possible to obtain
the concentrations of materials in the system at any temperature. Larger
K(T ) implies higher product concentrations.

In the example of the formation of water from hydrogen and oxygen,
we obtain from Eq. (4.2.7)

n23
n21n2

= K(T ) , (4.2.9)

where n1, n2, n3 are respectively the densities of the hydrogen molecules,
oxygen molecules and water molecules. Equation (4.2.9) is a single equa-
tion with three unknowns. But the total amounts of hydrogen and oxygen
in the system are known. If we denote the number of hydrogen atoms per
unit volume by nH and the number of oxygen atoms per unit volume by
nO, then the two additional equations will be

nH = 2n3 + 2n1 , (4.2.10a)

nO = n3 + 2n2 , (4.2.10b)

and now we have three equations with three unknowns.
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Exercise 2.4

(a) Obtain the law of mass action for the first reaction in Exercise 2.2.
(b) Show that it is possible to obtain enough equations in order to find

all the constituents of this reaction at equilibrium.
(c) Calculate the equilibrium constant, assuming that the internal parti-

tion functions are known.

Solution on page 420

The functions ζi may be determined from experiment. There exist
precise measurements of the emission spectrum and absorption spectrum
of various molecules. The spectrum reflects the energy differences between
the different levels of the molecule which are needed for calculating the
internal partition function. Actually, for the calculation only the low
levels of the molecule are required, i.e. levels whose energies are not large
with respect to kT . In other words, spectroscopic measurements make it
possible, with the help of (4.2.8) [and (4.1.27b)], to predict the equilibrium
constant of a chemical reaction!

Before proceeding, we note that in calculating the functions ζi for the
different types of molecules participating in the reaction it is not possible
to ignore the minimal value of the internal energy, as we have done in
obtaining Eq. (4.1.38). The reason is that the formation or dissociation
of molecules in the reaction involves energy changes. For instance, the
dissociation of water into hydrogen and oxygen requires energy. Therefore
a water molecule must have a lower internal energy than free hydrogen and
oxygen molecules. This fact is accounted for by choosing the ground state
energy in a consistent manner for all the molecules. A simple example is
presented in the next section.

In order to comprehend the meaning of the law of mass action, and
especially the meaning of the equilibrium constant, we shall now show that
chemical equilibrium is actually determined by the free energy change in
the reaction.

The starting point is Eq. (4.2.5) with the chemical potential of the
molecule of type i written in the general form

µi =
∂F

∂Ni
= − ∂

∂Ni
kT lnZ . (4.2.11)

Recall that the partition function is the product of the partition functions
of all the types of molecules [Eq. (3.5.4)]:

Z =
M∏
i=1

(zi)
Ni

Ni!
. (4.2.12)
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Differentiating with respect to Ni, and using Stirling’s approximation
lnn! � n lnn− n, we obtain the following useful expression for the chem-
ical potential:

µi = −kT ∂

∂Ni
[Ni ln zi − ln(Ni!)] = −kT ln

(
zi
Ni

)
. (4.2.13)

Substituting this expression into (4.2.5) we obtain

kT
M∑
i=1

νi ln

(
zi
Ni

)
= 0 (4.2.14)

or

−kT
M∑
i=1

νi lnNi = −kT
M∑
i=1

νi ln zi . (4.2.15)

The expression −kT ln zi may be thought of as the free energy of a single
molecule of type i [cf. (3.5.10)]. Hence the right hand side of (4.2.15) is
nothing but the sum of all the free energies involved in a given reaction
multiplied by the number of molecules of each type. It describes, therefore,
the free energy change in the reaction, and hence we shall denote it by
∆F0. Thus we obtain

∑
i

ln(Nνi
i ) = −∆F0

kT
. (4.2.16)

Recalling that Ni = V ni and comparing with Eq. (4.2.7) we arrive at

Nν1
1 · · ·NνM

M = exp

(
−∆F0
kT

)
= K(T ) · V ν1+...+νM . (4.2.17)

Equation (4.2.17) clarifies the connection between the equilibrium con-
stant and the free energy change in the reaction, ∆F0. This quantity
determines the “degree of expedience” for the reactants to turn into prod-
ucts. Negative ∆F0 describes a decrease in the free energy due to the
reaction, and thus K will be large and at equilibrium the density of the
products will be high. Conversely, positive ∆F0 describes a reaction which
leads to an increase in the free energy, and is thus disadvantageous ener-
getically. In this case the product density is low.

Exercise 2.5

What would the law of mass action look like if we had not introduced the
correction implied by Gibbs’ paradox?

Solution on page 421
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Another point worth considering is the system’s response to tempera-
ture changes, as determined by the temperature dependence of the equi-
librium constant. To this end it is convenient to express K in terms of
the single molecule partition functions of all the types of participating
molecules. In order to do this we return to (4.2.17).

Expressing Ni in terms of the densities and the volume we obtain
(4.2.7) again, where K or lnK is given in terms of the single molecule
partition functions:

lnK =
M∑
i=1

νi ln

(
zi
V

)
. (4.2.18)

Note that in spite of the explicit appearance of the volume on the right hand side, K
remains volume-independent, since zi is proportional to the volume.

We obtain an interesting result for the temperature dependence of K.
Differentiating (4.2.18) we obtain

d lnK

dT
=

M∑
i=1

νi
∂ ln zi
∂T

. (4.2.19)

∂ ln zi/∂T is the average energy per molecule of type Bi apart from a
factor kT 2 [see (3.1.3)], and hence

d lnK

dT
=

∆E0

kT 2
. (4.2.20)

∆E0 is the energy increase when the reaction is performed in a given
direction. If ∆E0 is positive, the reaction absorbs heat (the energy of
the products is higher than the energy of the reactants). In this case K
increases as the temperature rises, since the right hand side is positive,
and the equilibrium will tend in the direction of the products. Hence,
as the temperature is increased, the reaction proceeds in the direction in
which heat is absorbed and the temperature change is canceled. This is
an example of Le Chatelier’s principle.

Exercise 2.6

What happens if ∆E0 < 0?

Solution on page 421

Le Chatelier’s principle may be formulated in a more general mannerLe
Chatelier’s
principle

in the following form: If the external conditions change, the equilibrium
state of a chemical reaction will change in a manner that decreases the
external change.
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2.3 Dissociation in a diatomic gas

To end this chapter, and as a “concluding exercise” for our discussion of
diatomic gases, we apply the law of mass action to the calculation of the
degree of dissociation of a diatomic gas, namely to the calculation of the
relative part of the dissociated molecules in the gas. We suppose that the degree of

dissociationgas molecules are composed of identical atoms (like Cl2), and the gas is
at a temperature in the range Θr 	 T 	 Θe.

If we denote the atoms of the gas by A, the reaction of formation and
dissociation of the molecules will be given by

2A ⇀↽ A2 .

Hence at equilibrium the gas consists of free atoms at density n1 and
molecules at density n2, so that

b1 = 2, b2 = 1 ,

ν1 = −2, ν2 = 1 ,

and by Eq. (4.2.7)
n2

n21
= K(T ) . (4.2.21)

There is an additional equation, relating the total density of atoms, nA,
to the density of molecules and of free atoms. It reads

nA = n1 + 2n2 . (4.2.22)

Substituting (4.2.22) into (4.2.21) we obtain a quadratic equation for n1:

2Kn21 + n1 − nA = 0 , (4.2.23)

whose positive solution is

n1 =

√
1 + 8KnA − 1

4K
. (4.2.24)

The density of disintegrated molecules is of course 1
2n1, as each molecule

is composed of two atoms. The density of molecules, were they all to
remain bound, would be, for the same reason, 1

2nA. Hence the degree of
dissociation will be

α =
1
2n1
1
2nA

=

√
1 + 8KnA − 1

4KnA
. (4.2.25)

Note that when K is very small, α → 1, hence n1 → nA, which means
that most of the molecules dissociate. When K is very large, α → 0,
hence most of the gas is diatomic.
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The temperature dependence of K is obtained from Eq. (4.2.8):

K =
h3

(2πkT )3/2
M

3/2
2 ζ2
M3

1 ζ
2
1

. (4.2.26)

We substitute the internal partition functions of the atoms and of the
molecules. Because the temperature is much lower than the electronic
excitation energy, we may write ζ1 = 1. Regarding ζ2, we first write it as
a product of a rotational part and a vibrational part:

ζ2 = ζrζv . (4.2.27)

Since T 
 Θr, we can use the expression (4.1.75):

ζr =
2T

Θr
=

2IkT

h̄2
, (4.2.28)

where I is the moment of inertia of the molecule.

The vibrational part requires some thought: The initial tendency is to
use (4.1.71) as it stands. But we must recall that ignoring the dependence
on the ground state energy was legitimate only when the gas was com-
posed entirely of molecules. When there are also single atoms, we must
fix a common ground state for the energies of the atoms as well as the
energies of the molecules. The fact that we have already written ζ1 = 1
is equivalent to having chosen the potential energy of a free atom to be
zero. Hence we must add to the energies of the harmonic oscillators the
minimal potential energy U(ρ0) [Eq. (4.1.19)], which is negative, as well
as the quantum ground state energy 1

2εv [Eq. (4.1.56)]. Designating their
sum as the dissociation energy,

−εD = U(ρ0) +
1

2
εv , (4.2.29)

we can write the vibrational partition function in the form

ζv =
∞∑
n=0

e−β(−εD+εvn) = eβεD
∞∑
n=0

e−βεvn , (4.2.30)

which is, of course, the partition function (4.1.68a) multiplied by a factor
which translates the zero point of the energy. The result of the summation
is given by (4.1.71), so that

ζv =
eεD/kT

1− e−Θv/T
(4.2.31)
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and

ζ2 =
2IkT

h̄2
eεD/kT

1− e−h̄ω/kT , (4.2.32a)

where we have written h̄ω instead of kΘv [Eqs. (4.1.57) and (4.1.58)].
Yet there is another factor which we have ignored so far: It is the fact

that the molecules A2 are composed of two identical atoms. As a result
we summed over too many states in the partition function, and therefore
we must correct Eq. (4.2.32a) in the spirit of Gibbs’ correction, namely
divide by 2. Thus the correct expression is

ζ2 =
IkT

h̄2
eεD/kT

1− e−h̄ω/kT . (4.2.32b)

Actually one must already divide by 2 the classical internal partition function —
Eq. (4.1.49) for such molecules.

Substituting everything into Eq. (4.2.26), and noting that M2 = 2M1, we
obtain

K(T ) = 4hI

√
π

M3
1 kT

eεD/kT

1− e−h̄ω/kT . (4.2.33)

Finally, we check the behavior of the equilibrium constant in two lim-
its. At temperatures much below Θv (kT 	 h̄ω) the vibrational degrees
of freedom freeze and the denominator in (4.2.33) is very close to unity.
Hence

K(T ) � 4hI

√
π

M3
1 kT

eεD/kT , T 	 Θv . (4.2.34a)

In this range K(T ) decreases with T and, consequently, the degree of
dissociation increases. At high temperatures (kT 
 h̄ω) the vibrational
degrees of freedom unfreeze, as can be checked by the fact that (4.2.32b)
yields (4.1.49), divided by 2 according to Gibbs. Since K is a directly
measurable quantity, we expect that at these temperatures for which the
classical approximation applies, Planck’s constant will disappear from the
equations, and indeed we obtain

K � 8πI

ω

√
πkT

M3
1

eεD/kT , T 
 Θv . (4.2.34b)

This equation is valid for temperatures that are not too high, since T
must be much below Θe and must be low enough to justify the harmonic
approximation.



Chapter 3

Phonon Gas and the Debye Model

3.1 Sound waves in a crystal

In this chapter and in the next one we deal with thermodynamic prop-
erties of waves, and our final goal will be to reach Planck’s distribution
for black body radiation in the next chapter. But before discussing the
thermodynamics of electromagnetic radiation, we return to a system we
have already met in the previous part, namely the crystal of N atoms.
Describing the crystal as a collection of 3N independent harmonic oscil-
lators gives us a qualitative understanding of its specific heat, provided
that we take into account the laws of quantum mechanics. However, we
have seen that the quantitative correspondence is not satisfactory (see
Fig. 3.2.4). Although the crucial step in the right direction was made by
Einstein, there is still room for improvement.

We first analyze Einstein’s assumption that all the harmonic oscillators
have identical frequencies. The energy of the crystal according to Einstein
is

E =
1

2

N∑
α=1

(mṙ2α +Kr2α) =
N∑
α

(
p2α
2m

+
K

2
r2α

)
, (4.3.1)

where rα describes the motion of atom number α relative to its equilibrium
position. This expression does not take into account the fact that the
potential energy of an atom in the crystal depends on the distance from
its neighbors or, more precisely, on its motion relative to its neighbors.
Hence in order to correct (4.3.1), we replace rα by the separation between
atom number α and atom number β, rα − rβ. We thus obtain

E =
N∑
α=1

p2α
2m

+
1

2

∑
α,β

K

2
|rα − rβ|2 . (4.3.2)

Note that we could have obtained the above expression for the energy
from the harmonic approximation to the energy of N atoms whose
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potential energy depends on the relative distance between each pair of
atoms:

E =
N∑
α=1

p2α
2m

+
1

2

∑
α,β

U(rα − rβ) . (4.3.3)

Since the potential energy of a pair of atoms usually depends only on the
absolute value of their relative distance from each other, we can expandU
as in (4.1.19) to second order in |rα− rβ| and reach (4.3.2) after dropping
the minimum energy, which anyway is a shift by a constant.

Compare with Eq. (4.1.1). Actually, you may think of the crystal as a sort of macro-
scopic molecule. The factor 1

2 in front of U also appears for the same reason as in
(4.1.1).

The expression (4.3.2) for the energy, unlike (4.3.1), is not a sum of
single-particle energies. Thus, the calculation of the partition function
may look rather difficult. But a system of N coupled three-dimensional
oscillators is equivalent to a system of 3N independent one-dimensional
oscillators. The price to be paid is that the free oscillators that are ob-
tained are not of equal frequency; instead each oscillator has a frequency
of its own. An additional complication is the fact that the indepen-
dent oscillators are not related to the motions of single atoms, but to
the collective motions of all the atoms of the crystal about their equi-
librium positions — vibrational modes. The vibrational modes are just vibrational

modessound waves in the crystal. Each vibrational mode of frequency ω in
the crystal behaves exactly as a single free harmonic oscillator of that
frequency.

Consult a textbook on classical mechanics for a fuller account.

In order to see this consider the simple case in which the atoms in the
crystal vibrate along a single direction, say, x. The equation of motion of
atom α is

mẍα = K(xα+1−xα)−K(xα−xα−1) = K(xα+1− 2xα +xα−1) . (4.3.4)

Note that this model neglects all the forces exerted upon this atom by
atoms that are not its nearest neighbors.

α+1α–1 α

Fig. 4.3.1 One-dimensional crystal.
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We stress once more that xα is the deviation of atom α from its equi-
librium position and not the distance from a fixed point that was chosen
to be the origin, since if the atoms are at their equilibrium positions, they
do not exert forces on each other. Here we shall only show that Eq. (4.3.4)
has solutions which describe standing waves of frequencies between zero
and 2

√
K/m.

The solutions are

xα = a sin(qbα) sinωt , (4.3.5a)

where a is the amplitude, b the equilibrium distance between neighbor-
ing atoms, q is the wave number (q = 2π/λ) and ω is the frequency.
When (4.3.5a) is substituted in (4.3.4), one obtains a relation between ω
and q:

ω(q) = 2

√
K

M

∣∣∣∣ sin
(
qb

2

) ∣∣∣∣, 0 ≤ q ≤ π

b
. (4.3.5b)

Exercise 3.1

Show that Eqs. (4.3.5) are indeed solutions to (4.3.4).

Solution on page 422

Since the solutions are standing waves with definite frequencies, we
may treat each wave (or vibrational mode) as an independent oscillator
characterized by the wave number q. If the number of atoms in the chain
is N , the length of the chain is L = Nb. The requirement that the
waves be standing implies that the vibrations vanish at the two boundaries
(α = 0 and α = N). This implies that the allowed values of q satisfy
qbN = qL = nπ, where n is an integer between 1 and N . Thus, q changes
in steps of π/L up to the maximal value of π/b and hence takes N discrete
values. Similarly, the original three-dimensional crystal will be equivalent
to 3N independent harmonic oscillators that are characterized by a wave
vector, q. Each q determines the frequency, which in the simple case
of a cubic crystal of identical atoms is still given by an equation similar
to (4.3.5b). The total energy of the crystal (4.3.2) will thus be given
by a sum of 3N terms, each describing the energy of a single harmonic
oscillator.

The following exercise is intended to give an indication of the type
of procedure that converts (4.3.2) into a sum over independent oscilla-
tors. It is a coordinate transformation into the normal modes of the
system.
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Exercise 3.2

The energy of the “toy crystal,” in Fig. 4.3.2, is given in terms of the
distances of the three “atoms,” x1, x2, x3, from their equilibrium positions,
as

E =
m

2
(ẋ21 + ẋ22 + ẋ23) +

K

2
[x21 + (x2 − x1)2 + (x3 − x2)2 + x23] .

Show that the change of variables

x1 =
1

2
(u1 +

√
2u2 − u3) ,

x2 =
1√
2
(u1 + u3) ,

x3 =
1

2
(u1 −

√
2u2 − u3)

transforms the expression for the energy of the triatomic crystal into a sum
of energies of three free oscillators. Find the frequencies of the oscillators.

m m m
K K K K

Fig. 4.3.2 A “toy crystal” of three “atoms.”

Solution on page 423

3.2 Vibrational modes, phonons and enumeration
of states

Since the vibrations of the crystal have to be treated quantum-
mechanically, we write down the quantum expression for the energy of
the 3N oscillators in a given microscopic state:

E(n1, n2, . . . , n3N ) =
3N∑
α=1

h̄ωαnα , (4.3.6)

where we have dropped the zero point energy of the oscillators. It should
be mentioned that we are now using the letter α to denote not the atoms
of the crystal but the different standing waves generated in it, namely
the oscillators. It is common practice to think of the excited states of
these oscillators as particles, and then instead of saying that oscillator
number α has a degree of excitation nα, we say that there are nα phonons phonon
of type α (or with frequency ωα). Figure 4.3.3, for example, describes
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n1 n2 n3 n4 n5 n6

1 2 3 4 5 6
α

1

2

3

4

n

➤

➤

Fig. 4.3.3 Distribution of phonon numbers.

a system in which there is one phonon of type α = 1, three phonons of
type α = 2, no phonon of type α = 3, four phonons of type α = 4, and
so on.

From Eq. (4.3.6) it is clear that increasing the excitation number nα
by unity, or the addition of a phonon of type α, increases the energy of
the system by h̄ωα. Hence it may be said that a phonon of type α has
energy h̄ωα.

A given microscopic state of the crystal is thus specified by listing all
the excitation numbers of all the oscillators, or listing the phonon numbers
of all types that are in the crystal. In thermodynamic equilibrium it is
thus possible to say that the vibrations of the crystal are, in fact, an ideal
gas of phonons at temperature T . The partition function of such a system
will be a product of single oscillator partition functions, but the factors
in the product, zα, will not be equal, but will change with α. The first
stage in the calculation of the partition function is the calculation of zα
for a given α, by summing over all the excitation numbers nα. Then the
3N different partition functions have to be multiplied together in order
to obtain the partition function of the whole system. Actually it is more
convenient in this case to directly calculate the free energy, which is a sum
rather than a product.

We have met precisely such a calculation in Self-Assessment Exer-
cise 2 of Part III, where we found that after summing over all excita-
tion numbers the free energy is given by a sum over all 3N different
oscillators:

F = kT
3N∑
α=1

ln(1− e−βh̄ωα) , (4.3.7)

leaving out the ground state energy.

But here there is an additional complication: While the energy is a sum
of independent terms for each oscillator and for each of its components, the
enumeration of the number of states must take into account the nature
of the vibrational normal modes. Each three-dimensional oscillator is
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characterized by a wave vector q. If the crystal is a cube of side L, the
allowed values of the components of q are

qx =
π

L
nx; qy =

π

L
ny, qz =

π

L
nz , (4.3.8)

with nx, ny, nz nonnegative integers. For every vector q, there are three
possible independent oscillating modes: One in which the oscillation am-
plitude is longitudinal (in the direction of q) and two in which it is trans-
verse (perpendicular to q). Hence, to sum over all states we must sum
over all allowed wave vectors and for each wave vector over three polar-
izations. Yet the total number of terms must equal the total number of
degrees of freedom, 3N .

The summation over α thus transforms into a summation over these
three variables:

F = 3kT
∑

nx,ny,nz

ln(1− e−βh̄ω(nx,ny,nz)) , (4.3.9)

where the factor 3 comes from the summation over the three possible
polarizations, assuming that the frequencies of the standing waves, ω, do
not depend on polarization.

Successive terms in the sum correspond to q’s which differ by π/L. For
L macroscopically large and temperatures that are not extremely low, the
difference between successive terms in the sum will be infinitely small and
(as in Part III, Sec. 4.4) the sum can be approximated by an integral over
the region D of the positive values of the wave vectors’ components:

F =
3kTV

π3

∫
D
ln(1− e−βh̄ω(q))d3q . (4.3.10a)

We have written V for L3. The region of integration in wave vector space
is depicted in Fig. 4.3.4. The points of the three-dimensional lattice repre-
sent the allowed values of q. If the frequency of vibration ω is independent
of the direction of the wave vector q, we can replace the integration over
positive qx, qy, qz (1/8 of the sphere) in Eq. (4.3.10a) by an integration
over the entire sphere of radius qD, provided we correct for this by multi-
plying by 1/8. Hence,

F =
3kTV

(2π)3

∫
|q|≤qD

ln(1− e−βh̄ω(q))d3q . (4.3.10b)

This substitution represents the fact that a standing wave along the x di-
rection contains, in fact, two waves that are moving in opposite directions
with wave vectors +qx and −qx (see the remark at the end of Answer 3.1).
The same applies to standing waves moving along the y and z directions.
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π/L

π/L

➤ qy

qx

qz

dq

qx

qy

➤

➤

➤

➤ ➤

➤

π/L

➤

➤

➤

➤

(a) (b)

Fig. 4.3.4 The wave vectors of the vibrational modes are represented by points in wave
vector space. (a) Three-dimensional representation; (b) two-dimensional section. Each
of the points represents three free waves moving with all possible polarizations.

Altogether a standing wave with (a positive) wave vector q comprises
eight traveling waves with wave vectors (±qx,±qy,±qz).

Note that the replacement of the sum over all oscillators
∑

α, by an
integral over the components of q, which appears in (4.3.10b), implies that
inside a volume d3q in wave vector space there are 3V d3q/(2π)3 crystal
vibrational modes. We could have arrived at this result from a slightly
different direction. So far we have calculated the number of phonon states
by treating the phonons as waves. But in the quantum context it is
possible to consider them as particles with de Broglie momentum given
by h̄q (and energy h̄ω). We can now think of these phonons as particles
confined to a box of volume V (the volume of the crystal). We have found
(in Sec. 4.4 of Part III) that each state of a particle occupies a volume
of h3 in phase space. In addition there are three independent vibrational
directions. Therefore, inside a volume dV d3p of phase space there are
3dV d3p/(h)3 states and in terms of wave vectors 3dV d3q/(2π)3 states.
Integration over the whole volume of the crystal will give us 3V d3q/(2π)3

states to a volume of d3q in wave vector space.
It is highly recommended at this stage to return to Sec. 4.4 of Part III,

and to compare the considerations made in the two instances.

3.3 The Debye model

In order to calculate the free energy of the crystal (4.3.10), we have to know
the form of the function ω(q). Actually we have calculated it explicitly in
the one-dimensional situation in Eq. (4.3.5b), but that case is too specific.
The general case is three-dimensional, and the crystal structure is not
always cubic and the crystal does not always consist of one type of atoms.
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All these factors indicate that in the typical general case ω(q) may be a
fairly complicated function. Nevertheless, Debye found that it is possible
to describe the specific heat of many solids quite well, if we assume a
usual free wave relationship between ω and q: ω = vq, where v is the
sound velocity in the crystal, provided we limit the region of integration
to contain exactly 3N states.

The integrand in (4.3.10b) depends only on the absolute value of the
wave vector, and the region of integration is a sphere of radius qD. Thus
it is possible to perform the integration as a summation over spherical
shells of thickness dq (see Fig. 4.3.4a), to obtain from (4.3.10b)

F =
3kTV

2π2

∫ qD

0
ln(1− e−βh̄vq)q2dq , (4.3.11)

following the angular integration, as a result of which d3q = 4πq2dq. To
find the integration limit qD, we use the fact that the number of states
in a region of phase space confined by qD should be 3N . The number of
states in an infinitesimal volume d3q is, as we have seen, 3V d3q/(2π)3,
and altogether we want 3N states inside a sphere of radius qD. This leads
to

qD =

(
6π2N

V

)1/3

(4.3.12a)

or for the corresponding frequency, called the Debye frequency: Debye
frequency

ωD = v

(
6π2N

V

)1/3

. (4.3.12b)

Exercise 3.3

Prove Eq. (4.3.12a).

Solution on page 424

The practical aim of this whole discussion is to obtain an improved
calculation of the average energy and of the specific heat of a crystal,
especially in the low temperature range, where the Einstein model deviates
very significantly from the experimental results (see Fig. 3.2.4).

An expression for the average energy is readily obtained from (4.3.11):

E = −∂ lnZ
∂β

=
3V

2π2v3

∫ ωD

0

h̄ω

eβh̄ω − 1
ω2dω . (4.3.13)

Exercise 3.4

Obtain Eq. (4.3.13).

Solution on page 424
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Equation (4.3.13) may be interpreted in the following manner: each
phonon of frequency ω has energy h̄ω. The average number of phonons
of frequency ω is the average degree of excitation found in Eq. (3.2.9):
〈n〉 = 1/(eβh̄ω − 1). It is possible to identify the additional multiplicative
factor as the number of microscopic states per unit frequency of a single
phonon (or the density of states):

g(ω) =
3V

2π2v3
ω2 , (4.3.14)

and then the energy density per unit frequency is the product of all these
factors. We may also define an energy density per unit frequency per unit
volume, which is

ρ(ω) =
3

2π2v3
h̄ω3

eβh̄ω − 1
, ω ≤ ωD . (4.3.15)

The specific heat (at constant volume) of the crystal is obtained from
Eq. (4.3.13) as

C =
3kV

2π2v3

∫ ωD

0

(h̄ω/kT )2eh̄ω/kT

(eh̄ω/kT − 1)2
ω2dω . (4.3.16)

This integral cannot be expressed in terms of elementary functions, and
generic values must be obtained numerically. Nevertheless, at low tem-
peratures, for which kT 	 h̄ωD, it is possible to extend the region of
integration up to infinity without changing the result of the integration,
since near ωD the integrand is vanishingly small. The physical reason for
this is that at low temperatures only low frequency phonons are excited,
and hence only they contribute significantly to the specific heat. We thus
find that at low temperatures

C = Nk
12π4

5

(
kT

h̄ωD

)3
. (4.3.17)

Note that the exponential temperature dependence of the Einstein model
has been replaced by a power dependence. Defining the Debye tempera-
ture, ΘD = h̄ωD/k, we may write

C = Nk
12π4

5

(
T

ΘD

)3
, T 	 ΘD . (4.3.18)

Exercise 3.5

Prove Eq. (4.3.17).

Solution on page 425



Chapter 4

Thermodynamics of Electromagnetic

Radiation

4.1 General considerations of radiation at thermal
equilibrium

Inside an empty cavity of matter (Fig. 4.4.1) there usually exists elec-
tromagnetic radiation since in the material of the walls, at tempera-
ture T , there are moving charges and these radiate. Moreover, radia-
tion in the cavity is absorbed in the walls and re-emitted, until the sys-
tem of matter + radiation reaches equilibrium, characteristic of the given
temperature.

cavity

matter at temperature T

Fig. 4.4.1 Radiation inside a cavity in matter — the average energy does not depend
on either the shape of the cavity or the type of matter surrounding it, but depends only
on the temperature.

The radiation in the cavity is characterized by different frequencies, or
different wavelengths. The amount of radiation at each frequency may be
specified by the energy density around this frequency. Namely, there exists
a function ρ(ω) such that ρ(ω)dω is the amount of energy of radiation per
unit volume with frequency between ω and dω at temperature T .

In what follows we shall refer to ρ also as the radiation density, even though it is
actually the energy density of the radiation.

385
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The goal of statistical mechanics is to calculate ρ(ω), which is the
analog of the Maxwell–Boltzmann distribution for material particles. This
calculation would have been impossible were it not for the fact that:

At equilibrium ρ(ω) is independent of the structure of the cavity or of the
surrounding material.

In order to clarify this far-reaching property, we note that it is a special
case of a more general independence. A priori we should have expected
the energy density to be a function of the position inside the cavity, of
the wave vector q, or of the polarization. It is possible to show that if the
radiation in the cavity is at equilibrium at a uniform temperature, then
the second law of thermodynamics implies that:

(a) The distribution of the radiation in the cavity is uniform — indepen-
dent of position.

(b) The distribution of the radiation in the cavity is independent of the
direction of the wave vector of the radiation or of its polarization —
ρ depends only on |q|.

The frequency of electromagnetic radiation is proportional to |q|:
ω = c|q| = cq , (4.4.1)

where c is the speed of light. From (b) above it is inferred that ρ depends
only on ω.

As a demonstration we shall bring here the argument that leads to
the conclusion that ρ(ω) is independent of the shape of the cavity, its
size, or the material it is made of. We shall discuss the independence of
the radiation density of the position and the direction of the radiation in
Sec. 4.4.

Suppose that there are two cavities A and B at the same temperature
T , which differ from each other in shape and are made of different mate-
rials. We shall connect the two cavities by a small hole, such that a small
amount of energy may pass from one cavity to the other (see Fig. 4.4.2).

If as a result of the passage of radiation through the hole more radia-
tion has passed from A to B than in the opposite direction, for instance,
then the radiation will not be at equilibrium with the walls of the cavity
on both sides. After a while the cavities will reach a new equilibrium, and
the temperatures of the walls will change. The result will be that heat will
pass between two systems at the same temperature, without performing
work — in contradiction to the second law of thermodynamics.

The same consideration applies to each and every frequency separately,
since it is possible to insert a filter inside the hole, so that only radiation
of a certain frequency ω is able to pass (the other frequencies will be
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T

A

T
B

Fig. 4.4.2 Two cavities, differing from each other in shape and in the surrounding
material, both at the same temperature.

reflected). Namely, the second law of thermodynamics ensures that if
the two cavities are at equal temperatures, then the amount of radiation
energy transferred from A to B must be equal to that transferred from B

to A, at each and every frequency. But the amount of radiation energy
with frequency between ω and ω + dω, which is transferred from side
to side, can be calculated exactly as for gas particles escaping from a
container through a tiny aperture (see Secs. 3.2, 3.7 and Self-Assessment
Exercise 4, Part I). This amount is given by

I(ω)dω =
c

4
ρ(ω)dω . (4.4.2)

I(ω) is called the emissivity and represents the amount of radiation energy emissivity
with frequency between ω and ω + dω transferred per unit time through
a unit element of the aperture. This implies that the energy density
ρ(ω) of one cavity is equal to that of the other cavity at every frequency.
Because we have chosen two arbitrary cavities, the form of the function
ρ(ω) is independent of the shape of the cavity, its size, or the material it is
made of.

Exercise 4.1

Prove Eq. (4.4.2).

Solution on page 425

4.2 Radiation density

If indeed ρ(ω) is independent of the shape of the container and of the
material it is made of, we may choose a cubic container of side L, and
whose faces are made of an arbitrary material. Whatever the material,
the charges within it perform thermal vibrations and emit electromagnetic
radiation. The latter is emitted into the cavity between the walls and
repeatedly hits them, causing the charges within them to vibrate, and
so on and so forth. As a result of these exchanges an equilibrium is
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established between the radiation and the walls, which, as we have seen,
is independent of the structure of the walls or their composition. The
electromagnetic radiation in the cavity can be described as a collection of
standing waves, with various frequencies, which are characterized by their
wave vector q. The frequency is determined by the wave vector according
to the usual relationship, Eq. (4.4.1).

Each of these standing waves with a given wave vector is a vibration of
the electromagnetic field in the cavity, which is sinusoidal in time. Hence
it is possible to think of it as a vibrational mode of the electromagnetic
field, namely as a harmonic oscillator with frequency ω = cq, precisely in
the same manner as standing sound waves in a crystal are its vibrational
modes. The next step is to take into account the quantum theory. The
quantization of the vibrational modes of the crystal led us to the concept
of phonons, which are the excited states of these oscillators. We may
also treat the vibrational modes of the electromagnetic field as quantum
oscillators. The result is similar: Each oscillator α can be excited to the
state nα. In particle language this state is described as a state in which
there are nα photons of type α.photon

Each of these oscillators has energy states which are given by
Eq. (3.2.1), and hence each photon carries energy of magnitude h̄ωα.
However, there exists a basic difference between the phonons and the
photons: The frequency of the phonons has an upper bound (ωD in the
Debye model) due to the fact that there exists a minimal wavelength de-
termined by the distance between two neighboring atoms in the lattice
or, alternatively, by the fact that the number of vibrational modes of the
crystal is finite. In contrast, there is no such limit for the electromagnetic
waves; hence the range of frequencies is unbounded and, correspondingly,
the number of vibrational modes is infinite.

We therefore treat the electromagnetic radiation in the container as
a gas of photons. At equilibrium, at temperature T , the probability of a
given microscopic state specified by the collection of nα for all α will be

P (n1, n2, . . .) =
1

Z
exp

(
−β∑

α

nαh̄ωα

)
, (4.4.3)

where Z is the partition function:

Z =
∞∑

n1=0

∞∑
n2=0

. . . exp

(
−β∑

α

nαh̄ωα

)
=
∏
α

(∑
nα

e−βnαh̄ωα
)

=
∏
α

(
1

1− e−βh̄ωα
)
. (4.4.4)
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This argument is identical to the one applied to phonons in the previous
chapter. Thus, the free energy is

F = −kT lnZ = kT
∑
α

ln(1− e−βh̄ωα) . (4.4.5)

But what of the summation over α?
The summation over α is a summation over all the vibrational modes

of the electromagnetic field or over all possible photon states. The photon,
which is the electromagnetic ray, is characterized by the wave vector q.
A second quantity characterizing the radiation is the polarization. The
electric field, for example, oscillates perpendicular to q, but there are two
independent directions perpendicular to q. Thus two different photons
correspond to each q. Note the contrast with phonons which had three
possible polarizations.

Exercise 4.2

Show that a sinusoidal electromagnetic wave is a transverse wave. Use
Maxwell’s equations in vacuum.

Solution on page 426

The number of vibrational modes with wave vectors in a region d3q

around q can be found exactly as for the phonons in the previous chapter.
One way is to count the number of different standing waves in a certain
region in wave vector space — or, alternatively, to calculate the volume
occupied by a single state in wave vector space. Reexamining Fig. 4.3.4,
we note that the volume of an elementary cell is (π/L)3 = π3/V . Hence
the number of standing waves in the region d3q is V d3q/π3. But the
electromagnetic waves can have two polarization states, and hence the
number of standing waves in d3q is 2V d3q/π3. As we have already seen
for phonons, it is more convenient to count moving wave states, for which
the components of q may also be negative, and hence the volume d3q
contains eight times too many moving waves. Thus, we have to divide
by 8 to obtain the final result, that the number of moving wave states
in the region d3q in wave vector space is 2V d3q/(2π)3. This result can
also be obtained by a direct inspection of the phase space of the photons,
precisely as we have done for the phonons.

The free energy Eq. (4.4.5) is written as an integral over q:

F =
2kTV

(2π)3

∫
ln(1− e−βh̄cq)d3q . (4.4.6)

Since the “terms of the sum” (the integrand) depend only on q = |q| and
not on the direction or the polarization, we can perform the integration
over spherical layers, as illustrated in Fig. 4.3.4(a). Inside the layer the
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terms have identical values: There is no dependence on the angle, and dq
is very small. Hence∫

ln(1− e−βh̄cq)d3q = 4π

∫ ∞
0

ln(1− e−βh̄cq)q2dq . (4.4.7)

The right hand side of (4.4.7) can be written, using (4.4.1), as an integral
over the frequencies:

4π

c3

∫ ∞
0

ω2 ln(1− e−βh̄ω)dω , (4.4.8)

and from here we can obtain the free energy as

F =
kTV

π2c3

∫ ∞
0

ω2 ln(1− e−βh̄ω)dω . (4.4.9)

For the average energy we find that

E = −∂ lnZ
∂β

=
V h̄

π2c3

∫ ∞
0

ω3dω

eβh̄ω − 1
. (4.4.10)

This expression for the average energy may be interpreted precisely in the
manner in which we interpreted the corresponding expression in the Debye
model, Eq. (4.3.13). The average degree of excitation of the quantum
oscillator appears also here and the multiplying factor can be identified
as the number of microscopic states per unit frequency (density of states)
of a single photon:

g(ω) =
V

π2c3
ω2 . (4.4.11)

The energy density per unit volume and unit frequency stored in the
electromagnetic radiation in the box will be

ρ(ω) =
1

π2c3
· h̄ω3

eβh̄ω − 1
. (4.4.12)

To be compared to Eq. (4.3.15).

Dividing ρ(ω) by the energy of a photon of frequency ω, we obtain the
photon number density per unit volume and unit frequency:

n(ω) =
1

π2c3
ω2

eβh̄ω − 1
. (4.4.13)

4.3 Black body radiation

In order to verify that indeed we have an expression that describes well
the radiation density in the container, we consider the radiation emitted
through a small aperture in it. The hole has to be small, so that the
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amount of radiation escaping from it will be negligible, otherwise it will
be impossible to maintain the state of thermodynamic equilibrium.

Such an aperture at the side of the container is an example of a black black body
body. The reason for this name is that any ray incident from the outside
on the hole is absorbed by the container. The probability for it to return
and exit the hole is vanishingly small. Nevertheless, a black body is in no
way black. In addition to being a perfect absorber, it emits radiation. As
we have seen in Sec. 4.1, if the container is full of photons moving to and
fro, then clearly some of them will be emitted through the hole, according
to Eq. (4.4.2) and (4.4.12). A black body is therefore characterized by the
power emitted by it per unit area per unit frequency (emissivity), given
by

I(ω) =
1

4π2c2
h̄ω3

eβh̄ω − 1
. (4.4.14)

This equation, as well as Eq. (4.4.12), is called Planck’s formula, and its
discovery by Planck in 1900 marks the birth of quantum theory. Fig-
ure 4.4.3 illustrates the power distribution emitted from a black body.
Note that the horizontal axis is an axis of the frequency (ν) and not
angular frequency (ω).

Note that the units of time have disappeared from I.

The fact that Planck’s constant appears in Eq. (4.4.14) immediately
explains the failure of all the attempts to explain the phenomenon of black
body radiation on the basis of classical physics. Nevertheless, (4.4.12) and
(4.4.14) have a classical limit which is obtained when βh̄ω 	 1.

ν (1014sec–1)
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Fig. 4.4.3 The emissivity, or the emission rate of radiation per unit area of the black
body, according to Planck’s law.
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Exercise 4.3

(a) Prove that in the classical limit the energy distribution has the form

ρ(ω) =
kTω2

π2c3
.

(b) To what physical conditions does this limit correspond?

Solution on page 427

The expression obtained in the last exercise is called the Rayleigh–
Jeans law and is as far as classical physics could go. The original classical
calculation was not performed as a limit of the quantum result, but in the
following manner: Electromagnetic radiation is equivalent to an ensemble
of harmonic oscillators, and according to the equipartition law each one
contributes an average energy of kT . Hence the energy per unit frequency
in the cavity is obtained by multiplying the density of states (4.4.11) by
kT . In order to obtain the energy per unit volume we have to divide by
V .

The Rayleigh–Jeans formula is yet another indication for the limita-
tions of the equipartition law.

From Eq. (4.4.14) it is possible to obtain two important characteristics
of black body radiation.

(a) Wien’s law: The emissivity of a black body has a maximum at a
frequency νmax that increases with temperature according to

νmax

T
= 5.88 × 1010 s−1K−1 . (4.4.15)

See for example the location of the maxima in Fig. 4.4.3.
(b) The Stefan–Boltzmann law: The total power emitted per unit area of

a black body (namely a sum over all frequencies) is proportional to
the fourth power of the temperature:

I = σT 4, σ =
2π5k4

15h3c2
= 5.67 × 10−8 Js−1m−2K−4 . (4.4.16)

Both of these laws were discovered experimentally many years before
Planck found the theoretical explanation for the properties of black body
radiation.

Exercise 4.4

(a) Using Planck’s formula, Eq. (4.4.14), prove (4.4.15).
(b) Prove (4.4.16).

Solution on page 427
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Another interesting quantity is the energy density per unit volume
u(T ) in the black body radiation, which we can readily obtain from energy

densitythe expression for the total energy of the radiation in the container,
i.e. Eq. (4.4.10). A procedure analogous to the one used for obtaining
the Stefan–Boltzmann law (Exercise 4.4) leads to a direct proportionality
to the fourth power of the temperature:

u(T ) =
4σ

c
T 4 . (4.4.17)

The proportionality constant 4σ/c is 7.57 × 10−16 Jm−3K−4.
To end this section let us check the thermodynamic properties of the

radiation gas confined to a container.

Exercise 4.5

(a) Calculate the entropy and the specific heat of the radiation.
(b) Calculate the radiation’s chemical potential. Explain your result in

terms of the number of photons.

Solution on page 429

Exercise 4.6

(a) Calculate the pressure of the radiation and its relation to the energy
density. Compare with the relationship obtained in the kinetic theory
in Part I, Eq. (1.1.7).

(b) The difficulty, or the ease, of compressing a system is measured by
the compressibility, which is defined as compressi-

bility

K = −V
(
∂P

∂V

)
T

.

Calculate K for the radiation gas. Compare your result to the one
obtained for a gas of particles.

Solution on page 430

Exercise 4.7

(a) At what temperature will the pressure of the radiation gas be equal
to one atmosphere (1 atm = 1.013 × 105 N/m2)?

(b) At what temperature will the pressure of the radiation be equal to
10−10 atm?

(c) The temperature at the sun’s center is 107 K. What is the pressure of
the radiation? Compare it to the pressure of the gas at the center of
the sun, which is 1011 atm.
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(d) Calculate the pressure of the sun’s radiation on the earth’s surface,
given that the power of the radiation reaching earth from the sun is
1400 W/m2.

Solution on page 431

As a final note we show in Fig. 4.4.4 the astounding correspondence
between Planck’s formula and the experimental results for the energy den-
sity, performed by Coblentz in 1916. Observe that the horizontal axis is
the wavelength and that ρ is the energy per unit volume per unit wave-
length, and hence its dimensions are [E]/[L]4. Regarding the relationship
between ρ(λ) and ρ(ν), see Self-Assessment Exercise 6.
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Fig. 4.4.4 Black body radiation — experimental results vs. Planck’s formula.

4.4 Absorption and emission of radiation
Kirchhoff’s law

The relatively simple considerations that we applied to a volume of space
with radiation in equilibrium, at a given temperature, allow us to reach
some surprising conclusions concerning the behavior of bodies that absorb
and emit radiation at nonequilibrium conditions.

First, using physical considerations alone, without any calculations, it
is possible to show that inside a cavity containing radiation at equilibrium
at temperature T , the radiation density is independent of position.

See also Sec. 4.1, where we have shown that the radiation density is independent of
the shape of the cavity or of the surrounding material.

Suppose that at frequency ω, ρ(ω) is different at two locations inside
the cavity. In these locations we shall place two identical bodies whose
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temperature is T . They are coated by a material which is transparent
only to radiation with frequency ω (a filter). The body around which the
radiation density is higher will absorb more energy than the one around
which the radiation density is lower. As a consequence heat will be trans-
ferred between the two bodies whose temperatures are equal, in violation
of the second law of thermodynamics.

In a similar manner it is possible to show that the radiation density is
independent of the direction of q, or of the polarization of the radiation.
The proofs are left to Self-Assessment Exercise 5.

Any body, not necessarily a black body, can be characterized by its
emissive power function L(q, T ), expressing the intensity of radiation emissive

poweremitted by the body per unit area per unit time directed along q with
frequency ω = c|q|:

∆Eem = L(q, T ) cos θ∆ω∆Ω , (4.4.18)

where θ is the angle between q and the normal to the surface and dΩ is the
solid angle into which the radiation is emitted. The factor cos θ projects
the unit area of the body in the direction perpendicular to q (Fig. 4.4.5).
Note that we assume that L does not vary from point to point over the
surface.

L depends only on the properties of the radiating body and on its
temperature. This does not mean that the radiation must have the same
temperature as the body. In fact this is a case in which the radiation
is not at equilibrium with the body but is emitted by it in a continuous
manner as, for instance, the radiation emitted by the filament of a light
bulb.

Similarly, it is possible to characterize a body by its absorbing power
A(q, T ), which is also dependent upon the properties of the body and on
its temperature. A(q, T ) gives the fraction of the intensity of the radi-

dAcosθ

dΩ

dA

θ

q ➤

Fig. 4.4.5 Geometry of radiation emission: θ is the angle between the normal to the
area element and q. φ is measured in the plane of dA. dΩ = sin θdθdφ is the solid
angle corresponding to the infinitesimal elements dθ and dφ. An area dA is seen to be
of magnitude dA cos θ if viewed at an angle θ.
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ation, with wave vector q and frequency ω(q), incident on the body at
temperature T , that is absorbed by it. Note that A(q, T ) is a dimension-
less quantity. L has the dimensions of energy per unit area.

Kirchhoff’s law, which we now prove, states that the ratio of L and A
depends only on ω and T :Kirchhoff’s

law
L(q, T )

A(q, T )
=

c

4π
ρ(ω, T ) , (4.4.19)

where ρ(ω, T ) is the radiation density in equilibrium inside a cavity at
temperature T , namely (4.4.12). This means that L/A is actually inde-
pendent of the properties of the body!

In order to emphasize the temperature dependence of the radiation density, we write
here ρ(ω,T ).

We conclude the treatment of the properties of radiation by presenting
the arguments that prove Kirchhoff’s law:

First, we calculate the intensity of radiation with wave vector q which
is incident per unit time on the unit surface area of a body that is placed
inside a cavity, in which there is radiation in equilibrium at temperatureT .
To do this, we repeat an argument identical to the one in Sec. 3.7 of Part I;
however, here the density of the particles is spatially uniform and they
all have velocity c (see also Solution 4.1). The amount of energy arriving
from a region dΩ around the direction q, and which is incident upon the
unit area ∆A in unit time ∆t, will be the same expression obtained in
Solution 4.1 but without the angular integration:

∆Ein = cρ(ω, T )∆ω
∆Ω

4π
cos θ . (4.4.20)

Only a fraction A(q, T ) of this radiation is absorbed. The intensity ab-
sorbed is A(q, T ) · ∆Ein. The intensity absorbed per unit area per unit
time, from radiation directed along q with frequency ω = c|q|, is

∆Eabs = A(q, T )cρ(ω, T )
cos θ

4π
∆ω∆Ω . (4.4.21)

A body that is in equilibrium at temperature T will remain at equi-
librium (at the same temperature) if placed in a cavity in which there is
radiation in equilibrium at the same temperature T .

Hence the energy flux absorbed by the body while it is in the cavity
must equal the flux emitted by the body. Moreover, the balance must
be maintained in full detail. Namely, the amount of energy absorbed at
every frequency and from every direction per unit time, must be identical
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to the amount emitted per unit time in the same direction and with the
same frequency.

Exercise 4.8

Show that the balance must be detailed.

Solution on page 432

The energy absorbed for a certain q is simply given by (4.4.21) and
the energy emitted with the same q is given by (4.4.18). The fact that
the balance is detailed implies that ∆Eabs = ∆Eem, and hence

L(q, T ) =
c

4π
A(q, T )ρ(ω, T ) ,

which is Kirchhoff’s law. We re-emphasize that even though we have
obtained it making use of an equilibrium state, the law is also valid out
of equilibrium.

Exercise 4.9

(a) Show that the emissive power of a black body is

LB(q, T ) =
c

4π
ρ(ω, T ) . (4.4.22)

(b) Explain the relationship between the emissive power L and the emis-
sivity I.

Solution on page 432

In addition to the fact that the ratio of L and A of a certain body is
independent of the body’s properties, we can further deduce from (4.4.19)
the surprising fact that a material that is a better absorber of radiation
is also a better emitter. Thus, a black body is a better emitter than
any other body! The reason why a black body usually appears to be
black is that at the temperatures at which we encounter black bodies the
wavelength of most of the emitted radiation is too large for the radiation
to be seen.

Exercise 4.10

Calculate the frequencies for which the emissive power of a black body
is maximal at 100 K, 1000 K, 10,000 K, 100,000 K and the values of the
maximum emissive power for these temperatures.

Solution on page 433
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4.5 Role of black body radiation in modern physics

The phenomenon of thermal radiation has had great importance in the
evolution of modern physics. In addition it has a wide range of practical
applications. Its most important contribution has been that it pointed out
the inadequacy of classical physics and brought Max Planck to propose
in 1900 the idea of quantization of electromagnetic radiation — more
precisely, the quantization of the energy of a harmonic oscillator in units
of h̄ω.

As we have seen in the previous sections, this assumption is the basis
for obtaining the spectral distribution of black body radiation as given
in Eq. (4.4.14), and hence the year 1900 is considered to be the year of
the birth of quantum theory. However, in spite of the success of Planck’s
explanation, initially its physical significance and its generality were not
totally clear. Only after Einstein had shown in 1905 that the same as-
sumption is sufficient for explaining the photoelectric effect and in 1907
that it also leads to an explanation of the temperature dependence of the
heat capacities of solids (see Part III), were the importance and generality
of Planck’s idea of quantization recognized.

Planck’s formula has many practical applications related to the mea-
surement of the temperatures of hot bodies which are hard to approach
(extremely hot bodies such as steel furnaces, distant bodies such as ce-
lestial objects, etc.). By measuring the body’s spectrum of radiation and
comparing it to Planck’s law it is possible to determine its temperature. In
this way it is possible to measure, for instance, the heat production of an
atomic reactor and to reach conclusions on its output, from measurements
made from a high-flying surveillance aircraft.

Astronomers often compare the spectrum of radiation emitted by dis-
tant celestial objects to Planck’s formula in order to measure their tem-
peratures and to verify if the radiation emitted by them is black body ra-
diation. Since usually the spectrum of the radiation does not fit Planck’s
law, they conclude that this radiation is not thermal radiation (or that it
is not all thermal radiation). The study of the spectrum is bound, in this
case, to shed light on the processes that are taking place in the distant
object. In other words, the thermal radiation in this case amounts to a
“background noise”and the detailed knowledge of its behavior allows sub-
traction of the background from the signal and to remain with its relevant
part. These astronomical measurements are currently possible in a wide
spectral range, from radio-frequency waves up to X-rays and γ-rays.

Another interesting phenomenon that was discovered as a result of
astronomical measurements of electromagnetic radiation is the “cosmic
background radiation,” also known as the “three-degree radiation.” In
1965 Penzias and Wilson discovered electromagnetic radiation with
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wavelengths ranging from several millimeters to several centimeters and
whose spectrum corresponded to black body radiation at a temperature
of 2.7 K. This radiation is incident from all directions of space at uniform
intensity, from which it was concluded that it probably fills the universe
uniformly, just as if the universe were residing inside a huge “oven” whose
walls were at a temperature of 2.7 K.

The currently accepted explanation for the origin of this radiation
is that it was created at the time of the big bang, which is assumed
to have occurred about 1010 years ago. The whole universe was cre-
ated then in a huge explosion of a compressed and very hot ball of par-
ticles and radiation. Since then the universe has been in a perpetual
state of expansion, and its energy density has been decreasing. The tem-
perature of the radiation filling the universe has decreased, therefore, to
the value observed today, about 3 K. The whole phenomenon fits other
available evidence concerning the big bang and the expansion of the uni-
verse, and is considered an important verification of this cosmological
theory.

In April 1992 it was reported that the satellite COBE (Cosmic
Background Explorer), which was launched to carry out precise measure-
ments of the cosmic background radiation, had detected a slight nonuni-
formity in it, manifested as variations of order 15 µK around the average
temperature of 2.7 K. These fluctuations imply that not long after the big
bang there began to appear deviations from the state of uniform density
in the universe. These deviations are probably responsible for the large
scale structure of the universe today.

Another area in which black body radiation plays a central role is the
physics of black holes. A black hole is a region in space from which no black hole
material or radiation can escape; in contrast, there is no restriction on
entering it and thus it serves as a perfect trap. The existence of such
regions is predicted by Einstein’s general theory of relativity around stars
which were so heavy (above about five solar masses) that they eventually
collapsed under their own gravitational attraction, to scales that were so
small that the escape velocity from them became larger than the velocity
of light. This prevents any possibility of escape from the entire region for
which the escape velocity is larger than c. A nonrelativistic calculation
shows that if M is the mass of the star, then the black hole extends over
the region for which c <

√
2GM/r or r < 2GM/c2. An exact relativistic

calculation yields the same result. Namely, the radius of a black hole
is determined by its mass as 2GM/c2. Surprisingly, Hawking discovered
in 1974 that if the laws of quantum theory are also taken into account
then the black hole is no blacker than a black body: It emits particles
and electromagnetic radiation with an energy or frequency distribution
of a black body at a temperature which is also determined by the mass:
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T = hc3/16π2kGM . For a black hole of five solar masses this temperature
is about 10−8 K and hence the phenomenon is rather marginal. But
there may also exist much smaller black holes in the universe (that were
created not as a result of the collapse of stars but in other ways). Their
temperatures could be much higher. Such a small black hole is unstable as
a result of the Hawking effect: The more energy it loses by radiating, the
more its mass decreases, then its temperature increases and according to
the Stefan–Boltzmann law (4.4.16) its radiated power increases (in spite
of the decrease of the radius and the surface area) and so on, till it is
totally dissipated in one last energy burst.



Appendix

Calculation of Some Integrals

In the course of this part we needed integrals of the form

I� =
∫ ∞
0

x�dx

ex − 1
, (4.A.1)

where < is an integer. In order to calculate them we start with integrals
that represent the factorial function:∫ ∞

0
xe−xdx = 1 ,

∫ ∞
0

x2e−xdx = −
∫ ∞
0

x2
d

dx
(e−x)dx = 2

∫ ∞
0

xe−xdx = 2 ,

∫ ∞
0

x3e−xdx = −
∫ ∞
0

x3
d

dx
(e−x)dx = 3

∫ ∞
0

x2e−xdx = 6 ,

∫ ∞
0

xne−xdx = <

∫ ∞
0

x�−1e−x dx ,

and hence ∫ ∞
0

x�e−xdx = <! . (4.A.2)

Returning to the original integral (4.A.1), we note that the expression
1/(ex − 1) is a geometric sum:

1

ex − 1
=

e−x

1− e−x = e−x + e−2x + e−3x + . . . =
∞∑

m=1

e−mx .

Substituting in the integral (4.A.1), we obtain∫ ∞
0

x�

ex − 1
dx =

∞∑
m=1

∫ ∞
0

x�e−mx dx

=

∫ ∞
0

y�e−ydy
∞∑

m=1

1

m�+1
= <!

∞∑
m=1

1

m�+1
, (4.A.3)
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where we have performed the change of variables y = mx and used (4.A.2).
The sum is a known function in mathematical literature and is called the
Reimann zeta function:

ζ(<) =
∞∑

m=1

1

m�
. (4.A.4)

Actually this function is defined by (4.A.4) also for nonintegral values of 8 and even
complex ones.

The zeta function has been studied extensively and its values appear
in numerical tables. The following table contains useful values.

� 2 3 4 5 6 7 8

ζ(�)
π2

6
� 1.645 1.202

π4

90
� 1.082 1.037

π6

945
� 1.017 1.008

π8

9450
� 1.004

We have therefore obtained∫ ∞
0

x�dx

ex − 1
= <!ζ(<+ 1) . (4.A.5)



Self-assessment exercises

Exercise 1 Solution on page 434

The hydrogen atom has a spectral line whose wavelength is 21 cm (this line
is of extreme importance in astrophysics). The ground state is nondegen-
erate, and the first excited level, from which the line is emitted, is triply
degenerate. The next level is found 10 eV above the ground state.

(a) What is the excitation energy of the first excited level?
(b) What is ζ at a temperature of 0.1 K?

In atomic chlorine the first spectral line corresponds to a photon with an
energy of 0.11 eV. The ground level is four times degenerate, and the first
excited level is doubly degenerate. The second level is higher than the
first level by 1 eV.

(c) What is the characteristic temperature of the first excited level?
(d) Calculate ζ at very low temperatures, with respect to the character-

istic temperature of the second level.
(e) Calculate the contribution of the atomic levels to the specific heat.

Sketch it in detail. Have we already seen a specific heat with such a
structure? Why is there nevertheless a difference?

Exercise 2 Solution on page 436

Consider a given monoatomic gas. The first three electronic levels are
at a distance of 1 eV from one another. In addition, each atom has
a magnetic moment, whose projection along the direction of the field
can take five values: µ = −2µ0,−µ0, 0, µ0, 2µ0, where µ0 = 2 × 10−20
erg/gauss. Calculate the changes in the chemical potential and in the
specific heat resulting from this structure in a magnetic field of 106 gauss,
and illustrate their temperature dependence graphically.

Exercise 3 Solution on page 439

For a reaction described by

2NaOH +H2SO4 ⇀↽ Na2SO4 + 2H2O ,
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(a) Write the law of mass action.
(b) Write the additional equations.
(c) Is the system solvable? Explain.

Exercise 4 Solution on page 440

Calculate the equilibrium constant in the gaseous reaction:

Cl2 +H2 ⇀↽ 2HCl .

The vibrational angular frequencies are: For chlorine 1014 s−1, for hydro-
gen 8.3× 1014 s−1 and for HCl 5.7× 1014 s−1. The moments of inertia are
given in Table 4.1.2.

Exercise 5 Solution on page 442

At the beginning of Sec. 4.4 we showed that the radiation density in a
cavity in equilibrium at temperature T is independent of position. In a
similar way:

(a) Prove that ρ(q, T ) is independent of the direction of q.
(b) Prove that ρ(q, T ) is independent of the radiation’s polarization.
(c) Is it possible to prove that ρ is independent of ω?

Exercise 6 Solution on page 443

(a) Prove that the radiation emitted per unit surface area per unit time
by a black body, for wavelengths ranging between λ and λ+ dλ, is

Ĩ(λ)dλ =
2πhc2

λ5
dλ

eβhc/λ − 1
.

(b) Calculate the wavelength λmax for which the emitted energy is maxi-
mal.

(c) The intensity of the radiation emitted by the sun has a maximum at
around λ = 5×10−7 m. What is the temperature of the sun’s surface?

Exercise 7 Solution on page 445

(a) What is the average number of photons per unit volume in a cav-
ity at temperature T? How many photons per cm3 does the cosmic
background radiation contain?

(b) What is the ratio between the average number of photons and the
average number of gas particles at the same pressure, volume and
temperature as that of the three-degree radiation?

(c) Is the ratio you found in (b) valid at any temperature?
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(d) Calculate the specific heat at constant volume per photon. Compare
it to the specific heat per molecule of an ideal gas.

(e) A student calculated CV /N for the photon gas discussed in (d) in
the following manner: Using the result of Exercise 4.6 (a) he wrote
E = 3PV , and using Eq. (xi) in the solution of (b) of the present
exercise he wrote

E = 3PV =
3NkT

1.1106
= 2.7NkT .

The specific heat at constant volume is the derivative of E with respect
to T , and hence

CV

N
=

1

N

(
∂E

∂T

)
N,V

= 2.7k .

This result differs, of course, from that obtained in (d). Where is the
error?

Exercise 8 Solution on page 447

Bodies whose color is black are bodies that absorb most of the radiation
incident upon them, and those are also what we technically defined as
black bodies (see Secs. 4.3 and 4.4). But there we stated that a black
body emits radiation better than any other kind of body.

(a) How would you settle the contradiction?
(b) In what conditions will a black body appear to be yellow?
(c) How is it possible, at regular conditions, to convince the sceptic that

indeed a black body is not all that black?

Exercise 9 Solution on page 447

The law of mass action is useful not only for chemical reactions but also for
reactions of any other kind, such as reactions between nuclei or between
elementary particles at high energies. A typical process is the creation
and annihilation of electron–positron pairs, which we may think of as a
chemical reaction:

e+ + e− ⇀↽ γ .

Such a gas of electrons, positrons and photons is actually hard to come by,
but it could be created at extreme temperature conditions such as those
not long after the big bang or inside stars.

Calculate the density of electrons and positrons in such a gas at nonrel-
ativistic temperatures (kT 	 mc2, wherem is the electron mass). Assume
that the whole gas is electrically neutral.
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Solution 1.1 Exercise on page 342

(a) To obtain (4.1.6) we write

pα = mαṙα = mα(Ṙα + ρ̇α) =
mα

M
(MṘ) +mαρ̇α =

mα

M
P+ πα ,

where we have used (4.1.3), (4.1.4) and (4.1.5).
(b) In order to obtain (4.1.7) we rewrite (4.1.4) in the form

ρα = rα −R
and then multiply it by mα and sum over α:

q∑
α=1

mαρα =
q∑

α=1

mαrα −
q∑

α=1

mαR =
q∑

α=1

mαrα −MR .

Using (4.1.2), we obtain (4.1.7a):

q∑
α=1

mαρα = 0 .

Differentiating the last equation, we obtain (4.1.7b):

0 =
d

dt

q∑
α=1

mαρα =
q∑

α=1

mαρ̇α =
q∑

α=1

πα .

(c) To prove (4.1.8) we use (4.1.6) and write

q∑
α=1

p2α
2mα

=
q∑

α=1

1

2mα

(
mα

M
P+ πα

)2

=
P2

2M2

q∑
α=1

mα +
P

M
·

q∑
α=1

πα +
q∑

α=1

π2α
2mα

.

The middle term is zero by (4.1.7b), and thus we obtain (4.1.8):

q∑
α=1

p2α
2mα

=
P2

2M
+

q∑
α

π2α
2mα

.

406
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Solution 1.2 Exercise on page 344

Multiplying (4.1.12b) by m1 and (4.1.12a) by m2 and subtracting we have

m2π1 −m1π2 = m2p1 −m1p2 .

Equation (4.1.14b) implies that the left hand side of the last equation is
Mπ1. We can write its right hand side as

m2p1 −m1p2 = m2m1(ṙ1 − ṙ2) = m2m1(ρ̇1 − ρ̇2)
and from here

π1 = µ(ρ̇1 − ρ̇2)
and with the help of (4.1.14b) we can also obtain π2 as −π1.

Solution 1.3 Exercise on page 345

The potential between the two atoms is

U(ρ) = ε

[(
a

ρ

)2
− 2

a

ρ

]
, (i)

where ρ is the distance between the two atoms, and a and ε are parameters
that determine the equilibrium point and the depth of the potential.

(a) When the distance between the atoms is the equilibrium distance, the
potential energy is minimal. We thus differentiate (i) and equate the
derivative to zero:

dU

dρ
= ε

(
−2a

2

ρ3
+ 2

a

ρ2

)
= 0 (ii)

⇓
ρ = a ,

namely the equilibrium distance is a. In order to verify that ρ = a is
indeed the minimum point, one can differentiate U a second time and
verify that at ρ = a, U ′′ > 0. See (c) below.

(b) The binding energy is obtained by substituting the equilibrium dis-
tance ρ = a into (i):

U(ρ = a) = −ε . (iii)

(c) The harmonic approximation to U(ρ) will be

U(ρ) = U(a) +
1

2
U ′′(a)(ρ− a)2 . (iv)

The linear term does not appear because at the equilibrium distance
U ′(ρ0) = U ′(a) = 0.
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The value of the second derivative at the equilibrium distance

U ′′(a) = ε

(
2 · 3a

2

ρ4
− 2 · 2 a

ρ3

)
ρ=a

=
2ε

a2
. (v)

Equation (iv) will therefore take the form

U(ρ) = −ε+ ε

a2
(ρ− a)2 . (vi)

The “spring constant” is twice the coefficient of the square deviation
from equilibrium:

K = 2
ε

a2
=

2× 2.5 × 1.6 × 10−19

(2× 10−10)2
= 20 N/m . (vii)

(d) The energy needed to increase the distance between the atoms from
a to 1.05a may be calculated in the harmonic approximation:

∆U =
ε

a2
(0.05a)2 =

1

400
ε . (viii)

If ε = 2.5 eV, ∆U = 0.25 × 10−3 eV and the corresponding tempera-
ture is of order

T =
∆U

k
=

0.25 × 10−3 × 1.6× 10−19

1.38× 10−23
≈ 70 K . (ix)

(e) Similar arguments show that ρ increases by 10% at room temperature.

Solution 1.4 Exercise on page 345

From Eq. (4.1.11) we obtain{
MR = m1r1 +m2r2 ,

ρ12 = r1 − r2 ,
and in order to express r1 and r2 in terms of R and ρ12 we solve the two
equations with two unknowns. We multiply the second equation by m2

and to add it to the first equation:

MR+m2ρ12 = m1r1 +m2r1 ,

and from here
r1 = R+

m2

M
ρ12 .

Then we multiply the second equation by m1 and subtract it from the
first equation we obtain

MR−m1ρ12 = m2r2 +m1r2
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and from here

r2 = R− m1

M
ρ12 .

In a similar manner we obtain from Eqs. (4.1.12) and (4.1.13), the mo-
mentum variables, {

P = p1 + p2 ,

Mπ12 = m2p1 −m1p2 .

Actually, there is no need to solve these equations. It is possible to simply
use the previous solution, substituting p2 for r1, −p1 for r2, P for ρ12
and −π12 for R. We then obtain

p2 = −π12 + m2

M
P ,

p1 = π12 +
m1

M
P .

Solution 1.5 Exercise on page 345

The energy of a triatomic molecule will be, according to (4.1.9)

Emol =
P2

2M
+
π21
2m1

+
π22
2m2

+
π23
2m3

+U12(ρ12) +U23(ρ23) +U31(ρ31) , (i)

where we have denoted the potential between atoms α and β by Uαβ, and

ραβ = ρα − ρβ . (ii)

We now note that Emol is expressed in terms of too many variables, but
there is a dependence between them:

π1 + π2 + π3 = 0 , (iii)

ρ12 + ρ23 + ρ31 = 0 . (iv)

It is possible to transform to relative coordinates and to write the kinetic
energy as a sum of P2/2M with the two corresponding kinetic energy
terms, for example the relative motion between atoms 1 and 2 and the
motion of atom number 3 with respect to the center of mass of 1 and
2. In contrast, the potential energies will not separate into a sum of
three independent terms since ρ12, for example, depends on the other
two, and since the potentials are not linear, U12(ρ12) = U12(−ρ23 − ρ31)
does separate into a sum.
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Solution 1.6 Exercise on page 349

The internal energy E is given by (3.1.3):

E = −∂ lnZ
∂β

or by the thermodynamic relation [see (2.0.25) or (3.1.28)]:

E = F + TS .

Since F and S have already been given explicitly in Eqs. (4.1.28) and
(4.1.30), we prefer to calculate E from the thermodynamic relation:

E = −NkT
[
ln
V

N
+

3

2
ln

(
2πMkT

h2

)
+ 1+ ln ζ

]

+NkT

[
ln
V

N
+

3

2
ln

(
2πMkT

h2

)
+

5

2

]
+NkT

d

dT
(T ln ζ) .

Differentiating terms, collecting and dividing by N , we obtain (4.1.32).

Solution 1.7 Exercise on page 349

The specific heat at constant volume is given by the derivative of the
internal energy with respect to the temperature. Using (4.1.32) we obtain

CV =

(
∂E

∂T

)
N,V

=
3

2
Nk +Nk

d

dT

(
T 2 d

dT
ln ζ

)
,

which is exactly (4.1.33).
The specific heat at constant pressure is given by the derivative with

respect to T of the enthalpy:

CP =

(
∂H

∂T

)
N,P

,

where

H = E + PV .

From (4.1.29) we obtain

H = E +NkT

and hence

CP =

(
∂H

∂T

)
N,P

= Nk +
∂E

∂T
= Nk + CV

⇓
CP − CV = Nk .
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Solution 1.8 Exercise on page 350

In order to calculate the corrections, implied by the internal structure of
the molecule, to the entropy, the internal energy and the specific heat, we
have to calculate the partition function ζ(T ). Because ε1 	 ε2, ε3, . . . it
suffices, at temperatures that are not too high, to take only the first two
levels. Assuming that there is a single state at energy ε1 (no degeneracy),

ζ(T ) = 1 + e−βε1 . (i)

The correction to the entropy per molecule is given by (4.1.31). Writing
for short ε instead of ε1 we obtain

∆s =
d

dT
(kT ln ζ) =

d

dT
[kT ln(1 + e−βε)] (ii)

⇓

∆s = k

[
ln(1 + e−βε) +

βε

1 + eβε

]
. (iii)

The following figure illustrates graphically the temperature dependence
of ∆s:

➤

T
➤

ln2

∆s/k

If the temperature is very low (kT 	 ε), then ζ → 1 and from (ii) it is
clear that ∆s→ 0. The approach to zero is given by the power expansion
of (iii):

∆s = k(e−βε + βεe−βε + · · ·) ≈ ε

kT
e−ε/kT . (iv)

The correction to the internal energy is given by (4.1.32)

∆E

N
= kT 2 d

dT
ln ζ =

ε

eβε + 1
. (v)
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The following figure illustrates the temperature dependence of ∆E/N :

➤∆E/Nε

1/2

➤

T

At low temperatures the correction to the internal energy per molecule
will behave in the following manner:

∆E

N
≈ εe−βε = εe−ε/kT ,

and tends to zero when T → 0.

Finally, the correction to the specific heat per molecule is obtained
from (4.1.33):

∆CV

N
= k

d

dT

(
T 2 d

dT
ln ζ

)
=

d

dT

∆E

N
=
k(βε)2eβε

(1 + eβε)2
=

k(βε)2

4 cosh2(βε/2)
,

which at low temperatures behaves in the following manner:

∆CV

N
∼ k(βε)2e−βε = k

(
ε

kT

)2
e−ε/kT .

A graphical illustration of ∆CV
N is given in the following figure:

➤

➤

∆CV
Nk

T

0.4

0.8ε1/k
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Note the similarity between these results and the corresponding quantities
of the paramagnet (Part II, Sec. 5.3). The reason is, of course, that we
considered molecules with only two molecular states, as for the single spin
of the paramagnet.

Solution 1.9 Exercise on page 351

The internal partition function, when kT 	 ε1 − ε0, is obtained from
(4.1.36):

ζ(T ) ≈ g0e−βε0 (i)

or
ln ζ = ln g0 − βε0 . (ii)

Substituting (ii) into Eq. (4.1.31) we obtain

∆s =
d

dT
(kT ln ζ) =

d

dT
(kT ln g0 − ε0) = k ln g0 .

When g0 = 1, namely when the ground level is nondegenerate, ∆S = 0.
Since CV is derived from S, also ∆CV = 0, as is obtained by substi-

tution of (i) into Eq. (4.1.33):

∆CV = Nk
d

dT

(
T 2 d

dT

(−ε0
kT

))
= 0 .

We have therefore found that, for the conditions of the exercise, S and
CV of a monoatomic gas are identical to their values for a gas of particles
devoid of internal structure.

The change in the chemical potential is obtained from (4.1.35), and is

∆µ = −kT ln ζ = ε0 ,

which is equivalent to a constant addition to all the energies of the prob-
lem.

Solution 1.10 Exercise on page 351

If the ground level is doubly degenerate, we substitute into Eq. (i) of the
preceding solution g0 = 2, and obtain

ζ(T ) = 2e−βε0 .

The extra entropy per molecule is obtained using (4.1.31):

∆s =
d

dT
(kT ln ζ) = k ln 2 ,

which is independent of the temperature, so again there is no change in
the specific heat.
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The change in the chemical potential is obtained from (4.1.35):

∆µ = kT ln ζ = −kT ln 2 + ε0 .

Solution 1.11 Exercise on page 354

We change the variables to x = ρ− ρ0, to obtain∫ ∞
−∞

ρ2e−βK(ρ−ρ0)2/2dρ =

∫ ∞
−∞

(ρ0 + x)2e−βKx2/2dx

= ρ20

∫ ∞
−∞

e−βKx2/2dx+

∫ ∞
−∞

x2e−βKx2/2dx .

The mixed term (with xρ0) vanishes upon integration due to the anti-
symmetry of the integrand. The first term gives

ρ20

√
2π

βK
.

See e.g. Exercise (1.13), Part I. The second is proportional to (βK)−3/2.
See e.g. Exercise (1.14), Part I. It is negligible relative to the first, because
ρ20 
 1/βK.

Solution 1.12 Exercise on page 355

(a) The internal partition function in the classical approximation is given
by Eq. (4.1.49). To calculate the internal energy we substitute (4.1.49)
into (4.1.32) and obtain

〈ε〉 = 3

2
kT + kT 2 d

dT
ln ζ =

3

2
kT + kT 2 d

dT
(2 ln T )

=
3

2
kT + 2kT =

7

2
kT .

The specific heat at constant volume is

CV =
∂E

∂T
=

7

2
Nk ,

as in (4.1.51).
(b) From (4.1.34)

CP − CV = Nk

and from (4.1.51)

CV =
7

2
Nk ,
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hence

γ =
CP

CV
=
Nk + CV

CV
=

9

7
= 1.286 .

(c) Room temperature is not in the range of temperatures for which our
approximations are valid and indeed γ is quite far from 1.286. On the
other hand, at T = 1273 K we expect a better agreement, and indeed
the values of γ decrease and for oxygen we obtain a value that differs
from the classical value by only 0.6%.

Solution 1.13 Exercise on page 356

(a) In order for the classical approximation to be justified we required
that h̄ω 	 kT 	 Kρ20. To a good approximation µ of Cl2 molecules
is half the mass of the chlorine nucleus, since the mass of the electrons
is negligible compared to the mass of the nucleus. The mass of the
most common isotope of chlorine is 35 atomic mass units (1 amu =
1.66 × 10−27 kg), namely to a good approximation

µ =
1

2
× 35× 1.66 × 10−27 kg ≈ 2.9 × 10−26 kg .

Hence

Kρ20 = µω2ρ20 = 2.9 × 10−26 × 1028 × 4× 10−20 = 1.16 × 10−17 J ,

h̄ω = 1.05 × 10−34 × 1014 = 1.05 × 10−20 J .

And the corresponding temperature range is

750 K	 T 	 8.5× 105 K .

(b) A graphical illustration of the integrand in Eq. (4.1.44) is given in the
following figure. The bell approximation is justified, since except for
a very narrow region of ρ, the integrand is negligible everywhere.

➤

ρ(Å)
➤

1

0.5

1.8 2.0 2.2
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Solution 1.14 Exercise on page 357

To prove (4.1.52) we write � using (4.1.53b):

�2 = (ρ× π)2 = ρ2π2 − (ρ · π)2 . (i)

It is possible to prove (i) using identities relating vector products with
scalar products or directly:

�2 = (ρπ sin θ)2 = ρ2π2(1− cos2 θ) = ρ2π2 − (ρ · π)2 , (ii)

where θ is the angle between the directions of ρ and π. Dividing Eq. (i)
by ρ2 and using (4.1.53a), we obtain

�2

ρ2
= π2 −

(
π · ρ
ρ

)2
= π2 − π2ρ , (iii)

Dividing Eq. (iii) by 2µ we arrive at (4.1.52).

Solution 1.15 Exercise on page 358

(a) The moment of inertia with respect to the center of mass of the
molecule is

I = m1ρ
2
1 +m2ρ

2
2 . (i)

Using (4.1.11) and the relation between the relative coordinates and
those of the laboratory frame (see Exercise 1.4), we obtain

ρ1 = r1 −R =
m2

M
ρ , (ii)

ρ2 = r2 −R = −m1

M
ρ , (iii)

where we have written ρ12 = ρ. Substituting (ii) and (iii) into (i), we
find

I = m1

(
m2

M

)2
ρ2 +m2

(
m1

M

)2
ρ2 = µρ2 ,

and if ρ = ρ0, the moment of inertia is equal to µρ20.
(b) The values of µ and ρ0 for the molecules in Table 4.1.2 are summarized

in the following table:

Molecule
µ

(amu)

µ

(10−27 kg)

I

(10−47 kg ·m2)

ρ0

(10−10 m)

H2 1/2 0.83 0.46 0.7
HCl 35/36 1.60 2.40 1.2
Cl2 35/2 29 115 2.0
I2 127/2 105 745 2.7
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Solution 1.16 Exercise on page 360

For HCl

I = 2.4 × 10−47 kg ·m2 ,

ω = 5.7× 1014 s−1 ,

εv = h̄ω = (1.05 × 10−34)(5.7 × 1014) = 6× 10−20 J = 0.37 eV ,

Θv =
εv
k

= 4300 K ,

εr =
h̄2

2I
=

(1.05 × 10−34)2

2(2.4 × 10−47)
= 2.3× 10−22 J = 1.44 × 10−3 eV ,

Θr =
2εr
k

= 33 K .

Solution 1.17 Exercise on page 360

The spacing between the vibrational levels is constant and for Cl2 is equal
to 0.06 eV, as we have already calculated. In order to find out how many
rotational levels “fit” into this spacing we have to find the value of J for
which Er(J) = εv, or to solve

J(J + 1)εr = εv .

We have also calculated εv for Cl2, and obtained 2.5 × 10−5 eV. Hence

J(J + 1) =
εv
εr

=
0.06

2.5× 10−5
= 2400 ,

and the positive solution of this equation is J ∼= 48.5.

That is, one has to go up 49 rotational levels in order to cross the first
vibrational spacing.

For HCl we use the results we obtained in the solution to the preceding
exercise for εv and εr.

J(J + 1) =
0.37

1.44 × 10−3
= 257

and

J ≈ 16 .

Namely, one has to go up 16 rotational levels of HCl in order to reach the
first vibrational level.
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Solution 1.18 Exercise on page 364

(a)

T 2 d

dT
ln ζr = T 2 d

dT
ln(1 + 3e−Θr/T ) = T 2 3e−Θr/T

1 + 3e−Θr/T

Θr

T 2

=
3Θr

3 + eΘr/T
,

and differentiating once more, we obtain

(∆CV )r
N

= 3kΘr
d

dT

1

3 + eΘr/T
= 3k

(
Θr

T

)2 eΘr/T

(3 + eΘr/T )2

≈ 3k

(
Θr

T

)2
e−Θr/T ,

where we have reached the last expression by neglecting the factor of
3 in the denominator compared to the exponential, which is dominant
for T → 0.

(b) We shall again write the continuum approximation to the partition
function at high temperatures:

ζr ≈
∫ ∞
0

dJ(2J + 1)e−J(J+1)Θr/2T .

We now perform a change of variables:

x = J(J + 1) ,

so that

dx = (2J + 1)dJ .

Hence the integral becomes

ζr =

∫ ∞
0

dxe−xΘr/2T =
2T

Θr
.

(c) According to (4.1.33),

(∆CV )r
N

= k
d

dT

(
T 2 d

dT
ln

2T

Θr

)
= k .
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Solution 2.1 Exercise on page 368

We choose to express all of the differentials in Eq. (4.2.2) in terms of dN1,
so that

dN2 =
ν2
ν1
dN1, dN3 =

ν3
ν1
dN1, . . . , dNM =

νM
ν1
dN1 .

Substituting all these expressions into (4.2.4) we obtain

µ1dN1 + µ2
ν2
ν1
dN1 + µ3

ν3
ν1
dN1 + · · · + µM

νM
ν1
dN1 = 0 ,

and after dividing by dN1 and multiplying by ν1 we obtain (4.2.5).

Solution 2.2 Exercise on page 368

(a)

4NH3 + 3O2 ⇀↽ 2N2 + 6H2O ,

B1 = NH3 , b1 = 4 , ν1 = −4 ,
B2 = O2 , b2 = 3 , ν2 = −3 ,
B3 = N2 , b3 = 2 , ν3 = 2 ,

B4 = H2O , b4 = 6 , ν4 = 6 .

And the form of Eq. (4.2.5) becomes

−4µ1 − 3µ2 + 2µ3 + 6µ4 = 0 .

(b)

2C4H10 + 13O2 ⇀↽ 8CO2 + 10H2O ,

B1 = C4H10, b1 = 2 , ν1 = −2,
B2 = O2, b2 = 13 , ν2 = −13,
B3 = CO2, b3 = 8 , ν3 = 8,

B4 = H2O, b4 = 10 , ν4 = 10,

and Eq. (4.2.5) reads

−2µ1 − 13µ2 + 8µ3 + 10µ4 = 0 .
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Solution 2.3 Exercise on page 369

We substitute the expression for the chemical potential (4.1.35) into the
equilibrium equation of the reaction and obtain (4.2.6):

0 =
M∑
i=1

νiµi =
M∑
i=1

νikT

[
lnni − 3

2
ln

(
2πMikT

h2

)
− ln ζi

]

⇓
M∑
i=1

νi lnni =
M∑
i=1

[
3

2
νi ln

(
2πMikT

h2

)
+ νi ln ζi

]

⇓
M∑
i=1

ln(ni)
νi =

M∑
i=1

ln

[(
2πMikT

h2

)3/2
ζi

]νi

⇓

ln

[
M∏
i=1

(ni)
νi

]
= ln

{
M∏
i=1

[(
2πMikT

h2

)3/2
ζi

]νi}

⇓
M∏
i=1

(ni)
νi =

M∏
i=1

[(
2πMikT

h2

)3/2
ζi

]νi
,

and denoting the right hand side by K(T ), we obtain both (4.2.7) and
(4.2.8).

Solution 2.4 Exercise on page 370

(a) The law of mass action for the reaction

4NH3 + 3O2 ⇀↽ 2N2 + 6H2O

is obtained using the table we constructed in the solution to Exer-
cise 2.2. We use n1 up to n4 to denote the densities of the constituents
of the reaction, respectively from left to right. The law of mass action
reads

n23n
6
4

n41n
3
2

= K(T ) . (i)

A single relationship is obtained between the four densities for a given
K(T ).
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(b) The reaction conserves the number of atoms of each element. Denoting
by nN, nH and nO the densities of nitrogen, hydrogen and oxygen
atoms, the reaction equation implies

nN = n1 + 2n3 ,

nH = 3n1 + 2n4 ,

nO = 2n2 + n4

namely a total of four equations with four unknowns.
(c) We shall find K(T ) using Eq. (4.2.8) with M = 4:

K(T ) =
M3

3M
9
4

M6
1M

9/2
2

(
2πkT

h2

)3/2 ζ23ζ64
ζ41ζ

3
2

,

where we have used the fact that here

4∑
i=1

νi = 1 .

Solution 2.5 Exercise on page 371

Without the Gibbs correction the chemical potential of the ith constituent
is given by Eq. (3.5.1), with the last term coming from the internal par-
tition function:

µi = −kT
[
lnV +

3

2
ln

(
2πMikT

h2

)]
− kT ln ζi .

The condition for equilibrium, Eq. (4.2.5), takes the form

M∑
i=1

νiµi = −kT lnV
M∑
i=1

νi− 3

2
kT

M∑
i=1

νi ln

(
2πMikT

h2

)
−kT

M∑
i=1

νi ln ζi = 0 ,

or

(
1

V

)∑ νi

=

[(
2πM1kT

h2

)3/2
ζ1

]ν1
· . . . ·

[(
2πMMkT

h2

)3/2
ζM

]νM
,

which is a meaningless relation between the temperature and the volume.

Solution 2.6 Exercise on page 372

When ∆E0 < 0,
d lnK

dT
< 0 ,

namely K decreases with increasing temperature.
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The reaction releases heat, and hence an increase in temperature will
lead to the reverse reaction, which absorbs heat and tends to cancel the
change in temperature. Thus, equilibrium will tend towards the original
composition.

Solution 3.1 Exercise on page 378

(a) We write (4.3.4) in the form

ẍα = Ω2(xα+1 − 2xα + xα−1) ,

with Ω2 = K/M , and substitute (4.3.5a) in order to check if it is
a solution. Differentiating twice with respect to t is equivalent to
multiplying by −ω2, and thus we find that (4.3.4) is satisfied provided:

−ω2a sin(qbα) sinωt=Ω2a[sin qb(α+1)−2 sin qbα+sin qb(α−1)] sinωt .

The expression in the square brackets can be written, using identities
between trigonometric functions, in the form

2 sin(qbα) cos(qb)− 2 sin(qbα) = −2 sin(qbα)(1− cos qb)

= −4 sin(qbα) sin2
(
qb

2

)
,

sin x + sin y = 2 sin x+y
2 cos x−y

2 .

and the right hand side becomes

−4Ω2a sin(qbα) sin2
(
qb

2

)
sinωt .

Comparing this expression to the left hand side we find that (4.3.5a)
is a solution provided that

ω2 = 4Ω2 sin2
(
qb

2

)
,

from which ω(q) is obtained. The range of q values in Eq. (4.3.5b)
can be obtained by studying the form of the solution (4.3.5a). Since
the function sin(qbα) is periodic and α is an integer, the function
with a wave number q + 2π/b is identical to that with q. Moreover,
a solution with q + π/b is equivalent to a solution with q − π/b. It
is therefore clear that we will not get any new solutions from wave
numbers outside the range 0 ≤ q ≤ π/b.
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Solution 3.2 Exercise on page 379

First, we shall perform the change of variables in the kinetic energy part

Ek =
m

2

[
1

4
(u̇1 +

√
2u̇2 − u̇3)2 + 1

2
(u̇1 + u̇3)

2 +
1

4
(u̇1 −

√
2u̇2 − u̇3)2

]

=
m

2
(u̇21 + u̇22 + u̇23) ,

(i)

where all of the mixed terms cancel out.
The potential part can be written as the sum

Ep = K(x21 + x22 + x23)−K(x1x2 + x2x3) . (ii)

The first term assumes a form similar to that of the kinetic energy, since
it involves exactly the same coefficients:

K(x21 + x22 + x23) = K(u21 + u22 + u23) . (iii)

The second part of the potential also reduces to a sum of squares:

K(x1x2+x2x3) = K(x1+x3)x2 =
K√
2
(u1−u3)(u1+u3) = K√

2
(u21−u23) ,

(iv)
so that overall

Ep =

(
1 +

1√
2

)
Ku21 +Ku22 +

(
1− 1√

2

)
Ku23 . (v)

The total energy of the three coupled oscillators transforms, therefore, to
an expression that looks exactly like the sum of the energies of three free
oscillators, where each of the new variables is a linear combination of the
original variables.

The energy can be written as

E = ε1 + ε2 + ε3 , (vi)

with

ε1 =
m

2
u̇21 +

(
1 +

1√
2

)
Ku21 , (vii)

ε2 =
m

2
u̇22 +Ku22 , (viii)

ε3 =
m

2
u̇23 +

(
1− 1√

2

)
Ku23 . (ix)

Each of these free oscillators has a different frequency. Denoting Ω2 =
K/m we obtain

ω2
1 = (2 +

√
2)Ω2, ω2

2 = 2Ω2, ω2
3 = (2−√2)Ω2 . (x)
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Comment

The change of variables performed in this solution may seem to be a deus
ex machina, but this is not so. This is a simple example of the general
way of dealing with harmonic vibrations of systems of N particles. The
general result is that Eq. (4.3.1) is written as a sum over single oscillator
energies εα, where

εα =
m

2
(u̇2α + ω2

αu
2
α) .

Solution 3.3 Exercise on page 383

Since the total number of states inside a sphere of radius qD is 3N , we
obtain the condition

3V

(2π)3

∫
d3q = 3N .

Integrating over the angles in wave vector space, we obtain

3V

2π2

∫ qD

0
q2dq = 3N ,

and after integrating over q,

V q3D
2π2

= 3N ⇒ qD =

(
6π2N

V

)1/3

.

Solution 3.4 Exercise on page 383

Since F = −kT lnZ and F is given in Eq. (4.3.11), we can write

lnZ = − F

kT
= −βF ,

so that

E = −∂ lnZ
∂β

=
∂(βF )

∂β
=

3V

2π2
∂

∂β

∫ qD

0
ln(1− e−βh̄vq)q2dq ,

where in the last step have substituted (4.3.11). We change the variable
of integration to ω, differentiate with respect to β and obtain

E =
3V

2π2v3
∂

∂β

∫ ωD

0
ln(1− e−βh̄ω)ω2dω =

3V

2π2v3

∫ ωD

0

e−βh̄ωh̄ω
1− e−βh̄ωω

2dω .

Multiplying the numerator and the denominator in the integrand by eβh̄ω,
we obtain (4.3.13).

Note that we could differentiate under the integration sign because the
limit of the integration, ωD is independent of β.
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Solution 3.5 Exercise on page 384

To calculate the specific heat, namely the integral in Eq. (4.3.16), we
change variable to x = h̄ω/kT . We have to replace the upper integration
limit by

xD =
h̄ωD
kT

,

so that

C =
3kV

2π2

(
kT

h̄v

)3 ∫ xD

0

x4ex

(ex − 1)2
dx .

Using (4.3.12b) we write

(
kT

h̄v

)3
=

(
kT

h̄ωD

)3
· 6π

2N

V

and then

C = 9Nk

(
kT

h̄ωD

)3 ∫ xD

0

x4ex

(ex − 1)2
dx .

This is where the low temperature approximation enters. When T is very
small, xD 
 1, and then we can approximate the integral by

I ≡
∫ ∞
0

x4ex

(ex − 1)2
dx .

The value of this integral can be looked up in tables. See also the appendix
at the end of this part. We write

I = −
∫ ∞
0

x4
d

dx

[
1

ex − 1

]
dx = 4

∫ ∞
0

x3dx

ex − 1
,

and using (4.A.5) we find the value of the integral to be I = 4π4/15. Then
by substituting in the expression for C, we obtain (4.3.17).

Solution 4.1 Exercise on page 387

The present problem is a simplified version of the argument made in
Sec. 3.7 (the appendix) of Part I. There are three simplifications on our
side:

(a) The distribution of radiation is position independent.
(b) All the photons have the same speed — c.
(c) The mean free path is infinite.

We can use Fig. 1.3.7. The amount of radiation energy with frequency
between ω and ω + dω in a volume element dV (= r2dr sin θdθdφ) is
ρ(ω)dωdV . The radiation propagates from dV in all directions at a speed
c. The part ∆A cos θ/4πr2 (the ratio between the solid angle spanned
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by the area element and the whole sphere) of the radiation is directed
towards the surface element which concerns us.

The energy of the radiation between ω and ω + dω, which will cross
the unit area during unit time ∆t, will be the sum of all the contributions
coming from all the volume elements which are found in half a sphere of
radius c∆t. Namely,

∆E =

∫ c∆t

0
dr

∫ π/2

0
dθ

∫ 2π

0
dφr2 sin θρ(ω)∆ω

∆A cos θ

4πr2

=
1

2
∆A∆ωρ(ω)

∫ c∆t

0
dr

∫ π/2

0
sin θ cos θdθ ,

where we have performed the integration over φ. We are thus left with
elementary integrals over r and θ whose result is 1

2c∆t. Hence

∆E =
c

4
ρ(ω)∆ω∆t∆A

and the amount of energy per unit time per unit area and per unit fre-
quency is given by (4.4.2).

Solution 4.2 Exercise on page 389

A sinusoidal electromagnetic wave is an electric field and a magnetic field
of the form

E = E sin(q · r− ωt) ,
B = B sin(q · r− ωt) ,

where E and B describe the wave’s amplitude and the direction of its
polarization. We shall now use the two Maxwell equations

∇ ·E = 0 ,

∇ ·B = 0 .

The calculation of the divergence is the same for the two fields. For
example,

∇ ·E =
∂Ex

∂x
+
∂Ey

∂y
+
∂Ez

∂z
=

(
Ex

∂

∂x
+ Ey

∂

∂y
+ Ez

∂

∂z

)
sin(q · r− ωt)

= q · E cos(q · r− ωt) ,

and since the divergence vanishes at every point at all times,

q · E = 0 ,

namely E is perpendicular to q, and hence E is also perpendicular to q.
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In exactly the same manner it is possible to show that B is perpen-
dicular to q, which shows that this is a transverse wave.

Solution 4.3 Exercise on page 392

(a) When
βh̄ω 	 1 , (i)

we can expand the exponential function in the denominator of (4.4.12):

eβh̄ω ≈ 1 + βh̄ω , (ii)

and then

ρ(ω) ≈ 1

π2c3
h̄ω3

βh̄ω
=
kTω2

π2c3
. (iii)

(b) In the Einstein model, condition (i) can be interpreted as a condition
for high temperatures (see Sec. 2.3 of Part III). This is so since in
the Einstein model all the oscillators have the same frequency ω. In
contrast, for a black body, all the frequencies from zero up to infinity
appear. Hence there is no temperature that satisfies condition (i)
for all the oscillators. On the other hand the condition is satisfied
by the low frequency modes, once the temperature is given. The
Rayleigh–Jeans law therefore describes the Planck distribution in the
low frequency range.

Solution 4.4 Exercise on page 392

(a) First we write the frequency (and not the angular frequency) dis-
tribution by changing variables in (4.4.14) and using the fact that
I(ν)dν = I(ω)dω:

I(ν)dν =
2πh

c2
ν3

eβhν − 1
dν . (i)

In order to find the frequency at which the emissivity is maximal we
differentiate with respect to ν and obtain

dI

dν
=

2πhν2

c2
3eβhν − βhνeβhν − 3

(eβhν − 1)2
. (ii)

The sign of the derivative is determined by the numerator of the
second fraction in (ii), which we write after the change of variables
x = βhν in the form

A(x) = 3ex − xex − 3 . (iii)

This function is positive between x = 0 and x = xmax and negative
for x > xmax (check this). It vanishes at the point x = xmax which is a
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solution of the equation A(x) = 0. This is a transcendental equation
to be solved numerically. Equation (iii) can be written in the form

x = f(x) , (iv)

with f(x) ≡ 3(1− e−x). It can be iterated according to

xn+1 = f(xn) (v)

until |xn+1 − xn| becomes less than a desired precision.
We choose arbitrarily x0 = 2.5 and iterate according to (v). The

results are summarized in the table below.

n 0 1 2 3 4

x 2.500000 2.753745 2.808933 2.819192 2.821038

5 6 7 8

2.821368 2.821427 2.821437 2.821439

Hence x converges to the value xmax = 2.8214 and from here

hνmax

kT
= 2.8214 . (vi)

Substituting the values of Planck’s constant and Boltzmann’s constant
we obtain (4.4.15).

(b) In order to find the total power emitted from a unit surface area of a
black body, we have to integrate over Eq. (i):

I =

∫ ∞
0

I(ν)dν =
2π

c2h3β4

∫ ∞
0

x3

ex − 1
dx ,

after the change of variable to x = βhν.
In the solution to Exercise 3.5, we found that this integral is equal

to π4/15. Hence

I =
2π5(kT )4

15c2h3
= σT 4 .

Note that by integrating the Rayleigh–Jeans distribution we obtain a
diverging result that implies an emission of infinite power. This is the
well-known ultraviolet catastrophe.
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Solution 4.5 Exercise on page 393

(a) The free energy, for the case of electromagnetic radiation, is given by
(4.4.9):

F =
kTV

π2c3

∫ ∞
0

ω2 ln(1− e−βh̄ω)dω . (i)

With x = βh̄ω = h̄ω/kT it becomes

F =
(kT )4V

π2c3h̄3

∫ ∞
0

x2 ln(1− e−x)dx . (ii)

The integral in (ii) is a numerical constant whose value is found after
integration by parts using the integral in the preceding exercise:

∫ ∞
0

x2 ln(1− e−x)dx = −1

3

∫ ∞
0

x3

1− e−xdx = −π
4

45
, (iii)

and from here

F (T, V ) = −π
2V (kT )4

45(h̄c)3
= −4σ

3c
V T 4 , (iv)

S = −
(
∂F

∂T

)
V

=
16σ

3c
V T 3 , (v)

CV = T

(
∂S

∂T

)
V

=
16σ

c
V T 3 . (vi)

(b) The chemical potential is

µ =

(
∂F

∂N

)
T,N

= 0 . (vii)

The reason is that the free energy is independent of the number of
photons in the container, which is not a constant (conserved) quantity.
Photons are created and annihilated freely as a result of absorption
and emission by the walls of the container. The meaningful quantity
in this context is the average number of photons [see Eq. (4.4.13) and
Self-Assessment Exercise 7 (a)]:

〈N〉 = V

π2c3

∫ ∞
0

ω2

eβh̄ω − 1
dω =

(
kT

h̄c

)3 V
π2

∫ ∞
0

x2

ex − 1
dx . (viii)

The integral is a dimensionless number, and hence 〈N〉 is proportional
to V T 3, as are S and CV .
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Solution 4.6 Exercise on page 393

(a) In the solution to the preceding exercise we have calculated the free
energy of electromagnetic radiation:

F = −4σ

3c
V T 4 . (i)

The radiation pressure is therefore

P = −
(
∂F

∂V

)
T

=
4σ

3c
T 4 . (ii)

Using the expression for the energy density Eq. (4.4.17),

u =
4σ

c
T 4 , (iii)

we can rewrite (ii) in the form

P =
1

3
u (iv)

and obtain the equation of state

PV =
1

3
E , (v)

which is exactly Eq. (1.1.7), obtained in Part I for particles moving
at the speed of light and satisfying ε = pc.

(b) The compressibility is

K = −V
(
∂P

∂V

)
T

= 0 (vi)

since P , at constant T , is independent of the volume [see Eq. (ii)].
In an ideal gas, on the contrary,

P =
NkT

V
, (vii)

and from here

K = −V
(
∂P

∂V

)
T

=
NkT

V
= P . (viii)

The big difference is due to the fact that when the volume of the gas
decreases at constant temperature, the number of particles remains
constant, and the pressure increases. In contrast, when the volume of
radiation decreases at constant T , the number of photons decreases
[see Eq. (viii) in the solution of the preceding exercise], and the pres-
sure remains constant.
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Solution 4.7 Exercise on page 393

In Solution 4.6 we obtained the pressure of radiation:

P =
4σ

3c
T 4 , (i)

hence

T =

(
3cP

4σ

)1/4
. (ii)

(a) For P = 1 atm,

T =

(
3(3 × 108)(1.013 × 105)

4(5.67 × 10−8)

)1/4

= 1.4 × 105 K .

(b) For P = 10−10 atm,

T =

(
3(3 × 108)(10−10 × 1.013 × 105)

4(5.67 × 10−8)

)1/4

= 450 K .

(c) The pressure of radiation at the center of the sun (T = 107 K) is

P =
4(5.67 × 10−8)(107)4

3(3× 108)
= 2.5× 1012 N/m2 = 2.5 × 107 atm .

Since the pressure of the gas there is 1011 atm, the pressure of radiation
in the sun is still negligible in the balance for mechanical equilibrium.

(d) From Eq. (iv) in Solution 4.6,

P =
1

3
u , (i)

and by comparing (4.4.16) to (4.4.17) we find that

u =
4

c
I , (ii)

and hence

P =
4I

3c
. (iii)

The radiation pressure on Earth’s surface is

P =
4× 1400

3× 3× 108
= 6.22 × 10−6 N/m2 = 6× 10−11 atm .
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Solution 4.8 Exercise on page 397

Were the detailed balance not to hold separately for each frequency, we
would be able to find a frequency in which the body absorbs more radi-
ation than it emits. As a result, the energy density inside the container
would decrease at this frequency. The radiation distribution would devi-
ate from Planck’s distribution and as a result thermodynamic equilibrium
would be violated, even though initially the temperature of the body was
equal to the temperature of the radiation. A similar situation would
have occurred were detailed balance not to hold for each direction of q
separately.

Since it is impossible for the system, once it has reached thermo-
dynamic equilibrium, to leave it, our assumption regarding the detailed
balance must be wrong.

Solution 4.9 Exercise on page 397

(a) A black body has been defined as a body that absorbs all the radiation
incident upon it. The absorbing power of body A was defined as the
ratio between the intensity of radiation absorbed by the body and the
intensity of radiation incident upon it. Hence, for a black body A = 1
and (4.4.19) implies that

LB =
c

4π
ρ .

(b) The emissivity has been defined as the total power emitted per unit
area per unit frequency, whereas the emissive power is the power emit-
ted by a unit area in a certain direction (determined by the direction
of the wave vector) per unit solid angle per unit frequency. The rela-
tion between the two quantities is, therefore,

dI = L cos θdΩ .

For a black body, L is independent of the angle and is given by (4.4.22).
Thus,

I(ω) =
c

4π
ρ(ω)

∫
cos θdΩ =

c

4
ρ(ω) ,

which is Eq. (4.4.2). We have performed the integration only in the
directions that describe emission, namely 0 ≤ θ ≤ π/2.
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Solution 4.10 Exercise on page 397

We shall write the emissive power as a function of the frequency ν using
Eq. (4.4.22):

LB(q, T ) =
c

4π
ρ(ω, T ) =

1

4π3c2
h̄ω3

eβh̄ω − 1
=

1

πc2
· hν3

eβhν − 1
.

The maximum of LB satisfies Wien’s law, (4.4.15), which we derived from
the emissivity I, and hence we can calculate νmax at each of the tempera-
tures from Wien’s law and substitute in the function LB. It is somewhat
simpler to first substitute (4.4.15) into LB and express LBmax as a function
of the temperature only:

LBmax = LB(ν = νmax) =
(kT )3

πc2h2
· x3max

exmax − 1
.

If we substitute the physical constants (and xmax = 2.8214) and if T is
measured in K and LB in J m−2, then

LBmax = 3.018 × 10−20T 3 .

The numerical results are summarized in the following table:

T (K) 100 1,000 10,000 100,000

νmax (Hz) 5.88× 1012 5.88× 1013 5.88× 1014 5.88× 1015

LBmax (J m−2) 3.018 × 10−14 3.018 × 10−11 3.018 × 10−8 3.018 × 10−5
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Solution 1 Exercise on page 403

(a) The scheme of the low levels that interest us is

ε2 = 10eV

ε1  ; g1=3

0

➤ε

The wavelength of the emitted line in the transition from ε1 to the
ground state is 21 cm. Hence

ε1 = h̄ω =
hc

λ
=

(6.626 × 10−34)(3 × 108)

0.21

≈ 9.5 × 10−25 J ≈ 5.9 × 10−6 eV .

(b) Because ε2 = 10 eV,

β(ε2 − ε1) ≈ βε2 ≈ 1.6 × 10−18

(1.38 × 10−23)T
≈ 1.2 × 105

T
,

so that for T 	 105 K we may use the approximation (4.1.36). Taking
ε0 = 0, we have

ζ = 1 + g1e
−βε1 .

Specifically for 0.1 K,

ζ(0.1 K) = 1 + 3e−βε1 = 1 + 3 exp

(
− ε1
kT

)

= 1+ 3 exp

(
− 9.5× 10−25

1.38× 10−24

)
≈ 2.5 .

434
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(c) The characteristic temperature of the first excited level is

Θ1 =
ε1
k
≈ 0.11 × 1.6× 10−19

1.38 × 10−23
≈ 1, 250 K .

(d) The level scheme is:

ε2 = 1.11eV

ε1=0.11eV; g1=2

0; go=4

➤ε

The characteristic temperature of the second excited level is

Θ2 =
ε2
k
≈ 1.11 × 1.6× 10−19

1.38 × 10−23
≈ 1.3× 104 K .

Namely, we are looking for ζ for T 	 1.3 × 104 K, where the term
containing ε2 is negligible. We thus have

ζ(T ) = g0 + g1e
−βε1 = 4 + 2e−Θ1/T .

(e) The contribution of the atomic levels to the specific heat is derived
from ζ using Eq. (4.1.33):

∆CV

N
= k

d

dT

(
T 2 d

dT
ln ζ

)
.

Substituting ζ(T ) we obtain

T 2 d

dT
ln ζ = T 2 d

dT
ln(2 + e−Θ1/T ) =

Θ1e
−Θ1/T

2 + e−Θ1/T
=

Θ1

2eΘ1/T + 1
.

Substituting this in the expression for CV yields

CV

N
=

3

2
k + k

d

dT

Θ1

2eΘ1/T + 1
=

3

2
k +

2k(Θ1/T )
2eΘ1/T

(2eΘ1/T + 1)2
.

The graph describes the specific heat as a function of temperature,
where the temperature is measured in units of Θ1. Only the con-
tribution due to the internal structure, above the ideal gas value, is
depicted. We have seen a specific heat of similar structure for the
paramagnet (see Exercise 1.8 in this part and Fig. 2.5.2).



436 Solutions to self-assessment exercises

The similarity is due to the fact that the atoms of the gas have two
(active) electronic energy levels, as does the paramagnetic moment.
But in contrast the two levels have different degeneracies, and thus
the specific heat does not look exactly like that of the paramagnet.
In addition, in the gas there are degrees of freedom related to trans-
lational motion of the molecules. As a result, the specific heat of the
gas will not vanish when T → 0, nor when T →∞.

➤

T/Θ1

➤1.5
1 2 3 4

1.6

1.7

CV/Nk

Only in a narrow range of temperatures will a maximum appear
whose origin is similar to that in the paramagnetic case. If T is less
than the energy spacing between the two levels, it is impossible to
excite the atoms to the second level, and the heat must be absorbed
by translation. When the temperature equals the spacing, the system
can absorb energy in a much more efficient manner than by translation
— the atoms pass from the ground level to the excited one. And later
on, when there are no more molecules to excite, translation is again
the only option.

Solution 2 Exercise on page 403

The electronic levels: the ground level is at ε0 = 0, the first excited level
at ε1 = 1 eV, and the second excited state ε2 = 2 eV.

The corresponding characteristic electronic temperature

Θe =
1.6× 10−19

1.38 × 10−23
≈ 11, 600 K . (i)

The distances between the magnetic levels are of order µ0H, and they
define a characteristic magnetic temperature:

ΘM =
µ0H

k
=

(2× 10−27 J gauss−1)× 106 gauss

1.38 × 10−23 J K−1
≈ 145 K	 Θe . (ii)
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The contributions to the partition function can be written as

ζe = 1 + e−ε1/kT + e−ε2/kT = 1 + e−Θe/T + e−2Θe/T , (iii)

ζM =
2∑

σ=−2
e−σµ0H/kT = 1+ eΘM/T + e−ΘM/T + e2ΘM/T + e−2ΘM/T

= 1+ 2 cosh

(
ΘM

T

)
+ 2cosh

(
2ΘM

T

)
. (iv)

The change in the chemical potential will be calculated using (4.1.35):

∆µ = −kT ln ζ = −kT (ln ζe + ln ζM )

= −kT
{
ln

[
1 + exp

(
−Θe

T

)
+ exp

(
−2Θe

T

)]

+ ln

[
1 + 2 cosh

(
ΘM

T

)
+ 2cosh

(
2ΘM

T

)]}
. (v)

At very low temperatures (T 	 ΘM ) the first ln is negligible, whereas the
second one behaves as

ln

[
cosh

(
2ΘM

T

)]
≈ 2ΘM

T
,

so that there
∆µ ≈ −2kΘM .

At very high temperatures (T 
 ΘM ) both terms in the braces are con-
stant, and hence ∆µ decreases linearly with the temperature. The fol-
lowing figure illustrates ∆µ as a function of T . The temperature scale is
logarithmic.

–2ΘM

➤

➤

∆µ/k TΘeΘM

The change in the specific heat (per atom) will be calculated using
(4.1.33):

∆cV
k

=
∆CV

Nk
=

d

dT

[
T 2
(
d

dT
ln ζ

)]
. (vi)
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Even without calculating the derivatives we can obtain an idea of the
nature of the dependence of ∆cV upon T . Since ln ζ is a sum of two
terms, the specific heat ∆cV will also be a sum of a magnetic part and a
part originating in the atomic levels. The specific heat originating from
the magnetic moment “unfreezes” at temperatures around ΘM . Hence it
behaves as the specific heat of a paramagnet whose general features are
depicted in Fig. 2.5.2 (in Part II). The specific heat originating in the
atomic levels unfreezes at temperatures around Θe, and looks like the one
illustrated in the solution of the preceding exercise, which also resembles
that of a paramagnet. Overall we therefore obtain a specific heat with
two high peaks: one at T ≈ ΘM and the other at T ≈ Θe, as illustrated
in the following figure:

➤

ΘM

➤

0.8

TΘe

0

∆cV/k

Note that here as well the temperature scale is logarithmic.
In order to obtain the values of ∆cV around the points of the maxima

(T ≈ ΘM ,Θe), we have to calculate explicitly each of the contributions.
We can obtain the first directly from Eq. (vi), but it is much simpler to
use Exercise 5.7(d) in Part II:

(∆cV )M
k

= (βµ0H)2


 1

4 sinh2
(
1
2βµ0H

) − 25

4 sinh2
(
5
2βµ0H

)

 , (vii)

where we have substituted J = 2 (for which 2J + 1 = 5) and µ0 = gµB.
Equation (vii) can be written using ΘM :

(∆cV )M
k

=

(
ΘM

2T

)2 [ 1

sinh2(ΘM/2T )
− 25

sinh2(5ΘM/2T )

]
(viii)

and for T = ΘM :
(∆cV )M

k
= 0.75 . (ix)
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A more detailed study, which we shall not reproduce here, reveals that
the maximum of (∆cV )M is not attained at exactly T = ΘM but at
T ≈ 0.75ΘM , and that (∆cV )M/k ≈ 0.8.

The second contribution to the specific heat can again be calculated
directly from Eq. (vi). However, it is again preferable to use the known
results for the paramagnet from Exercise 5.7 of Part II, since the atomic
excitations behave here exactly like a paramagnet with spin J = 1. Re-
placing βgµBH by Θe/T we write

(∆cV )e
k

=

(
Θe

2T

)2 [ 1

sinh2(Θe/2T )
− 9

sinh2(3Θe/2T )

]
(x)

and then for T = Θe
(∆cV )e
k

= 0.42 . (xi)

Again the maximum of (∆cV )e is not attained exactly at T = Θe but at
T = 0.53Θe, and (∆cV )e/k = 0.64 at the maximum.

The reason why the specific heat contributed by the atomic excitations
is smaller than that originating from the magnetic moment is that the
number of atomic levels is smaller than the number of the magnetic levels.

Solution 3 Exercise on page 403

(a) The reaction:

2NaOH +H2SO4 ⇀↽ Na2SO4 + 2H2O , (i)

B1 = NaOH, B2 = H2SO4, B3 = Na2SO4, B4 = H2O,

b1 = 2, b2 = 1, b3 = 1, b4 = 2,

ν1 = −2, ν2 = −1, ν3 = 1, ν4 = 2 .

The law of mass action reads

n3n
2
4

n21n2
= K(T ) . (ii)

(b) The additional equations are

nNa = n1 + 2n3 , (iii)

nO = n1 + 4n2 + 4n3 + n4 , (iv)

nH = n1 + 2n2 + 2n4 , (v)

nS = n2 + n3 . (vi)

There are four additional equations, since four types of atoms appear
in the reaction. Overall there will be five equations for determining
the densities. Hence it appears that if the atomic densities are given
arbitrary values, it will be impossible to find a solution for all five
equations.
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(c) The solution of the mystery is the fact that the four equations (iii)–
(vi) are not independent, as you will find if you try to solve them
and to calculate the four densities n1, n2, n3, n4 in terms of the atomic
densities. The dependence between the equations is also reflected in
the fact that

nH + nNa + 6nS − 2nO = 0 .

Namely, any three of the densities determine the fourth density. This
is of course a special property of reaction (i). As a result, we have only
three independent accompanying equations and together with Eq. (ii)
we can obtain a single solution for the densities of the molecules.

Solution 4 Exercise on page 404

In the reaction

Cl2 +H2 ⇀↽ 2HCl ,

B1 = Cl2, B2 = H2, B3 = HCl,

b1 = 1, b2 = 1, b3 = 2,

ν1 = −1, ν2 = −1, ν3 = 2 .

We calculate K using Eq. (4.2.8):

K(T ) =
3∏

i=1

[(
2πMikT

h2

)3/2
ζi(T )

]νi

=

(
2πkT

h2

)3/2∑
i
νi 3∏

i=1

[M
3/2
i ζi(T )]

νi =
Mζ23
ζ1ζ2

, (i)

where

M =

(
M3

M1M2

)3/2
. (ii)

Note that since
∑

i νi = 0 the temperature dependence of K enters only
through the internal partition functions.

In the approximation of our calculation, it is possible to write for each
of the diatomic gases

ζ = ζr · ζv , (iii)

so that

K(T ) =M
ζ23r
ζ1rζ2r

· ζ23v
ζ1vζ2v

. (iv)
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ζv cannot be obtained from (4.1.68a), because we have to take into ac-
count the different dissociation energies (binding energies) of each of the
molecules. Thus we take the corrected equation (4.2.31):

ζv =
eεD/kT

1− e−Θv/T
. (v)

From here we calculate the second (vibrational) term in the equilibrium
constant (iv):

ζ23v
ζ1vζ2v

=
e∆ε/kT (1− e−Θ1v/T )(1 − e−Θ2v/T )

(1− e−Θ3v/T )2
, (vi)

where ∆ε is the difference between the dissociation energies of the re-
actants and the products in the reaction — in other words, the energy
released in the reaction:

∆ε = 2ε3D − ε1D − ε2D . (vii)

The first factor in Eq. (iii), ζr, is obtained from (4.1.68b) as

ζr =
∞∑
J=0

(2J + 1) exp[−βεrJ(J + 1)] =
∞∑
J=0

(2J + 1) exp

[
−J(J + 1)Θr

2T

]
,

(viii)
where we have also used in Eq. (4.1.64).

But, the first (rotational) term in the equilibrium constant cannot
be calculated exactly, since, as we have seen, the summation in (viii) is
difficult to perform. It can instead be studied in the ranges of high and
low temperatures. In order to get an idea of the temperature scales, we
calculate Θr and Θv. The results appear in the following table:

ω I Θv = h̄ω/k Θr = h̄2/kI

(1014 s−1) (10−47 kg ·m2) (K) (K)

Cl2 1.0 115 725 0.7
H2 8.3 0.46 6014 175.0

HCl 5.7 2.4 4130 33.5

From this data it is clear that due to the low rotational temperature of
chlorine, we can use the approximation (4.1.73) only for very low tem-
peratures (below 0.1 K, T 	 Θ1r). On the other hand, at temperatures
above 1000 K (T 
 Θ2r) we can already write, using (4.1.75),

ζ23r
ζ1rζ2r

=
Θ1rΘ2r

Θ2
3r

, (ix)
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so that at these temperatures

K(T ) =M
Θ1rΘ2r

Θ2
3r

e∆ε/kT (1− e−Θ1v/T )(1− eΘ2v/T )

(1− e−Θ3v/T )2
. (x)

Solution 5 Exercise on page 404

(a) We assume that ρ(q, T ) depends on the direction of q; then it is
possible to find two directions for which

ρ(q1, T ) < ρ(q2, T ) ,

where
|q1| = |q2| = ω

c
.

We take two identical bodies which are originally at equilibrium with
the cavity at temperature T . We coat each of them with reflecting
mirrors on all sides but one. The side without a mirror we cover with
a filter that transmits radiation with frequency ω only and reflects all
other frequencies. We place the two bodies so that the filter of body
No. 1 is perpendicular to q1 and the filter of body No. 2 perpendicular
to q2, making sure that only radiation directed along q1 be incident on
body No. 1 and only radiation directed along q2 be incident on body
No. 2. We can achieve this by placing a collimator made of two slits in
front of each filter along the corresponding direction. In addition we
ensure that the bodies be positioned with the same orientation with
respect to their respective collimators. The system is illustrated in
the following figure.

q1

q2

➤

➤

➤ ➤

(1)

(2)

➤

➤

mirror

collimator

Now, since the two bodies absorb radiation with the same frequency,
ω, and the radiation incident on each is perpendicular to the filter-
coated side, the two absorb the same fraction of the radiation incident
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upon them. Hence if ρ(q1, T ) < ρ(q2, T ), then body No. 2 absorbs
more energy than body No. 1. As a result, its temperature increases
and heat will be transferred from one region to another without any
work performed, in contradiction to the second law.
Note that we have ignored the radiation emitted by the bodies.

Emission of radiation actually occurs, but since the bodies are identi-
cal and are at the same temperature, they emit radiation of the same
intensity. Thus our conclusion, that body No. 2 will absorb more
energy than body No. 1, remains valid.

(b) We now consider a radiation cavity at temperature T , in which ρ

depends on the polarization of the radiation. Namely, we assume that
the density of radiation with polarization n2 is greater than the density
of radiation with polarization n1. We place two identical bodies at
temperature T , filter-coated as before. Instead of collimators, we shall
place a polarizing filter with polarization n1 in front of one of them
and a filter with polarization n2 in front of the other. In addition
we rotate the bodies so that they be oriented in the same way with
respect to the axis of their polarizers. Body No. 2 will heat up more
than body No. 1, since it will have more radiation incident upon it,
in contradiction to the second law.

(c) So far we have managed to prove, using the second law of thermody-
namics, that ρ is independent of position, the radiation’s direction of
propagation, and its polarization. We try to prove in a similar manner
that ρ is independent of ω. Namely, we shall attempt to show that a
dependence of ρ upon ω leads to a transfer of heat between regions
with the same temperature, without performing work.
We assume that the density of radiation with ω2 is higher than

that with ω1. We take two bodies which were at equilibrium with the
radiation in the cavity at temperature T . We coat one with a filter
which only transmits radiation with frequency ω1, and coat the other
with a filter that only transmits radiation with frequency ω2. Using
a line of argument similar to the one used above, we can seemingly
conclude that body No. 2 will now heat up, as there is more energy at
ω2. However, the absorbing power and the emittance both depend on
the frequency, so that we may not reach such a conclusion. The fact
that the energy density depends on the frequency does not, therefore,
contradict the second law.

Solution 6 Exercise on page 404

(a) The emissivity per unit angular frequency of a black body is given by
Eq. (4.4.14):

I(ω) =
1

4π2c2
h̄ω3

eβh̄ω − 1
.
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In order to obtain the emissivity per unit wavelength, Ĩ(λ), it is not
enough to “naively” substitute ω = 2πc/λ. We must also ensure that
the same power (per unit surface area) be emitted in the frequency
range dω around ω, as in the range dλ around the corresponding λ.
In mathematical terms,

I(ω)dω = Ĩ(λ)dλ .

This implies that in order to obtain Ĩ(λ) we should not only express ω
in terms of λ in the function I(ω), but also multiply it by the derivative
dω/dλ. Actually, it is the absolute value of the derivative that must
be taken, since the energy distribution must remain positive.
Thus

Ĩ(λ) = I

(
2πc

λ

) ∣∣∣∣dωdλ
∣∣∣∣ = 1

4π2c2
· h̄(2πc/λ)

3

eβh̄2πc/λ − 1
· 2πc
λ2

=
2πhc2

λ5
1

eβhc/λ − 1
.

(b) In order to find λmax we differentiate with respect to λ, like in Exer-
cise 4.4, and obtain

dĨ

dλ
=

2πhc2

λ6
(βhc/λ)eβhc/λ − 5eβhc/λ + 5

(eβhc/λ − 1)2
.

The sign of the derivative is determined by the numerator of the sec-
ond fraction, which, after the change of variables x = βhc/λ, we
rewrite in the form

B(x) = 5 + xex − 5ex .

This function is positive from x = 0 up to x = xmax, and is negative
for x > xmax. It vanishes once for x = xmax. Hence, in general, Ĩ(λ)
has a form similar to that of I(ω) (see Fig. 4.4.4).
In order to find the maximum, namely xmax, we again use the iter-

ative method of Exercise 4.4. We write the equation B(x) = 0 in the
form

x = f(x) ≡ 5(1− e−x) .
The result of the iterations is summarized in the following table:

n 0 1 2 3 4 5

x 4.500000 4.944455 4.964386 4.965089 4.965113 4.965114

We see that x converges to the value xmax = 4.9651, so that

hc

kTλmax
= 4.9651 ,
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or
λmaxT = 2.898 × 10−3 mK = 0.2898 cmK .

This relationship is also referred to as Wien’s law, like Eq. (4.4.15).
Note that λmaxνmax = c is not satisfied.

(c) The temperature on the surface of the sun is, according to (b) above,

T ≈ 0.3

5× 10−5
≈ 6, 000 K .

Solution 7 Exercise on page 404

(a) We treat the radiation as the excited states of quantum harmonic
oscillators with frequencies ωα. The energy levels of such an oscillator
are integral multiples of h̄ωα. Inside the cavity, in which there are
oscillators of all frequencies, there will be nα photons with energy
h̄ωα, which contribute nαh̄ωα to the total energy.
The average number of photons with energy h̄ωα will be calculated

in exactly the same way in which we calculated the number of phonons
with energy ω (Exercise 2.3a of Part III):

〈nα〉 =
∑∞

nα=0 nαe
−βh̄ωαnα∑∞

nα=0 e
−βh̄ωαnα =

∑∞
nα=0 nαe

−xnα∑∞
nα=0 e

−xnα , (i)

where we have denoted x = βh̄ωα. The expression on the right hand
is calculated by noting that

〈nα〉 = − d

dx
ln

∞∑
nα=0

e−xnα = − d

dx
ln

1

1− e−x =
e−x

1− e−x =
1

ex − 1
,

(ii)
or

〈nα〉 = 1

eβh̄ωα − 1
. (iii)

The average number of photons per unit volume is a sum over all
frequencies — over all the vibrational modes, namely

〈n〉 = 〈N〉
V

=
1

V

∑
α

〈nα〉 = 1

V

∑
α

1

eβh̄ωα − 1
, (iv)

where N is the total number of photons in the cavity.
Because the frequencies are very dense, it is possible to pass from

the sum to an integral. To this end we multiply 〈nα〉 by the number
of states in the region d3q:

dN =
2V d3q

(2π)3
=
V q2dq

π2
=

V

π2c3
ω2dω , (v)
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and then

〈n〉 =
∫ ∞
0

ω2

π2c3
dω

eβh̄ω − 1
, (vi)

which is the integral of Eq. (4.4.13). After changing variables to x =
βh̄ω we obtain

〈n〉 =
(
kT

h̄c

)3 1

π2

∫ ∞
0

x2dx

ex − 1
=

2.404

π2

(
kT

h̄c

)3
, (vii)

where the integral has been calculated using Eq. (4.A.5) with < = 2.
Equation (vii) can also be written in the form

〈n〉 = 144.24

π4
σT 3

kc
. (viii)

Substituting T = 3K we obtain about 550 photons per cm3.
(b) In order to find the relationship between the density of photons and

the pressure, we calculate the equation of state. We have

P = −
(
∂F

∂V

)
N,T

. (ix)

Actually we have already calculated this in Solution 4.6 and obtained

P =
4σ

3c
T 4 . (x)

Dividing this equation by Eq. (viii) from (a) above, we obtain

Np

V
=

108.18

π4
P

kT
= 1.1106

P

kT
, (xi)

where we have denoted the average number of photons by Np.
The number of molecules in an ideal gas satisfies

Nm

V
=

P

kT
, (xii)

so that
Np

Nm
≈ 1.11 . (xiii)

(c) Suppose that we want to emulate an ideal gas whose pressure is 1 atm
by a photon gas. From Eq. (x) it is clear that there exists a single
temperature for which this is possible: It is 1.4 × 105 K. Once we
have fixed the temperature, the density of molecules is fixed by the
equation of state (xii), and the density of photons is fixed by the
equation of state (xi) to be 1.11 times larger. This ratio is satisfied,
therefore, only for the special temperature for which the pressure of
the radiation equals the pressure of the gas.
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(d) We have calculated the specific heat of a photon gas in Exercise 4.5,
and obtained

CV =
16σ

c
V T 3 . (xiv)

Taking N from Eq. (viii), we find that the specific heat per photon is

CV

Np
=

π4k

9.015
= 10.8k (xv)

and is independent of temperature, as in the case of an ideal gas.
Each photon contributes to the specific heat about 11k, compared

to 1.5k per molecule in an ideal gas. Nevertheless, we must emphasize
that the ratio CV /N is to be interpreted differently in each case, since
in the case of a gas of photons, their number increases with temper-
ature. Hence not only does each photon contribute to the specific
heat more than a molecule of an ideal gas, but the number of photons
changes as well.

(e) This question remains unsolved. Make sure that you know the answer.

Solution 8 Exercise on page 405

(a) There exists an ambiguity in the language. In order for a body to be
called black in everyday language, it should be a body that does not
reflect the radiation incident upon it and does not emit radiation in
the visible range. Thus an object can be black in terms of everyday
language if it absorbs all the radiation in the visible range and emits
most of the radiation in the invisible range [see (c) below].

(b) The black body (in the technical sense) will appear yellow if we heat
it to a temperature at which the energy emission is maximal in the
yellow wavelengths. As we found in the solution of Exercise 6, this
temperature is fixed by Wien’s law and is around 6,000 K. An example
of such an object is the sun.

(c) In order to get convinced that the black body is not black, it must be
observed through an instrument that is sensitive to the wavelengths
in which the radiation emission is concentrated. At room temperature
this wavelength is (according to Wien’s law) about 10−3 cm, which is
in the infrared region.

Solution 9 Exercise on page 405

We cannot use Eqs. (4.2.7) and (4.2.8) directly, since they were obtained
for a Boltzmann gas, whereas here we must treat at least the photons
differently, since they obey Planck’s distribution. However, we can begin
from the basic condition for chemical equilibrium, Eq. (4.2.5), which gives
in this case

µ+ + µ− − µγ = 0 , (i)
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where µ± are, respectively, the chemical potential of e± and µγ is the
chemical potential of the photons. From Exercise 4.5 we have µγ = 0 and
hence

µ+ + µ− = 0 . (ii)

The chemical potential of a relativistic electron gas can be obtained from
Eq. (4.2.13), where the partition function of a single electron is

z =
2V

h3

∫
d3p exp

[
−β
√
(mc2)2 + (cp)2

]
. (iii)

The factor 2 originates from the two spin states of the electron. The Boltz-
mann factor has been generalized to contain the relativistic expression for
the energy.

As we shall see in the next part, electrons do not obey Boltzmann
statistics. Boltzmann statistics applies only in the limit in which the
electron density is very low and our calculation is to be interpreted in this
light. The low density is guaranteed by the fact that the temperature of
the gas is assumed to be nonrelativistic (kT 	 mc2) so that pair creation
is quite rare. In Part V we discuss such a gas in the opposite limit,
kT 
 mc2.

The integral appearing in Eq. (iii) cannot be calculated explicitly.
However, for nonrelativistic particles for which mc2 
 cp it is possible
to expand the energy and to obtain

ε = mc2 +
p2

2m
, (iv)

which is the nonrelativistic expression for the energy plus the rest energy
mc2. We can now calculate the integral and obtain the usual nonrelativis-
tic expression, Eq. (3.4.37), with a correction originating from the spin
and the rest mass:

z =
8πV

h3

∫ ∞
0

dpp2 exp

[
−β
(
mc2 +

p2

2m

)]
=

2e−βmc2V (2πmkT )3/2

h3
,

(v)
and using Eq. (4.2.13) the chemical potential becomes

µ = kT ln


n
2

(
h2

2πmkT

)3/2

+mc2 . (vi)



Solutions to self-assessment exercises 449

This is the chemical potential of an ideal gas with a correction which
we may think of as a shift of the energy scale. The factor 1

2 inside the
logarithmic function originates from the spin states of the electron. Note
that there is no room here for the internal partition function, since the
electron (at least as far as we know today) is a particle devoid of internal
structure. Even if it had such structure, it does not come into play at the
energies discussed.

Using Eq. (vi) for the chemical potential of the electrons and the
positrons in Eq. (ii), we obtain

kT ln


n+n−

4

(
h2

2πmkT

)3

+ 2mc2 = 0 , (vii)

where n+, n− are the densities of positrons and electrons, respectively.
From here we obtain the law of mass action, which will contain only

the densities of the electrons and the positrons:

n+n− = 4

(
2πmkT

h2

)3
e−2mc2/kT . (viii)

If the gas is electrically neutral, then n+ = n− so that

n+ = n− = 2

(
2πmkT

h2

)3/2
e−mc2/kT . (ix)

Note that the rest energy mc2 determines the scale of temperatures at
which pair creation becomes significant. For instance, at a temperature
for which kT/mc2 = 0.1 (T ≈ 6 × 109 K), which is found at the edge of
the approximation’s region of validity,

n± = 1.6× 1024 cm−3 .

The density of photons at such a temperature, Eq. (viii) in the solution
to Exercise 7, is much higher. We find

nγ = 4.2 × 1030 cm−3 .
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Part V

Of Fermions and Bosons
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Introduction

In the preceding parts we analyzed the thermodynamic properties of systems in the

canonical ensemble. In this part we will get acquainted with a generalization of the

canonical  ensemble to systems that can exchange particles with their surroundings.

This generalization, the grand canonical ensemble, which we present in Chap. 1, is

of double importance. On the one hand it contributes to a deeper understanding of

the statistical physics of classical particles. On the other hand, the new ensemble is

the natural tool for the development of statistical mechanics of systems of identical
particles in quantum conditions. This is not because a system of (nonrelativistic)

quantum-mechanical particles does not conserve the number of particles. It is merely
of great technical convenience and is analogous to the application of the canonical

ensemble to isolated systems, which have a constant energy.

Using the grand canonical ensemble we develop, in Chap. 2, the tools for the

statistical mechanics of systems of identical quantum particles. Some of the ele-

ments have been laid down in Part IV, in the discussion of the  model and

black body radiation, and upon this we shall expand and build the structure. The

importance of the applications of the statistical physics of identical particles cannot

be overstated. We will get acquainted with some of them in different degrees of

detail. The main application we shall meet in Chap. 3 concerns electrons, which

obey the  principle and therefore are subject to the Fermi-Dirac statistics.

They are responsible for the properties of metals and especially the various con-

ductivity phenomena. Chapter 4 is devoted to the quantum statistical mechanics

of bosons, particles subject to the Bose-Einstein statistics, and to the associated

phenomenon of superfluidity. It concludes with the spectacular manifestation of
electrical conductivity  superconductivity.
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Chapter 1

Grand Canonical Ensemble

1.1 Definitions and motivation

In the preceding parts we have seen that the canonical ensemble (and the
free energy) is a most useful description of a system, since in most cases
the temperature of the thermodynamic system (and not its energy) is the
controlled quantity. Moreover, even when the system is isolated, it is more
convenient to think of it as being in contact with a heat bath, to calculate
its free energy and from it to derive the properties of the isolated system.
See, for instance, how this was accomplished for the paramagnet in Sec.
1.4 of Part III.

We now introduce the grand canonical ensemble, which allows us togrand
canonical
ensemble

relax the constraint of a fixed number of particles in the system. This
would have been the natural thing to do in dealing with chemical reac-
tions, or with systems that can exchange particles with a reservoir. But
here our motivation for introducing this ensemble, as mentioned in the in-
troduction, is purely technical, so we move directly to the formal aspects.

The grand canonical ensemble is defined as a set of systems all with
the same type of degrees of freedom and the same energy function. Each
system is defined by a state α which is specified by the number of par-
ticles it contains, N , and by the microscopic state i of its N particles.
The probability of a state is a generalization of the Gibbs probability,
Eq. (3.1.35). It is given by

Pα ∼ e−β(Ei−µN) . (5.1.1)

and the grand partition function is defined asgrand
partition
function Z(T, V, µ) =∑

α

e−β(Ei−µN) . (5.1.2)

Z is again the normalization of the probabilities Pα. The summation
consists of two parts: a sum over the particle number N and for each
particle number, over all microscopic states i of a system with that number
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of particles. This second sum is the same as in a canonical ensemble with
N particles and it gives the canonical partition function for N particles.
Thus

Z(T, V, µ)=∑
N

eβµN
∑
i

e−βEi=
∑
N

eβµNZ(T, V,N)=
∑
N

eβ[µN−F (T,V,N)] ,

(5.1.3)
where the appearance of the free energy is due to the relation Z = e−βF
[Eq. (3.1.30)].

Averages of physical quantities (observables) are computed as expecta-
tions with the probability distribution (5.1.1), normalized by Z, summing
over all values of N and for each value of N , over all microscopic states
i. If Aα, or A(N, i), is an observable giving a value for each state in the
ensemble, a value that depends on the number of particles N as well as
on the microscopic state i of the system, then the average of A in the
ensemble is

〈A〉 =∑
α

AαPα = Z−1
∞∑

N=0

∑
i

A(N, i)e−β(Ei−µN) . (5.1.4)

Exercise 1.1

Prove that Z → 1 in the limit where µ→ −∞.

Solution on page 514

To justify the choice of this probability distribution we follow the logic
of Chap. 1 of Part III, showing that these probabilities lead to average
quantities which can be identified with thermodynamic quantities satisfy-
ing the thermodynamic laws.

1.2 Connection to thermodynamics

The identification of the thermodynamic work follows closely the discus-
sion in Sec. 1.2 of Part III. For any state i of N particles δWi = −∂Ei/∂X

and the thermodynamic work is the average of this quantity. Namely,

δW = −Z−1∑
N,i

eβ(µN−Ei)
∂Ei

∂X
dX =

1

β

∂ lnZ
∂X

dX . (5.1.5)

Thus, for a volume change δW = PdV and then

P =
1

β

∂ lnZ
∂V

=
∂

∂V
(kT lnZ) . (5.1.6)
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Z depends on V , on T (or β) and also on µ. Hence we have

N =
∂

∂µ
(kT lnZ) , (5.1.7)

where N on the left hand side is the average number of particles.

Exercise 1.2

Prove (5.1.7).

Solution on page 514

Comparing (5.1.6) and (5.1.7) to the rightmost Eq. (2.0.31), we expect
that it be possible to identify the potential Ω with −kT lnZ.

Consider the function

Ω ≡ −kT lnZ , (5.1.8)

which is our candidate for a generalization of the relation between the free
energy and the canonical partition function, F = −kT lnZ. Calculating
the derivative of Ω with respect to T we have

(
∂Ω

∂T

)
V,µ

= −k lnZ − kT dβ
dT

(
∂ lnZ
∂β

)
V,µ

=
Ω

T
− E

T
+
µ

T
N , (5.1.9)

where E and N are the averages of the energy and the particle num-
ber. Now if Ω is identified as the grand potential, then its temperatureGrand

potential derivative, at constant V and µ, should be the entropy. See for example
Eq. (2.0.31). Indeed, Eq. (5.1.9) corresponds to the thermodynamic rela-
tion Eq. (2.0.29), expressing the fact that Ω is the potential providing the
thermodynamic information in terms of V, T and µ.

Exercise 1.3

Complete the derivation of Eq. (5.1.9).
Solution on page 515

Exercise 1.4

Another way of obtaining the identification Ω = −kT lnZ is to use the
expression for the entropy in terms of the probabilities of the microscopic
states [Eq. (2.6.7)]:

S = −k∑
α

Pα lnPα .

Perform this identification.

Solution on page 515
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Given the potential Ω we derive all the familiar thermodynamic quan-
tities via Eq. (2.0.31)

∂Ω

∂T
= −S, ∂Ω

∂V
= −P, ∂Ω

∂µ
= −N , (5.1.10)

where we keep in mind that the independent variables are T, V and µ,
and each derivative is calculated with the two unspecified variables kept
constant. We can also write

dΩ = −SdT − PdV −Ndµ . (5.1.11)

But there is a slight complication, as we shall see in detail in chap-
ters 3 and 4: The appearance of µ as a variable, while computationally
very convenient, is not natural. Thermodynamic properties of systems are
eventually measured with a given number of particles, or density. How-
ever, in the grand canonical framework quantities like pressure (equation
of state), or the specific heat, are given as functions of T , V and µ. Thus,
we must first use the rightmost of Eqs. (5.1.10), to eliminate µ in terms
of T, V and N , or rather in terms of T and n = N/V .



Chapter 2

Statistical Mechanics of Identical

Quantum Particles

2.1 Classification of states occupation numbers

The passage to the statistical mechanics of systems of identical quan-
tum particles is achieved in two steps. The first step was already pre-
sented in Sec. 4.4 of Part III. It concerns the appearance of quantum
states. The second is quantum statistics. In the first step one takes intoquantum

statistics consideration the fact that quantum particles cannot be described by a
full specification of their coordinates and momenta, because of the un-
certainty principle. Instead, particles are described by wave functions
which satisfy boundary conditions imposed by the container to which
they are confined. If the particles are noninteracting, then they are in-
dependent of each other and each particle is described by its own wave
function.

As we have seen in Sec. 4.4 of Part III, the wave function of a particle
in a rectangular box is a standing (de Broglie) wave in each of the three
perpendicular directions. Such a state is specified by three integers n, p, q,
which determine the allowed (quantized) wavelengths, or wave numbers,
in the three perpendicular directions and the corresponding three compo-
nents of the quantized de Broglie momentum. (See Part IV Sec. 3.2.) The
set of three integers, specifying the wave function of the single particle,
we denote schematically by a single index k. The energy of a particle in
the state k is εk and in the case of a particle in a box, εk is given by Eq.
(3.4.27). This scheme can be extended to any quantum system of non-
interacting particles, with k interpreted as a label of the single particle
states.

A state of a system of many noninteracting particles can be specified
by listing which particle is in which of the accessible single particle states,
as we have done in Sec. 4.4 of Part III. The energy of such a many-particle
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state can be written as the sum of the single particle energies, i.e.

E =
N∑
j=1

εkj , (5.2.1)

where kj is the state of particle j.
In each microscopic state we can identify the number of particles in a

given single particle state k. This number, which is called the occupation occupation
numbernumber, of state k, is denoted by nk. Clearly,∑

k

nk = N , (5.2.2)

where N is the total number of particles.

Exercise 2.1

What is the largest value that nk can have (for each k) in a system of N
particles?

Solution on page 515

The energy of the N -particle state is written as

E =
∑
k

nkεk . (5.2.3)

At this stage, a large number of microscopic states share the same set of
occupation numbers. We return to this issue below. Note also that the
number of sets k is cubically infinite, hence for a given N most occupation
numbers are zero.

Exercise 2.2

How many individual microscopic states have the same set of occupation
numbers nk?

Solution on page 516

Exercise 2.3

Justify Eq. (5.2.3).

Solution on page 516

The canonical partition function is, as usual, the sum

Z =
∑
states

e−βE .
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As long as the only constraint is the total number of particles, the partition
sum can be carried out as in Sec. 4.4 of Part III, i.e. by summing over all
triplets of integers corresponding to the index k for each particle. This
sum, over N vectors of integers, becomes a product of identical sums. For
a box of macroscopic size, if the temperature is not extremely low, each of
these sums is very well approximated by an integral, which is essentially
the classical result. Temperatures at which the sum deviates significantly
from the integral are so low as to be beyond any experimental interest. See
for example Exercise 4.10. In conclusion, the quantization of the single
particle wave functions is not a quantum effect of great impact, until we
get to discussing Bose–Einstein condensation in Chap. 4, below. Hence
we turn to the second step.

2.2 Quantum statistics many-particle states

The principal effect of quantum mechanics on the thermodynamic prop-
erties of systems of identical particles is brought about by the quantum-
mechanical constraints on the identification of allowed, distinguishable
microscopic states of the system. Such constraints follow from symmetry
properties that must be obeyed by wave functions of many identical parti-
cles. Here we pass directly to the implications for the microscopic states.
The discussion of the underlying wave functions is a subject for a more
advanced course. It turns out that all possible particles divide into two
types:

(1) Fermi–Dirac particles (or fermions) — no single particle state canfermion
be occupied by more than one particle. This goes by the name of
the Pauli principle. Hence the states are characterized by occupationPauli

principle numbers that can be either 0 or 1. To any set of (0,1) occupation num-
bers corresponds a single microscopic state of the system. Fermions
are found to possess half-integer spin (in units of h̄).

(2) Bose–Einstein particles (or bosons) — single particle states can beboson
occupied by any number of particles, but for any distribution of oc-
cupation numbers there is a single microscopic state of the system.
Bosons possess integer spin (in units of h̄).

Since atoms are composed of different combinations of protons, neu-
trons and electrons, all of which are fermions, there are two possibili-
ties: atoms that are composed of an odd number of fermions have half-
integral spins, and are fermions, while atoms made up of an even number
of fermions have integral spin, and are bosons. Thus, for example, the
(neutral) atoms H1, He4 and Li7 are bosons whereas H2, He3 and Li6 are
fermions.
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Exercise 2.4

(a) Why is there no need to take into account the orbital angular momen-
tum of the electrons in order to determine if an atom is a boson or a
fermion?

(b) Show that if a neutral atom contains an odd number of neutrons then
it is a fermion, and if it contains an even number of neutrons then it
is a boson.

Solution on page 516

Before proceeding let us clarify the relation between two ways of spec-
ifying microscopic states of noninteracting identical particles. Both ways
use the single particle states denoted symbolically by {k}. The first way
has been employed since Part II to describe states of distinguishable par-
ticles. Accordingly, the microscopic states are specified by the N numbers
{kj} with j = 1, . . . ,N . It leads to a partition function that is the Nth
power of the single particle partition function. This way is incompatible
with the indistiguishability of identical particles and leads to the Gibbs
paradox. The error is corrected introducing the factor 1/N ! in the parti-
tion function, as we have done in Chap. 5 of Part III.

The alternative way of specifying microscopic states uses occupation
numbers {nk}, as in the previous section. The partition sum would then
be over all sets of occupation numbers for all possible single particle states,
{k}, respecting the constraint Eq. (5.2.2). This sum can be carried out,
to reproduce the classical result for the partition function, provided one
keeps in mind that the number of N -particle states that correspond to a
given distribution of nk’s (Exercise 2.2) is

N !

n1!n2! · · ·nk! · · · .

This may be considered as an unofficial exercise for the enterprising student.

On the other hand, in quantum statistics a state with a given set of {nk}
corresponds to a single N -particle quantum state. This makes computing
the canonical partition sum for systems of particles impossible.

It is important to contrast this case with that of the analyses of the
Debye model and black body radiation in Part IV. There the degree of
excitation played exactly the role of the present occupation number. But
there were no underlying particles to those “occupation numbers.” The
reason we could perform the sum over states in the case of the phonons or
photons was that their total number was not fixed. Phonons and photons
can be created and annihilated freely and so the sum over their occupation
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numbers became simple. It is precisely for this reason that we employ the
grand canonical ensemble in the calculation of the partition function of
quantum many particle systems.

2.3 Thermodynamics of fermions and bosons

The partition function of an ideal gas of identical particles is a sum over
all the values of nk, as follows:

Z =
∑

n1,n2,...,nk...

e−βE(n1,n2,...,nk,...) . (5.2.4)

If we neglect the forces between the particles, the total energy of a state
is a sum of the single particle energies and is given by Eq. (5.2.3). Thus
we have

Z =
∑

n1,n2,...

exp[−β(n1ε1 + n2ε2 + . . .+ nkεk + . . .)] . (5.2.5)

We would have liked to write this sum as a product of independent sums
over each of the occupation numbers separately, as we did for the Einstein
solid (Sec. 2.2 of Part III). But here we are faced with a problem that
did not arise in the previous cases, namely the values of the occupation
numbers are not independent of each other since

∑
k nk = N [Eq. (5.2.2)]

is fixed. It is the total number of particles in the system. Thus

Z �=
(∑

n1

e−βε1n1
)(∑

n2

e−βε2n2
)
. . .

(∑
nk

e−βεknk
)
· · ·

Exercise 2.5

Explain why we succeeded in factorizing the partition function of the
paramagnet and the Einstein solid while here this step fails.

Solution on page 516

Since what is blocking the factorization of the canonical partition func-
tion, Eq. (5.2.5), is the constraint (5.2.2), implied by the fixed number of
particles, we turn to the grand canonical ensemble. The constraint is
removed at the expense of introducing the chemical potential µ. We cal-
culate the grand canonical partition function, in which all possible values
of N enter.

We turn to Eq. (5.1.2), where a microscopic state α is characterized
by all the occupation numbers {nk}. The set of {nk} determines, via
Eqs. (5.2.2) and (5.2.3), the number of particles as well as the energy of
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the state. Hence,

Z(T, V, µ) =∑
α

exp[β(µN −Ei)] =
∑
{nk}

exp

[
β
∞∑
k=1

nk(µ− εk)
]
. (5.2.6)

Now there is no constraint on the occupation numbers. They take on in-
dependent values, provided those are consistent with the particles’ statis-
tics. Hence it is possible to write Z as a product of “single state” partition
functions:

Z =
∏
k

∑
nk

eβ(µ−εk)nk . (5.2.7)

Exercise 2.6

Prove Eq. (5.2.7).

Solution on page 517

All that is left is to calculate the summations in the product (5.2.7)
for a given k:

Zk =
∑
nk

eβ(µ−εk)nk . (5.2.8)

Quantum statistics dictates only two options, either nk = 0,1 for a gas of
fermions or nk = 0, 1, . . . ,∞ for bosons.

In the case of fermions there are only two terms on the right hand side
of (5.2.8). Thus,

Z(F )
k =

1∑
nk=0

eβ(µ−εk)nk = 1+ eβ(µ−εk) , (5.2.9a)

while for bosons the right hand side is an infinite geometric series:

Z(B)
k =

∞∑
nk=0

eβ(µ−εk)nk = (1− eβ(µ−εk))−1 . (5.2.9b)

Note that the summation in (5.2.9b) converges only when µ is lower
than all the energy levels of the system, including the ground level. If the
ground level is ε1 = 0 the chemical potential must be negative. Conversely,
the summation in (5.2.9a) consists of only two terms, and thus there is no
such constraint on the chemical potential of a gas of fermions.

We continue by calculating the thermodynamic potential Ω=−kT lnZ
[Eq. (5.1.8)], which for fermions and bosons, respectively, reads

Ω(F ) = −kT∑
k

ln(1 + eβ(µ−εk)) , (5.2.10a)

Ω(B) = kT
∑
k

ln(1− eβ(µ−εk)) . (5.2.10b)
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Recall that the summation is over all a single particle states denoted
schematically by k.

From these expressions for Ω, and given the energy, εk, of the sin-
gle particle state k, we can proceed to calculate all the thermodynamic
properties of the system, as functions of T, V and µ.

2.4 Average occupation numbers

In the grand canonical ensemble the number of particles, N , is not fixed,
but the probability distribution of the different states is such that the
number actually fluctuates very little around an average number that
is determined by T, V and µ. This average is obtained from Eq. (5.1.7).
Substituting for Ω the expressions we obtained in Eqs. (5.2.10), we obtain,
for fermions and bosons respectively,

N (F ) = −
(
∂Ω(F )

∂µ

)
V,T

=
∑
k

1

eβ(εk−µ) + 1
, (5.2.11a)

N (B) = −
(
∂Ω(B)

∂µ

)
V,T

=
∑
k

1

eβ(εk−µ) − 1
. (5.2.11b)

Note the inversion of the sign in the exponent compared to (5.2.10).

N (F ) and N (B) are the average number of particles in a state of thermo-
dynamic equilibrium, and should have been denoted by 〈N〉. But where
the meaning is clear we drop the braces, as we have been doing all along.

Since N is a sum over all the single particle states, each term of the
sum, corresponding to a given single particle state k, is the average number
of particles in that state. For a state k with energy εk we find that there
are on average

〈n(F )
k 〉 = (eβ(εk−µ) + 1)−1 (5.2.12a)

fermions and

〈n(B)
k 〉 = (eβ(εk−µ) − 1)−1 (5.2.12b)

bosons.
Equation (5.2.12b) should look familiar. In Part III we found that the

average degree of excitation of a harmonic oscillator is given by exactly
such an expression with µ = 0 [see Eq. (3.2.9)]. The connection between
the two becomes clear if the excited states of the harmonic oscillators
are considered as particles — phonons with energy h̄ω, as explained in
Chap. 3 of Part IV. The average number of phonons with frequency ω in
the crystal is the average degree of excitation of the oscillator that was
discussed in Part III.
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➤
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β(ε−µ)

Fig. 5.2.1. The average occupation numbers of a single particle state as a function of
β(ε− µ). The index k has been omitted.

Considering more closely the these average occupation numbers, we
observe that the average occupation number for fermions is consistent

with the Pauli principle: If the variable n
(F )
k can take the value 0 or 1

only, then its (thermal) average must be less than 1. And, indeed, since
the exponential function is always positive, the denominator in (5.2.12a)

is larger than 1 and hence the average 〈n(F )
k 〉 < 1. Bosons do not satisfy

the Pauli principle, and at low T tend to accumulate at the low energy
levels. Only the thermal fluctuations stop them from all ending up in the

ground level. Equation (5.2.12b) reveals that indeed 〈n(B)
k 〉 increases with

decreasing εk and diverges for εk → µ. The implications of this divergence
will be discussed later on.

Figure 5.2.1 describes the energy dependence of the two average occu- Fermi–Dirac
distributionpation numbers. These are the Fermi–Dirac distribution and the Bose–

Einstein distribution. Plotting the average occupation numbers as a func-
tion of β(ε− µ) allows us to consider the graphs as expressing the depen- Bose–

Einstein
distribution

dence of 〈n(F )
k 〉 and 〈n(B)

k 〉 on ε, at constant T , or, alternatively, as the
dependence on the temperature (β) at fixed single particle energy.

For large values of β(ε − µ) the two graphs in Fig. 5.2.1 merge, since
the exponential dominates the denominator. This is where both distribu-
tions tend toward the classical approximation — the Maxwell–Boltzmann
distribution, for which 〈nk〉 ∼ e−βεk .

Thus, we have found that a consistent discussion of systems of iden-
tical particles, together with the fact that only two kinds of occupation
numbers are allowed, yields the Boltzmann distribution only as an approx-
imation. The fundamental distributions (5.2.12) are different from the
Boltzmann distribution and the results obtained from them are in many
cases significantly different from the results obtained using the Boltzmann
distribution.



Chapter 3

Electrical Conductivity in Metals

3.1 The Drude model

An important application of the Fermi–Dirac distribution is the clarifica-
tion of the electrical conductivity and other physical properties of metals.
The comprehensive discussion of this subject is a matter for an entire
course. We will limit ourselves to a presentation of the basic conclusions
obtained in simplified conditions.

For many years electrical conductivity was considered a mystery, and
only the discovery of the electron by J. J. Thomson in 1897 pointed to a
possible mechanism for electrical conductivity in metals: The electric cur-
rent is a current of electrons. Because the application of even the smallest
potential on a metal wire gives rise to a significant electric current, metals
must contain a huge (macroscopic) number of electrons that are moving
essentially freely. This was the starting point for the first attempt to ex-
plain the conductivity in metals, made by Drude in 1900. Macroscopic
numbers of electrons immediately bring to mind a statistical treatment,
and indeed to this day this is the accepted approach to analyzing this
problem. Since the only tools available to Drude, at the turn of the 20th
century, were the kinetic theory and the Boltzmann distribution, he ap-
plied them to the electrons in metals. To this end he asserted that the
conduction electrons in a metal behave as an ideal gas. In contemporary
terms this assertion would be based on the following assumptions:

• When many atoms of a metal create a crystalline structure, the external
electrons (valence electrons) of the atoms detach from them and move
freely in the metal. The atoms that are left behind become positive
ions. The rigid lattice of the crystalline metal is made up of these ions.
• Although the electrons are charged, the interactions between them are
negligible and they do not affect one another’s motion. This assumption
will be justified in Sec. 4.7.
• The electrons are in a state of thermodynamic equilibrium as a result
of collisions with the ions in the metal. Between collisions the electrons
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move in a straight line and at constant speed and the forces applied to
them by the ions are neglected.

Note the similarity to photons of a black body, where equilibrium is not attained by
the mutual interactions but by interactions with the walls of the container. Between
collisions the photons move as free particles.

Exercise 3.1

Calculate the number of conduction electrons per cubic centimeter of
sodium and potassium.

Solution on page 517

Based on these assumptions and applying the kinetic theory, we derive
Ohm’s law: Consider a segment of a metal wire along which there exists
a uniform electric field. The wire contains a very large number of elec-
trons that are moving about with different speeds in different directions.
See e.g. Fig. 5.3.1. The velocity of an electron between two collisions is
determined by Newton’s second law:

m
dv

dt
= −eE , (5.3.1)

i.e.

v = v0 − e

m
Et , (5.3.2)

where v0 is its velocity immediately after the last collision. t, therefore,
is the time elapsed from the last collision.

A

L

E
➤➤

➤

➤

➤

➤

➤

➤

➤

➤

Fig. 5.3.1. Conduction in a metal wire.

Note that an electric current exists only if the number of electrons
moving to the right (against the field) is different from the number of
electrons moving to the left. The relevant quantity is the average velocity,
〈v〉, of all the (free) electrons at a given moment. We have to average
Eq. (5.3.2) over all the free electrons in the wire. Each of them has
undergone its last collision at a different time and has come out of it with
a different velocity. We thus obtain

〈v〉 = −eτ
m
E , (5.3.3)

where τ is the mean free time of the electrons.
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Exercise 3.2

Justify Eq. (5.3.3).

Solution on page 517

This is a typical transport problem, with a drift velocity proportional
to the force. The mobility coefficient is τ/m, as in Part I, Sec. 3.4. The
final stage is the calculation of the electric current density, namely the
current that crosses a unit area per unit time. All the electrons with
velocity v, whose number per unit volume is n(v), contribute a factor of
−en(v)v to the current density. Hence the current density due to all the
electrons in the wire is a sum over all the velocities:

J = −e∑
v

n(v)v = −ne〈v〉 , (5.3.4)

where n is the volume density of all the electrons in the wire (calculated
in Exercise 3.1) and 〈v〉 is their average velocity. The negative sign corre-
sponds to the negative charge of the electrons, and will cancel out against
the negative sign in Eq. (5.3.3). Substituting Eq. (5.3.3) into Eq. (5.3.4)
yields the local form of Ohm’s law:Ohm’s law

J = σE , (5.3.5a)

where the electrical conductivity σ is given byelectrical
conductivity

σ =
ne2τ

m
. (5.3.5b)

The inverse of the electrical conductivity is called the electrical resistivity:
ρ = 1/σ. Note the similarity between ρ and the “friction coefficient” µ ofelectrical

resistivity Sec. 2.4 of Part I. Both are inversely proportional to the mobility and in
fact both describe the resistance to the motion of the particles due to the
many collisions they undergo during their motion.

Exercise 3.3

Show that when the electric field is uniform along the wire’s length,
Eq. (5.3.5a) is equivalent to Ohm’s law, I = V/R.

Solution on page 518

Exercise 3.4

In Part I we discussed the isothermal atmosphere, which is analogous to
the conducting wire in that a constant force acts on the particles. Explain
why a constant current of particles, proportional to the acceleration of
gravity, does not arise in the isothermal atmosphere.

Solution on page 518
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An additional success of Drude’s model was in providing an explana-
tion for the experimental law that was discovered in the middle of the
19th century by Wiedemann and Franz, relating the electrical conductiv-
ity of metals to their thermal conductivity, K̄ (for K̄ see Part I, Sec. 3.6). Wiedemann–

Franz lawAccording to the Wiedemann–Franz law the ratio of the thermal conduc-
tivity and the electrical conductivity is proportional to the temperature
with a proportionality coefficient that is approximately independent of the
material. This law applies to a large number of metals. Several examples
appear in the following table:

Table 5.3.1. Thermal conductivity, resistivity ρ = 1/σ and the proportionality constant in the
Wiedemann–Franz law. Sodium and potassium are liquids at a temperature of 373 K.

Li Be Na Mg Al K Cu Ag Sb Au

K̄(100 W/mK) 0.71 2.3 1.38 1.5 2.38 1.0 3.85 4.18 0.18 3.1
273 K ρ(10−8 Ωm) 8.55 2.8 4.2 3.9 2.45 6.1 1.56 1.51 39 2.04

K̄/σT (10−8 WΩ/K2) 2.22 2.36 2.12 2.14 2.14 2.23 2.20 2.31 2.57 2.32

K̄(100 W/mK) 0.73 1.7 — 1.5 2.30 — 3.82 4.17 0.17 3.1
373 K ρ(10−8 Ωm) 12.4 5.3 — 5.6 3.55 — 2.24 2.13 59 2.84

K̄/σT (10−8 WΩ/K2) 2.43 2.42 — 2.25 2.19 — 2.29 2.38 2.69 2.36

To obtain an explanation for this law Drude assumed that the thermal
conductivity of a metal originates principally from the gas of free electrons
which can transfer heat with greater ease than the ions which are bound to
their positions. Support for this assumption is found in the large difference
between the thermal conductivities of metals and insulators. Since the
difference between the two types lies in the density of free electrons, which
in metals is many orders of magnitude greater than in insulators, it is
natural to assume that the larger thermal conductivity is due to the same
phenomenon which gives rise to a higher electrical conductivity. Hence
we can also calculate the thermal conductivity of a metal by the kinetic
theory, as we have done in Sec. 3.6 of Part I, and use the result (1.3.51):

K̄ =
1

3
nv̄<c =

1

3
nv̄2τc , (5.3.6)

where v̄ is the thermal velocity and c is the specific heat per electron. If
we now divide (5.3.6) by (5.3.5b) we obtain

K̄

σ
=
mv̄2c

3e2
. (5.3.7)

So far all the arguments have been completely general, independent
of the form of the velocity distribution of the electrons. If we assume,
according to the Drude model, that the distribution is Boltzmannian, we
may write 3kT for mv̄2, and instead of the specific heat per electron we
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can use the ideal gas expression 3
2k. Thus

K̄

σ
=

3k2T

2e2
, (5.3.8)

and this is exactly the form of the Wiedemann–Franz law, where the
proportionality constant is expressed in terms of the fundamental physical
constants e and k.

3.2 A critique of the Drude model

In order to estimate the extent of the Drude model’s success we must
check its quantitative accord with experiment. First we confront with ex-
periment the relation (5.3.8). We calculate the proportionality coefficient
and obtain

3k2

2e2
= 1.11× 10−8 WΩ/K2 . (5.3.9)

This is about one half of the typical value in Table 5.3.1, but it can be
considered a success in light of the rough assumptions made. But what
actually casts doubt on the validity of the calculation is the problem of the
specific heat. In deriving Eq. (5.3.8) we took 3k/2 for the specific heat per
electron. In metals the number of electrons is at least equal to the number
of ions. The contribution of the electrons to the specific heat is expected
to be very significant. But the experimental specific heat of solids does
not surpass the Dulong–Petit value, which is 3R per mole and does not
approach 4.5R per mole — the sum of the contribution of the crystal and
the expected electronic contribution. In other words, free electrons do
not obey the equipartition law. This fact puts in doubt the validity of our
calculation, since it turns out that experimentally there is no support for
the validity of the equipartition law for electrons in a metal.

Another difficulty shows up upon a deeper examination of Ohm’s law
(5.3.5). Actually we cannot calculate from first principles the electrical
conductivity and compare it to experimental results, because we do not
know the mean free time, τ , which depends on the details of the micro-
scopic structure of the metal. However, we can use known values of the
resistivity ρ to calculate τ , or the mean free path <D, according to the
Drude model:

<D ≈
√
3mkT

ne2ρ
. (5.3.10)

Exercise 3.5

(a) Show that the right hand side of (5.3.10) has the dimensions of length.
(b) Prove (5.3.10).

Solution on page 518
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Table 5.3.2. Values of 8D for several metals at three different temperatures. The
valence v, the atomic mass A and the density d are required for the calculation. The
weak temperature dependence of the density is not taken into account and the densities
appearing are at room temperature.

Li Be Na Mg Al K Cu Ag Sb Au

v 1 2 1 2 3 1 1 1 5 1

A 6.941 9.012 22.99 24.305 26.982 39.098 63.55 107.87 121.75 196.97

d(gr/cm3) 0.53 1.85 0.97 1.74 2.70 0.86 8.96 10.50 6.62 19.3

77 K ρ(10−8 Ωm) 1.04 — 0.8 0.62 0.3 1.38 0.2 0.3 8 0.5

#D(Å) 44.0 — 104 39.4 38.8 115 124 120 8.03 71.3

273 K ρ(10−8 Ωm) 8.55 2.8 4.2 3.9 2.45 6.1 1.56 1.51 39 2.04

#D(Å) 10.1 5.7 37.2 11.8 8.9 49.0 29.9 44.8 0.62 33.0

373 K ρ(10−8 Ωm) 12.4 5.3 — 5.6 3.55 — 2.24 2.13 59 2.84

#D(Å) 8.1 3.6 — 9.6 7.2 — 24.4 37.1 0.48 27.7

Table 5.3.2 gives the values of the mean free paths for several metals
according to the Drude model, using Eq. (5.3.10).

Exercise 3.6

Obtain the values of <D that appear in Table 5.3.2.

Solution on page 519

From Table 5.3.2 it appears that around room temperature the values
of the mean free path are reasonable, since the interatomic separation in all
the metals listed in the table is 3–5 Å. A mean free path of this magnitude
corresponds well to the assumption that the resistivity originates from
electrons colliding with the ions of the crystal. However, the values of
<D at low temperature, 77 K, pose a problem. The interatomic distances
are almost unaffected by the decrease in temperature, but the mean free
path is 10–20 times larger. This ratio of the two quantities raises the
question: How can an electron pass without hindrance over 10–20 ions in
the crystal?

These two difficulties, the problem of the specific heat and the problem
of the mean free path, along with other difficulties which we have not
mentioned here, remained unresolved for 25 years until the appearance of
quantum theory and the discovery of the Pauli principle and the ensuing
conclusions regarding the statistical properties of electrons. We discuss
these in the coming sections.

3.3 The Sommerfeld model

The discovery of the Pauli principle and the Fermi–Dirac distribution,
given in Eq. (5.2.12a), provided Sommerfeld with the tools for explaining
the electrical conductivity as well as the thermal conductivity of metals
which were left unexplained within the framework of classical physics.
Sommerfeld replaced the Maxwell–Boltzmann distribution of the Drude
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model by a velocity distribution of electrons that obey Fermi–Dirac statis-
tics. This is similar to what Planck had done, replacing the classical dis-
tribution function with his own to explain the properties of black body
radiation.

We start by calculating the thermodynamic potential Ω for electrons
in a metal. We already have the general expression for this potential as a
sum over single particle states, i.e. Eq. (5.2.10a), and what remains is to
identify the single particle states and to calculate the sum. The single par-
ticle states are states of free electrons confined to move inside the metal.
Their energy is p2/2m. They are quantum particles, so that in principle
we should perform the summation over all the quantum states of a parti-
cle in a three-dimensional box, as in Sec. 4.4 of Part III (see Sec. 3.2 of
Part IV as well). For the temperatures of interest, in a macroscopic vol-
ume V , the summation can be replaced by an integration. Schematically
we make the replacement

∑
k

→ V

∫
d3p

h3
, (5.3.11)

where p is the de Broglie momentum. But we should keep in mind that
the electron has spin 1

2 , and thus a complete specification of its state must
also include the spin: +1

2 or −1
2 .

Since to any p, specifying a single particle state, correspond two spin
states, and since the single particle energy is independent of the spin
direction, the sum over the spins contributes an overall factor of 2. The
thermodynamic potential is, therefore,

Ω = −2kTV
∫

ln

{
1 + exp

[
β

(
µ− p2

2m

)]}
d3p

h3
, (5.3.12)

and carrying out the integration over all the directions of momentum we
obtain

Ω = −8πV kT

h3

∫ ∞
0

ln

{
1 + exp

[
β

(
µ− p2

2m

)]}
p2dp . (5.3.13)

From this expression for the thermodynamic potential we can obtain the
average number of electrons using Eq. (5.1.11):

N =
8πV

h3

∫ ∞
0

p2dp

exp
[
β
(

p2

2m − µ
)]

+ 1
. (5.3.14)

The same result could have been obtained from Eq. (5.2.10a).
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In principle, given the expression for Ω(T, V, µ), Eq. (5.3.13), the ther-
modynamic properties of the system follow by applying Eqs. (5.1.10). In
practice, things are more complicated, since usually it is the number (or
density) of the electrons and not the chemical potential that is the con-
trolled variable. Hence we must re-express the chemical potential in terms
of the number of particles (as well as the temperature and the volume),
and this is done using Eq. (5.3.14), which expresses this relation implic-
itly. The integral must be calculated as best we can. Then inverting the
resulting relation N(T, V, µ), or better still N/V = n(T, µ), one obtains
µ(T, n), which replaces the dependence on µ by a dependence on n in all
the thermodynamic quantities.

The two-dimensional analog of Eq. (5.3.14) is an integral which can be calculated
explicitly, and it is possible to find the exact relationship between µ and n. See Self-
Assessment Exercise 3.

Next we calculate the probability density function in velocity space
for the electrons. It is given by

f(v)d3v =
2m3

nh3
1

exp
[
β
(
mv2

2 − µ
)]

+ 1
d3v , (5.3.15)

where n is the number of electrons per unit volume. This function is
the Fermi–Dirac analog of the Maxwell–Boltzmann velocity distribution
function (1.1.49).

Exercise 3.7

(a) Derive (5.3.15).
(b) Is f(v) normalized? Explain.

Solution on page 520

Using the Fermi–Dirac velocity distribution function we can calculate
the average energy of an electron in the metal:

〈ε〉 =
∫
m

2
v2f(v)dτ =

4πm4

nh3

∫ ∞
0

v4dv

exp
[
β
(
mv2

2 − µ
)]

+ 1
. (5.3.16)

An alternative way of obtaining the same result is found in Self-Assessment
Exercise 2(b).

Equation (5.3.16) may also be written as an integral over all the ener-
gies after changing variables to ε = 1

2mv
2, and then defining an energy

distribution function:

fε(ε) =
4π(2m)3/2ε1/2

nh3
· 1

eβ(ε−µ) + 1
, (5.3.17a)
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so that

〈ε〉 =
∫ ∞
0

εfε(ε)dε . (5.3.17b)

Exercise 3.8

(a) Prove (5.3.17).
(b) Verify that fε(ε) is normalized.

Solution on page 474

As implied by the form in which (5.3.17a) is written, the energy dis-
tribution function of the electrons can be interpreted as a product of two
factors:

The first is called the degeneracy, or the density of states per unit
energy. It is the number of quantum states in the energy range between ε
and ε+ dε:

g(ε) =
4πV (2m)3/2ε1/2

h3
. (5.3.18)

This factor is quite general, and is independent of the statistical nature
of the particles.

The second is the average number of electrons with energy ε as in
Eq. (5.2.12a), and we write it once more, now without the braces,

nε(ε) = {exp[β(ε− µ) + 1]}−1 . (5.3.19)

The information that the electrons are fermions is contained in (5.3.19).
In order to transform the electron numbers into probabilities, 〈nε〉 must
further be divided by N .

3.4 Electrons at high and low temperatures

To proceed we calculate the various integrals approximately. In each range
of parameters we introduce approximations valid for that range. This is
how we proceeded also in calculating the internal partition function of a
diatomic gas (Secs. 1.4 and 1.7 of Part IV). We will study the behavior
of the electron gas at high temperatures and at low temperatures. Hence
we need to know how the distribution functions of the velocities or of
the energies behave in these limits. But here a difficulty arises: The
dependence on the temperature (or on β) in (5.3.19) is more complicated
than may seem. The chemical potential µ, once replaced by the density
n, becomes dependent on the temperature (as well as on n).

To clarify how the chemical potential depends on the temperature,
we use Eq. (5.3.14). Dividing both sides by V and changing variables to
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ε = p2/2m we have for the density

n =
4π(2m)3/2

h3

∫ ∞
0

ε1/2dε

eβ(ε−µ) + 1
. (5.3.20)

In the limit in which the electron density is very low, i.e. n → 0, the
value of the integral must become very small. The right hand side is a
monotonic increasing function of βµ, since the integrand is at every ε.
Hence, the integral decreases as βµ decreases, and for it to become very
small, we must have βµ → −∞. Consequently, for low electron density,
it is possible to approximate nε(ε) by the Boltzmann factor:

nε(ε) = Ce−βε, C = eβµ , (5.3.21)

where we have dropped the braces again. The same classical behavior is
obtained also in the high temperature limit. If as β → 0, βµ approaches
a finite limit, the integrand in (5.3.20) becomes independent of ε and the
integral diverges. For a given value of n this leads to a contradiction,
unless, again, βµ→ −∞ in the limit of high T . One arrives again at the
classical Boltzmann distribution.

Observe that βµ → −∞ as T →∞ is indeed the property of the chemical potential
of an ideal gas — Eq. (3.5.9).

At low temperatures the behavior is quite different. When T → 0,
or β → ∞, the factor eβ(ε−µ) depends on the energy ε in the following
manner: If ε < µ the exponent is negative, and eβ(ε−µ) → 0. If ε > µ the
exponent is positive, and eβ(ε−µ) →∞. Thus, in the limit T → 0,

nε(ε) =

{
1, ε < µ ,

0, ε > µ .
(5.3.22)

In this limit the integral in Eq. (5.3.20) is elementary, and the following
relation is obtained between the chemical potential at absolute zero, µ0,
and the density of electrons:

µ0 =
h2

2m

(
3n

8π

)2/3
≡ εF . (5.3.23)

The chemical potential at absolute zero is called the Fermi energy and is
denoted by εF . Fermi energy

Exercise 3.9

Derive (5.3.23).

Solution on page 521
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The meaning of εF is clear from Eq. (5.3.22). Even at absolute zero,
the electrons must have kinetic energy. This is the crucial difference with
respect to the Maxwell–Boltzmann distribution for which, as the tem-
perature decreases, the number of low energy particles increases and at
T = 0 all the particles are concentrated at the ground level ε = 0. This
can also be deduced from the equipartition law: 〈ε〉 ∼ kT . The reason
for the different behavior of the electrons is, of course, the Pauli princi-
ple, which forbids the accumulation of many electrons in the same state.
Hence the electrons have no alternative but to stack one above the other,
in energy, and to fill out all the allowed low energy states. The last among
them, with the highest energy, are at εF . Such a state of a gas is called adegenerate

Fermi gas degenerate Fermi gas.

Thus, we could have obtained the Fermi energy simply as an answer
to the following question: What energy will be reached by N electrons
occupying the N lowest single particle states?

Exercise 3.10

Show that the N electrons fill out in momentum space a sphere of radius
pF which satisfies

p2F
2m

= εF .

Solution on page 521

The surface of the sphere described in Exercise 3.10 is called theFermi sphere

Fermi
momentum

Fermi
velocity

Fermi sphere and pF is called the Fermi momentum. Hence we will
say that at T → 0 the electrons fill out the Fermi sphere, i.e. all the
states up to the Fermi momentum or up to the Fermi energy. The
“top” electrons, those with Fermi energy, move at the Fermi velocity,
vF = (pF /m).

In order to get an idea of the orders of magnitude involved, we present
in Table 5.3.3 the values of the Fermi energy and the Fermi velocity of
several metals.

Table 5.3.3. Values of the Fermi energy, Fermi velocity and Fermi temperature for
several metals. For the last row, the Fermi wavelength, see Exercise 3.18.

Li Be Na Mg Al K Cu Ag Sb Au

εF (eV) 4.7 14.3 3.2 7.1 11.7 2.1 7.0 5.5 10.9 5.5
vF (106 m s−1) 1.3 2.25 1.1 1.6 2.0 0.85 1.6 1.4 2.0 1.4
TF (104 K) 5.5 16.6 3.8 8.2 13.6 2.5 8.2 6.4 12.7 6.4
λF (Å)
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Exercise 3.11

Obtain some of the values of εF and vF that appear in Table 5.3.3.

Solution on page 522

Note the energy values reached by the electrons at temperature T = 0.
For electrons in a classical ideal gas to attain kinetic energies of this order,
their temperature must obey

kTF = εF . (5.3.24)

This temperature, which is different for each material, is called the Fermi Fermi
temperaturetemperature and appears in the third row of Table 5.3.3. It reaches tens

of thousands of degrees. As we shall see later on, the Fermi temperature
determines the scale for high versus low temperatures of electrons. For
T 
 TF the electrons behave as a classical gas, whereas for T 	 TF the
system becomes degenerate.

Ordinary metals melt way before reaching TF .

Exercise 3.12

Show that the average kinetic energy of an electron at T = 0 is 3
5εF .

Solution on page 523

The Fermi energy plays a double role: One as the maximal (kinetic)
energy state occupied by electrons at T = 0; the other is the value of
the chemical potential at T = 0. The relation between the two is clear.
The chemical potential describes the increase in the system’s free energy
at constant volume and temperature upon addition of a single particle.
At T = 0 the free energy is equal to the internal energy, and hence the
chemical potential is the excess internal energy due to the addition of the
particle. Since at T = 0 all the levels below εF are occupied, a particle
that is added to the system must have energy εF . This is therefore also
the value of the chemical potential at T = 0.

Exercise 3.13

(a) How much energy is added to an electron gas at T = 0 if an electron
with kinetic energy ε larger than εF is added?

(b) How much energy does an electron gas at T = 0 lose if we remove
from it an electron with kinetic energy ε less than εF ?

Solution on page 523

We have found that as T → 0 the chemical potential tends to a pos-
itive constant, εF , and that at T → ∞ it decreases to −∞. Hence it is
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reasonable to expect that µ decreases as a function of temperature. We
will verify this in the next section.

3.5 Metals at room temperature

Now that we have found that an electron gas behaves at high tempera-
tures as a classical Boltzmann gas and at low temperatures as a degenerate
Fermi gas, we will apply it to realistic systems, i.e. to metals. We first
clarify whether one of the two limits is valid for metals at room tempera-
ture. Actually, the difficulties of the Drude model, discussed in Sec. 3.2,
indicate that an electron gas does not behave as a classical gas already
at room temperature. We will thus check at what temperature does the
degenerate gas approximation become valid; in particular, up to what
temperature does µ = εF still hold approximately.

To this end we return to Eq. (5.3.20), which implicitly determines the
dependence of the chemical potential upon T and n. In terms of the Fermi
energy we rewrite Eq. (5.3.20) in the form

2

3
ε
3/2
F =

∫ ∞
0

ε1/2dε

eβ(ε−µ) + 1
(5.3.25)

(see also Exercise 3.12). We change the integration variable by ε = xεF
(x is a dimensionless variable that measures the energy in units of εF ).
Equation (5.3.25) becomes

2

3
=

∫ ∞
0

x1/2dx

exp
[
εF
kT

(
x− µ

εF

)]
+ 1

. (5.3.26)

From Eq. (5.3.23) we know that εF depends only on the density and not
on the temperature. Hence, in the low temperature limit,

kT

εF
	 1 , (5.3.27a)

or, in terms of the Fermi temperature, (5.3.24),

T 	 TF . (5.3.27b)

As long as (5.3.27b) holds, we see that for x satisfying x > µ/εF the
integrand vanishes and for x < µ/εF the exponential term vanishes and
the denominator is approximately 1. Hence at temperatures that are much
lower than the Fermi temperature it is possible to write

2

3
=

∫ µ/εF

0
x1/2dx , (5.3.28)

which leads to µ = εF . We found, therefore, that the Fermi temperature
does indeed set the scale with respect to which the temperature T is
considered low. Because the Fermi temperature of metals is well above
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Fig. 5.3.2. The Fermi–Dirac occupation function at different temperatures as a function
of the dimensionless variable ε/εF .

104 K (see Table 5.3.3), it is possible to treat an electron gas at room
temperature, or even well above it, as a degenerate Fermi gas.

To illustrate the situation, we depict in Fig. 5.3.2 the Fermi–Dirac
occupation function nε(ε) at different temperatures. The graphs take into
account the temperature dependence of µ, implicit in Eq. (5.3.20). The
figure makes it clear that at temperatures up to several hundredths of
TF the degenerate gas approximation is excellent, since the curve with
T = 0.01TF is very close to the step function.

From this figure it is also possible to learn about the temperature
dependence of the chemical potential. From Eq. (5.3.19) we see that at
ε = µ, nε =

1
2 . Thus, the chemical potential, at any temperature, can be

read from the corresponding graph as the energy for which nε =
1
2 . Since

the intersection of the graph with the line nε =
1
2 moves to the left as the

temperature increases, we conclude that the chemical potential decreases
with temperature. We already anticipated such a behavior at the end of
the preceding section.

Exercise 3.14

Calculate the temperature at which the chemical potential of an electron
gas vanishes.

Solution on page 523

3.6 Thermodynamics of the Sommerfeld model

We first apply what we have learned about the properties of the Fermi-
Dirac distribution to the calculation of the specific heat: While the Boltz-
mann distribution predicts that each electron will contribute 3

2kT to the
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specific heat of the metal, there is no experimental evidence for such a con-
tribution; actually the Debye model explains the specific heat of metals
very nicely, based on the vibrations of the ions alone. We thus calculate
the specific heat of an electron gas with the hope that its contribution at
room temperature be indeed negligible.

The specific heat, CV , of an electron gas is obtained by differentiating
E(T, V,N) with respect to T . The total energy of the gas is N〈ε〉, where
〈ε〉 is given by Eq. (5.3.17b). Actually we will also need averages of powers
of the energy higher than 1, and thus we write

〈εl〉 = 3

2ε
3/2
F

∫ ∞
0

εl+1/2dε

eβ(ε−µ) + 1
, (5.3.29)

where we have used the results of Exercise 3.12 to simplify the form of the
energy distribution function. The integral on the right hand side cannot be
calculated explicitly. But, fortunately, the temperature range of interest
will be always much smaller than the Fermi temperature, and hence we
may expand the integral in Eq. (5.3.29) in powers of the temperature.
Such an expansion is made possible by the fact that at low temperatures
the Fermi–Dirac function is very similar to a step function (see Fig. 5.3.2)
so that the main contribution to the integral is

∫ µ

0
εl+1/2dε =

2

2l + 3
µl+3/2 .

This is the lowest order term in a series and the corrections will contain
higher powers of the temperature. The first two terms will suffice for our
needs:

〈εl〉 ≈ 3

2l + 3

µl+3/2

ε
3/2
F

+

(
l +

1

2

)
π2

4
· µ

l−1/2(kT )2

ε
3/2
F

. (5.3.30)

The proof of (5.3.30) is lengthy. It is contained in the solution to the next
exercise and may be skipped altogether on first reading.

Exercise 3.15

Derive Eq. (5.3.30).

Hint: Integrate by parts, and note that the derivative of the Fermi–Dirac
function differs significantly from zero only in a narrow range around
ε = µ.

Solution on page 524
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We now proceed with the calculation of the specific heat. We use
Eq. (5.3.30) with l = 1. But the temperature derivative of E or 〈ε〉 must
be calculated at constant N and V rather than constant µ and V , and
thus we have to express µ in terms of N (as well as T and V ). We do this
using Eq. (5.3.30) with l = 0, which is also equivalent to the normalization
condition for fε resulting from (5.3.20) or (5.3.25). For l = 0, to second
order in T , we have

1 ≈ µ3/2

ε
3/2
F

+
π2

8

(kT )2

ε
3/2
F µ1/2

. (5.3.31)

This is an equation for µ in terms of the electron density contained in εF .
It does not have a simple solution, but since µ is very close to εF we can

replace µ1/2 by ε
1/2
F in the second term on the right hand side, which is

already small due to the explicit factor T 2. Hence we find an expression
for the dependence of the chemical potential on the temperature up to
the second order:

µ(T, V,N) ≈ εF
[
1− π2

12

(
kT

εF

)2]
. (5.3.32)

Note that µ decreases with T , as expected.

Using this expression, we calculate the temperature dependence of the
average energy up to second order in T . It reads

〈ε〉 = 3

5
εF

[
1 +

5π2

12

(
kT

εF

)2]
. (5.3.33)

As T → 0 the result of Exercise 3.12 is obtained. Moreover, unlike the
ideal gas, the average energy depends on the density.

Exercise 3.16

(a) Show that (5.3.32) is a solution of (5.3.31) to order T 2.
(b) Derive (5.3.33).

Solution on page 526

We see, therefore, that the energy of an electron gas increases quadrat-
ically with temperature. By differentiating (5.3.33) with respect to T we
find that the specific heat at low temperatures is linear in the temperature:

CV ≈ π2

2
Nk

T

TF
. (5.3.34)

As already mentioned, this expression is valid also at room temperature,
since the typical values of the Fermi temperature are of order 104 K.
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Hence, the contribution of the electrons to the specific heat of metals at
room temperature is not 3

2k per electron, but about 0.05k per electron,
which is the behavior we were hoping to find. It should further be noted
that the contribution of the electrons to the specific heat of metals is not
negligible at every temperature. As we saw in Part IV, the contribution
of the phonons to the specific heat at low temperatures is proportional to
T 3 [Eq. (4.3.18)], and hence at low enough temperatures the contribution
of the phonons becomes much smaller than that of the electrons, and the
specific heat will behave according to Eq. (5.3.34). Such a behavior has
in fact been observed experimentally and provided additional support for
the Sommerfeld model.

Exercise 3.17

Lithium has a Debye temperature of 400 K. Find at what temperature
the phonon and electron contributions to the specific heat are equal.

Solution on page 527

We now return to the Wiedemann–Franz law to test the implications
of the Sommerfeld model for the ratio of the thermal conductivity to the
electrical conductivity. The result obtained from the Drude model for this
ratio was reasonable and we should hope that the result of the Sommerfeld
model for the specific heat would not damage this agreement.

The thermal conductivity of the metal is given by Eq. (5.3.6). How-
ever, we have to reinterpret the quantities appearing in it. c is the spe-
cific heat per electron, whose correct value is given by Eq. (5.3.34). τ

is the mean free time, and is related to the electrical conductivity via
Eq. (5.3.5b). We are left with the average velocity v̄. This velocity can-
not be the average velocity of the Maxwell–Boltzmann distribution, which
at room temperature is of the order 105 m s−1, but a velocity of the order
of the Fermi velocity, which is 10 times larger. In the ratio of the thermal
conductivity to the electrical conductivity, given in Eq. (5.3.7), the spe-
cific heat per electron decreases by a factor of about 30, and the average
velocity increases by a factor of about 10 and its square by a factor of
100. These two changes, which more or less cancel each other out, leave
the Wiedemann–Franz law valid even though the pictures of the electrical
and thermal conductivities have changed drastically.

To perform a quantitative study of the ratio K̄/σ one should clarify
which velocity to substitute for v̄. We note that not all free electrons in
the metal can participate in the thermal conduction but only those with
energy very near the Fermi energy. Electrons with energy significantly
smaller than the Fermi energy (0.5εF , for instance) cannot change their
kinetic energy by collisions, since the states are occupied up to the Fermi
energy. The Pauli principle implies that for an electron to change its



3.6 Thermodynamics of the Sommerfeld model 483

momentum it must find an empty state to go into. Thus to change its
momentum, the deep electron must “jump,” as a result of a collision, to
the neighborhood of the Fermi energy. For the latter to occur it has to
collide with an electron with kinetic energy of at least 1.5εF , but such an
electron is very rare, as follows from Fig. 5.3.2, for example.

The “effective” electrons that can absorb and transfer energy are,
therefore, those found near the Fermi energy, at a range of energies of
width kT . Hence, the electrons that participate in the thermal conduc-
tion, which involves the transfer of kinetic energy, are with energies very
near to the Fermi energy. They all have the Fermi velocity, namely v̄ = vF .
If we now substitute this into (5.3.7) along with (5.3.34), we obtain

K̄

σ
=
mv2F
3e2

· π
2

2
· kT
TF

=
π2k2

3e2
T , (5.3.35)

and this is once more the Wiedemann–Franz law with a different
coefficient.

Note that the temperature dependence has remained the same in spite
of all the transformations. But there is a difference: In the Drude model
the linear dependence originates from the fact that the average velocity
is proportional to T 1/2; in contrast, in the Sommerfeld model the average
velocity does not depend on the temperature (for T/TF 	 1) but as a
compensation the specific heat is proportional to the temperature!

When we calculate the coefficient, we obtain

π2k2

3e2
= 2.44 × 10−8 WΩ/K2 , (5.3.36)

which agrees well with the experimental values that appear in Table 5.3.1.

Another difficulty of the Drude model was the problem of the mean
free path, which attains puzzling values of 10–20 interatomic distances.
We thus check what values are obtained in the Sommerfeld model. To this
end we write the relation between the mean free path and the resistivity
in the form (see Exercise 3.5)

< =
mv̄

ne2ρ
, (5.3.37)

where v̄ is the average velocity of the electrons.

The Drude model assumes that v̄ is of order of the thermal velocity of a
Boltzmann electron gas, which at room temperature is of order 105 m s−1.
In the Sommerfeld model we use the Fermi–Dirac distribution to obtain
v̄, leading to a velocity of the order of the Fermi velocity. Since the Fermi
velocity is of order 106 m s−1, the mean free path becomes much larger.
Already at room temperature the mean free path is 10 times larger than
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the values in the Drude model, and at lower temperatures it can reach
1000 Å.

It appears, therefore, that the problem of the mean free path, which in
the Drude model was limited to fairly low temperatures (see Table 5.3.2),
worsened in the Sommerfeld model, in which it is present already at room
temperature and above. To understand how it is possible that the elec-
trons in a metal almost do not feel the existence of the ions, we first note
that so far we have not taken into account the fact that the electrons have
wavelike properties. The de Broglie wavelength of a typical electron in the
metal, namely the wavelength of an electron with Fermi energy, called the
Fermi wavelength, λF , is about 2–10 Å. See Exercise 3.18.Fermi

wavelength
Exercise 3.18

Insert the values of λF missing from Table 5.3.3.

Solution on page 527

This value of the Fermi wavelength implies that the electrons in the
metal cannot collide with the ions as if they (the electrons) were pointlike
particles. Moreover, it seems that the fact that the wavelength is some
10 times larger than the atomic sizes, supports the intuition that the
electrons do not “see” the ions, just as waves with wavelength λ are of no
use for observing objects of a size less than λ.

At this point a consistent quantum-mechanical treatment of the dy-
namics of the electrons that are moving in a potential due to the periodic
ionic lattice of the metal is called for. Here we leave this subject. We
shall only remark that a quantum analysis of the motion of the electrons
in a periodic potential was actually carried out in the 1930’s by F. Bloch.
Surprisingly, the result of that analysis is that the electrical resistivity of
a perfectly periodic crystal is zero! Hence the origin of the electrical resis-
tivity cannot be the collisions between the electrons and the ions and the
mean free path that we calculated does not correspond to the scattering
of the electrons by the ions. It turns out, however, that other scattering
mechanisms exist: electrons are scattered by the deviations from perfect
periodicity of the crystal. Such deviations exist in any real metal in the
form of phonons (at finite temperature), missing ions, impurities of for-
eign materials and other defects. It is the scattering off such defects that
gives rise to electrical resistivity.



Chapter 4

Boson Gas

4.1 Bose–Einstein distribution

We turn to the properties of systems of bosons, whose (average) number
in a state with energy ε is given by the Bose–Einstein distribution: Bose–

Einstein
distribution〈nε(ε)〉 = {exp[β(ε− µ)]− 1}−1 . (5.4.1)

Actually we have already seen in Parts III and IV that it is possible to treat
the phonons in a crystal and the photons of a black body as bosons. Since
phonons and photons are created and annihilated freely, their chemical
potential is zero. In contrast, a gas of identical atoms with integral spin
is a system of bosons with a given number of particles, so its chemical
potential will not be zero. We discuss, therefore, a gas of N bosons in a
container of volume V at temperature T . As we saw in Chaps. 1 and 2, it is
best to use the grand canonical ensemble in which the chemical potential µ
is a controlled variable instead of the number of particles, as a technically
natural way of dealing with constraints imposed by quantum statistics.

The thermodynamic potential for a gas of bosons is given by
Eq. (5.2.10b) as a sum over single particle states and may be written as an
integral over all possible particle momenta, just as we did for the fermion
gas, Eqs. (5.3.12) and (5.3.13). If we restrict our discussion to bosons with
spin 0, we obtain the Bose–Einstein analog of Eq. (5.3.13) as

Ω =
4πV kT

h3

∫ ∞
0

ln

{
1− exp

[
β

(
µ− p2

2m

)]}
p2dp , (5.4.2)

and differentiating this with respect to µ we obtain the average number
of bosons:

N =
4πV

h3

∫ ∞
0

p2dp

exp
[
β
(

p2

2m − µ
)]
− 1

, (5.4.3)

as a function of T, V and µ. For bosons with nonzero spin J , these expres-
sions have to be multiplied by 2J + 1. As for the fermion gas, Eq. (5.4.3)

485
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is used to express µ in terms of N , or better still, in terms of the average
density n. We write the energy distribution function in the form

fε(ε) =
1

N
g(ε)nε(ε) , (5.4.4)

where nε is given now by (5.4.1) (without the braces) and g(ε) describes
the number of quantum states in the range between ε and ε+ dε:

g(ε) =
2πV (2m)3/2ε1/2

h3
= V ḡ(ε) , (5.4.5)

where ḡ is introduced to make the volume dependence explicit. Note that
between this function and the density of electronic states [Eq. (5.3.18)]
there is a factor of 2 originating in the spin. The derivation of these
expressions is the same as for fermions.

The average density takes on a form analogous to Eq. (5.3.20):

n =
N

V
=

2π(2m)3/2

h3

∫ ∞
0

ε1/2dε

eβ(ε−µ) − 1
, (5.4.6)

and just as for fermions, the Boltzmann limit is obtained at low densities
(n→ 0) or high temperatures (T →∞) and in these limits βµ→ −∞.

4.2 Chemical potential at low temperatures

We are interested in the behavior of the boson gas at low temperatures.
Since the Pauli principle does not apply to bosons, they tend to concen-
trate at the lowest energy levels and only the thermal fluctuations prevent
them from accumulating all in the ground level (see Fig. 5.2.1). At low
temperatures, where the thermal fluctuations are small, we may expect
a concentration of a macroscopic number of bosons in the ground level
ε = 0. Substituting into the Bose–Einstein distribution Eq. (5.4.1), ε = 0,
we find that at low temperatures, if a number of the order of N bosons
are in the ground level, then

N ≈ 1

e−βµ − 1
, (5.4.7)

or

µ ≈ −kT
N

. (5.4.8)

Exercise 4.1

Prove (5.4.8). What are typical values of the chemical potential at low
temperatures?

Solution on page 527



4.2 Chemical potential at low temperatures 487

At first sight such a behavior is quite reasonable, because it is con-
sistent with the tendency of the chemical potential to decrease at high
temperatures and is also consistent with the requirement that the chem-
ical potential should be negative. However, a more discerning inspection
reveals that all is not well with our understanding of the Bose–Einstein
distribution: The occupation of the the ground level, which at low temper-
atures is expected to be very large, does not appear at all in the expression
for the density of particles, Eq. (5.4.6). This equation gives the density
of particles as a sum of contributions from all energies. But the contribu-
tion of the ground level, namely the region near ε = 0, to the integral is
zero.

This difficulty leads to an apparent paradox, which is a consequence of
the relation between the density of particles and the chemical potential,
Eq. (5.4.6). The integral on the right hand side is an increasing function
of µ, since the integrand at every value of ε is an increasing function of
µ. But the integral cannot become larger than its value at µ = 0, since µ
cannot become positive. Consequently, the right hand side of Eq. (5.4.6)
has an upper bound, which is its value at µ = 0. This would imply that
the density, n, at a given temperature, of our noninteracting boson gas
cannot rise above a certain maximum value, determined by the maximum
of the right hand side. For densities above that value, there is no solution
for µ. This value is

n∗ =
2.612(2πmkT )3/2

h3
. (5.4.9)

It corresponds to a maximal number of particles, in a given volume V ,
N∗ = V n∗. Note that the maximal density decreases when T decreases.

Exercise 4.2

(a) Show that n is an increasing function of µ.
(b) Derive Eq. (5.4.9).

Solution on page 528

This conclusion is, of course, unreasonable, since it is impossible for
there to be a restriction on the number of noninteracting bosons in a given
volume. Even fermions which obey the Pauli principle do not resist the
addition of fermions; they only force the “new” fermions to occupy higher
energy levels. Supposing that the system is prepared at a density and
temperature for which there exists a solution for µ, as T is lowered the
solution disappears. Moreover, at T = 0 the equation will allow only zero
density, which is clearly absurd.

What went wrong?
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4.3 Bose–Einstein condensation

In order to clarify the reason for the inconsistency we return to basics:
The calculation of the thermodynamic potential Ω and its derivatives.
Equations (5.4.2) and (5.4.5) were obtained from (5.2.10b) by replacing
the summation over the discrete quantum states k by an integration over
a continuous momentum. But in doing so we lost the contribution of the
ground level, just because g(0) = 0.

If the temperature is not too low (or the density not too high) the
occupation of the ground level does not differ greatly from that of the
other levels. In such conditions, each of the terms in the sum (5.2.10b) or
(5.2.11b) is of order 1, while the sums are at least of order N . Hence the
error introduced in neglecting the ground level is insignificant.

But at low temperatures the chemical potential tends to zero as 1/N ,
Eq. (5.4.8), and the term corresponding to the ground level in the various
sums must be examined more closely. In the sum for Ω, Eq. (5.2.10b),
this term is

Ω0 = kT ln(1− eβµ) ≈ kT ln(1− e−a/N ) ≈ kT ln(a/N) ,

where we wrote [Eq. (5.4.8)] βµ ≈ −a/N with a of order 1. This term can
still be neglected, since lnN is negligible compared toN asN→∞. In con-
trast, at low T , the ground level term in the sum for N in Eq. (5.2.11b) is

N0 =
1

e−βµ − 1
≈ 1

ea/N − 1
≈ N

a
.

This term is of the same order of magnitude as the entire sum, despite
the fact that it originates from the (negligible) ground level term in Ω.
Neglecting it leads to the contradiction we encountered. Thus we split the
expression for Ω into two parts:

Ω = Ω0 + kTV

∫ ∞
0

ḡ(ε) ln(1− eβ(µ−ε))dε , (5.4.10)

where ḡ [Eq. (5.4.5)] has been introduced to make the extensive character
of the second term explicit.

By the same reasoning we rewrite Eq. (5.4.3), divided by N as

n = n0 +

∫ ∞
0

ḡ(ε)dε

eβ(µ−ε) − 1
, (5.4.11a)

with

n0 =
1

V

1

e−βµ − 1
. (5.4.11b)

Here the role of ḡ in the second term of (5.4.11a) is to render it of order
1 (independent of the volume), as the first term.
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As long as the density n is low compared to n∗ (or the temperature
high enough), µ is not very small, and the density of particles in the
ground level, n0, is negligible compared to the total density n. n is then
essentially due to the second term of (5.4.10), which we may designate by
ne. The addition of bosons causes an increase in the chemical potential,
which becomes less negative and at the same time the integral (i.e. ne)
tends to its maximal value n∗. When n becomes larger than n∗, there is
no more room in the excited states and the remaining bosons occupy the
ground level. n∗ is thus the density of bosons occupying the excited states
when µ = 0, when also ne = n∗. The fact that all the additional bosons
occupy the ground level is a reflection of the vanishing of the chemical
potential: The addition of a particle does not add energy to the system.

A boson gas in such a state is called a degenerate Bose gas, and the degenerate
Bose gasphenomenon of the aggregation of bosons in the ground level is called

Bose–Einstein condensation. Note the contrast with the degenerate Fermi
gas in which any additional particle piles up at the top of the distribution. Bose–

Einstein
condensation

Conversely, in a degenerate Bose gas any additional particle goes straight
to the bottom.

The same phenomenon occurs while a Bose gas is cooled: At a suffi-
ciently high temperature the overwhelming majority of bosons occupy the
excited levels and only a negligible minority occupy the ground level. A
decrease in temperature (at constant N , V ) causes the chemical potential
to adjust itself and to increase (to become less negative). Since the chem-
ical potential is bounded by zero, there appears a critical temperature Tc,
which is the temperature at which the chemical potential (first) vanishes.
In order to find this temperature we can use Eq. (5.4.9) with n∗ = n,
which yields

Tc =
h2

2πmk

(
n

2.612

)2/3
. (5.4.12)

Exercise 4.3

(a) Show that the chemical potential increases as the temperature de-
creases, namely that µ increases with β.

(b) Obtain Eq. (5.4.12).
(c) Show that the maximal density of particles occupying the excited

states can be written in the form

n∗ = n

(
T

Tc

)3/2
.

(d) Explain the relation between ne and n∗ when T < Tc and when
T > Tc.

Solution on page 529
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Any further cooling below Tc leaves the chemical potential at µ = 0.
As implied by Eq. (5.4.9), or by Exercise 4.3, the density of particles occu-
pying the excited states decreases with decreasing temperature. Because
the number of particles is constant, the difference is concentrated in the
ground level, and as the temperature decreases, the density of bosons in
the ground level n0 increases:

n0 = n− n∗ = n

[
1−

(
T

Tc

)3/2]
. (5.4.13)

Figure 5.4.1 illustrates the temperature dependence of n0 and ne. At
temperatures T < Tc Bose–Einstein condensation takes place.

0
0 1.0

1.0

➤

➤

ne (T)/n

(T/TC )

n0 (T)/n

Fig. 5.4.1. The density of bosons in the ground state n0, and the density in the excited
states ne as a function of temperature.

4.4 Superfluidity

After having found that an ideal boson gas behaves at low temperatures
very differently from a Boltzmann gas, the following question arises: In
what physical conditions does this behavior manifest itself?

The first quantity we consider is the critical temperature, Tc. In order
to obtain an estimate of Tc we calculate the critical temperature of 1022

atoms in a volume of 1 cm3. Assuming that the mass is that of a hydrogen
atom, 1.7× 10−24 gr, we obtain a critical temperature of 7 K. For heavier
atoms we obtain even lower critical temperatures.

This may seem a very disappointing result, because at such low tem-
peratures almost all substances are already either solid or liquid (at at-
mospheric pressure). The lowest freezing points are of nitrogen, which
freezes at 63 K; neon, at 25 K; and hydrogen, at 14 K. Helium (He4) is
exceptional, in that it liquefies at 4.2 K and does not freeze even at T = 0.
This has delayed the discovery of superfluidity in regular gases until very
recently.

Nevertheless, we may place some hope in liquid helium, or specifically
in He4, whose atoms are bosons (the atoms of He3 are fermions). The
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fact that liquid He4 does not freeze even at the lowest temperatures im-
plies that the interatomic forces in it are very weak. Its low density —
0.14 gr/cm3 — and its exceptionally low viscosity — 40 µP — indicate
that its properties are closer to those of a dense gas than of a liquid. At
room temperature water has a viscosity of 0.01 P, and typical gases such
as nitrogen and helium have a viscosity of 2 × 10−4 P. Since the viscosity
is proportional to T 1/2 (see Exercise 3.14 of Part I), a typical viscosity for
gases at 4 K would have been (if there existed such gases) of order 10−5 P.
The viscosity of gaseous helium in this region is indeed about 20 µP. More-
over, since the experiments of Keesom and Kapitza of the twenties and
thirties, it has been known that liquid He4 drastically changes it prop-
erties at a temperature of 2.17 K. The change is so significant that each
of the phases has been given a name of its own: He I is the name of the
liquid above 2.17 K, and He II, below 2.17 K.

The most pronounced property of He II is its ability to flow through
capillaries without any friction. The measurement of the viscosity of He II
in such flows suggests a value not in excess of 10−11 of that of He I. This is
the property of superfluidity of He II. Another of its prominent properties superfluidity
is an extraordinarily large thermal conductivity of order 104–105 W/mK.

Compare with the thermal conductivities of metals appearing in Table 5.3.1.

These two properties manifest themselves in a series of spectacular phe-
nomena, such as the fact that the liquid can “crawl” on the sides of an
empty vessel immersed in a bath of He II and fill it up (Fig. 5.4.2a) or
crawl out of it when the vessel is taken out of the bath (Fig. 5.4.2b), or
the fact that He II boils without bubbles.

(a) (b)

Fig. 5.4.2. (a) An empty vessel immersed in a bath of He II is filled up by the liquid
crawling on its sides until the heights become equal. (b) If the vessel is taken out of
the bath, the liquid crawls out of it and drips back into the bath.

All of the above led F. London in 1938 to interpret the phase tran-
sition from He I to He II as a Bose–Einstein condensation. According
to this explanation, at temperatures below the transition temperature a
macroscopic number of helium atoms (a finite density) occupy the ground
level and a macroscopic number of atoms are in the excited levels. These
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two populations behave as two different liquids — one “normal,” He I-
like, and the other superfluid — that coexist in the same vessel. London
identified the atoms of the normal liquid with the atoms occupying the ex-
cited states, whereas the superfluid atoms were identified with the atoms
occupying the ground level.

The existence of two liquids is actually confirmed experimentally, and
a good example of this is the fact that different methods of measuring
the viscosity yield different results. One way is to measure the rate of
liquid flow in a capillary. This rate is inversely proportional to the viscos-
ity. Measurements of this kind yield the extremely small viscosity values
mentioned above and have led to the term “superfluidity.” On the other
hand, measurements of the viscosity of He II by the method of the rotat-
ing cylinder, which is illustrated in Fig. 5.4.3, yield values very close to
those of He I.

Fig. 5.4.3. Viscosity measurement by the method of the rotating cylinder. The inner
cylinder rotates due to the pull of the weight and creates a velocity gradient in the
liquid filling the space between the inner and outer cylinders.

The reason for this is that the viscosity of the “normal” component of
He II prevents it from participating in the flow through capillaries, and
thus that flow is totally superfluid. In contrast, in the rotating cylinder
the whole liquid participates. The superfluid component does not con-
tribute, of course, but the macroscopic number of “normal” atoms which
participate in this flow give rise to a viscosity like that of He I.

Note that we do not explain here why Bose–Einstein condensation implies a zero
viscosity. We will return to this later.

The superfluid component is also responsible for the phenomenon of
the crawling of liquid helium. A thin layer of helium atoms, originating
from the helium vapor around the vessel, accumulates on its inner and
outer surfaces and gives rise to a continuous connection between the inside
of the vessel and the bath. Since the superfluid component flows without
viscosity there is no resistance to its atoms’ tendency to decrease their
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energy by moving along the layer from the higher liquid surface towards
the lower liquid surface, as gasoline is pumped out of the tank of a car
and into an external container with the help of a rubber pipe. In our case
the pipe is created spontaneously by the helium layer.

The huge thermal conductivity is also a reflection of the fact that He
II consists of two different components. The heating of a certain region A
with respect to a nearby region B leads to a difference in the concentration
of the atoms of the superfluid component, since their number decreases
with increasing temperature, according to Eq. (5.4.13). Hence the con-
centration of the superfluid component in region A is lowered, and as a
result a current of the superfluid component is set up from B to A, in
order to equate the concentrations. This current causes an increase in the
total density and the total pressure of the helium in region A, which in
turn gives rise to a current of the normal component from A to B. In a
steady state in which a temperature gradient is created between A and B
(TA > TB), there will appear, therefore, a current of the superfluid com-
ponent from B to A and a current of the normal component from A to B.

Since the atoms of the superfluid component are all in the ground level,
they cannot carry heat. On the other hand, the normal component carries
heat, so that the temperature difference we created is accompanied by a
flow of heat from the hot region to the cold region. This mechanism of heat
conduction is very efficient. It leads to the fact that He II boils without
bubbles: Any local temperature rise near the boiling point does not lead
to the evaporation of the region and to the appearance of a bubble, but is
instead immediately carried to the edge of the liquid, causing its surface
to evaporate.

Thus, we have described qualitatively the manner in which Bose–
Einstein condensation is related to the phenomenon of superfluidity in
He II. The description of liquid helium as an ideal boson gas must be con-
sidered no more than a rough approximation, on which we will improve
in Sec. 4.6. But before doing that we shall see that several properties of
liquid helium can nevertheless be captured within this description.

4.5 Bose–Einstein condensation in helium

The first point we discuss is the critical temperature. If the phase transi-
tion from He I to He II is indeed a Bose–Einstein condensation, then the
critical temperature given by (5.4.12) must correspond to the transition
temperature 2.17 K, at least approximately (since, after all, liquid helium
is not an ideal gas). And, indeed, substituting the appropriate quantities
for helium we obtain a critical temperature of about 3 K, which is close
enough to the transition temperature to be considered as supporting our
explanation.
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Exercise 4.4

(a) Calculate the critical temperature for Bose condensation of He4.
(b) Calculate the critical temperature for Bose condensation of diatomic

hydrogen H2 if the density of liquid hydrogen is 0.06 gr/cm3. Would
you expect superfluidity in liquid hydrogen as well?

Solution on page 530
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Fig. 5.4.4. The molar specific heat of liquid He4. CV is measured in units of the gas
constant R = 8.3 J K−1.

The next issue is the specific heat. Measurements of the specific heat
around the transition temperature 2.17 K reveal a sharp increase at this
temperature, which is evidence for a sharp change in the properties of
the liquid. We shall presently see that the specific heat of the Bose gas
increases with T for T < Tc and decrease for T > Tc. At T = Tc there
is a cusp (see Fig. 5.4.5). The quantitative difference between the ex-
perimental and theoretical curves reflects the fact that the description of
liquid helium as an ideal gas is too coarse. To obtain better agreement,
the interactions between the atoms must be taken into account, which we
will not do here.

The calculation of the specific heat, CV , of a boson gas below the crit-
ical temperature is quite simple, since the chemical potential is constant
(µ = 0) and the energy is due entirely to the atoms in the excited states:

E =
2.012V (2πm)3/2(kT )5/2

h3
. (5.4.14)

Exercise 4.5

(a) Derive Eq. (5.4.14).
(b) Show that the average energy per particle (when T < Tc) is

E

N
= 0.770kTc

(
T

Tc

)5/2
.

Solution on page 530
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Differentiating the energy with respect to T we obtain the specific heat
for T < Tc:

CV =
5.030V (2πmkT )3/2

h3
· k = 1.925Nk

(
T

Tc

)3/2
. (5.4.15)

The specific heat of a boson gas below the critical temperature thus be-
haves like T 3/2 compared to that of a degenerate fermion gas which is
linear in T . It reaches a maximum of 1.925k per particle, compared to 3

2k

for a classical gas. We further emphasize that the specific heat and the
energy do not depend on the number of particles! The reason for this is
that below Tc all the additional particles accumulate in the ground level,
and do not contribute to the energy.

We now calculate the specific heat above the critical temperature. To
this end we need the temperature dependence of the energy, but now the
chemical potential is also temperature-dependent. Hence we first obtain
the temperature dependence of the chemical potential. We do this, ap-
proximately, for temperatures near Tc and hence for values of µ near zero,
as we did for the fermion gas near T = 0. The details of the calculation
are, of course, different.

For T > Tc the occupation of the ground level is negligible, and hence
it is possible to use Eq. (5.4.6), which is an implicit relation between µ,
T and n. To calculate the integral on the right hand side of (5.4.6), as
an expansion for small values of µ, we write the difference between the
maximal density in the excited states, n∗, and n:

n∗ − n =
2π(2m)3/2

h3

∫ ∞
0

[
1

eβε − 1
− 1

eβ(ε−µ) − 1

]
ε1/2dε . (5.4.16)

Though n∗ is known, Eq. (5.4.9), the advantage of this form is that the
integral on the right hand side of (5.4.16) can now be calculated when µ
is close to zero. Its magnitude is πkT

√−µ. (See solution to Exercise 4.6.)

Recall that µ < 0.

Thus

µ ≈ − h6

32π4m3

(
n∗ − n
kT

)2
= −

{
2.612

[
1−

(
Tc
T

)3/2]}2
kT

4π
. (5.4.17)

Note that since n∗ increases with T , µ becomes more negative with in-
creasing temperature above Tc.
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Exercise 4.6

Derive Eq. (5.4.17).

Solution on page 531

Next we calculate the energy E at temperatures near Tc (but above
it). We calculate the difference between the energy E∗, for µ = 0, and the
actual E, in analogy with the calculation of n∗ − n. E∗ is given by the
right hand side of Eq. (5.4.14). We have

E∗ −E =
2πV (2m)3/2

h3

∫ ∞
0

[
1

eβε − 1
− 1

eβ(ε−µ) − 1

]
ε3/2dε , (5.4.18)

and for small µ we find that

E ≈ E∗ + 3

2
N∗µ . (5.4.19)

Since µ is negative, the energy is actually smaller than the maximal value
E∗, which it can attain at temperature T .

Exercise 4.7

Derive (5.4.19).

Solution on page 532

The temperature dependence of the energy is quite complicated even
in this approximation: The temperature dependence of E∗ is given by
(5.4.14), the temperature dependence of n∗ by (5.4.9), and the tempera-
ture dependence of µ by (5.4.17), and in all

E ≈

0.770 − 0.814

[
1−

(
Tc
T

)3/2]2

(
T

Tc

)3/2
NkT . (5.4.20)

Differentiating, we find the specific heat at temperatures near Tc:

CV ≈
[
1.629 + 0.407

(
Tc
T

)3/2
− 0.111

(
T

Tc

)3/2]
Nk . (5.4.21)

This is a function that attains a maximum value of 1.925Nk at T = Tc
and decreases with T . Far from T = Tc, Eq. (5.4.21) is no longer valid.

It is clear that when T 
 Tc the boson gas behaves like an ideal
gas, and hence CV → 3

2Nk. Figure 5.4.5 illustrates the behavior of the
specific heat as a function of temperature. The similarity to Fig. 5.4.4 is
not complete, but it is quite significant.
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Fig. 5.4.5. The specific heat of a boson gas as a function of temperature.

4.6 Viscosity of a superfluid

In describing the properties of liquid helium below 2.17 K, we mentioned
that when it behaves as an inviscid fluid, it is the superfluid component,
namely the atoms occupying the ground level ε = 0, that is responsible
for all the observed spectacular phenomena. But we did not explain why
a liquid whose atoms are all in the ground state is inviscid. The first
explanation of this was given in the 1940’s by Landau.

We start by considering the motion of a body in a liquid under the
influence of an external force. The viscosity of the liquid is expressed as
a frictional force acting on the moving body, originating in the collisions
between the body and the molecules of the liquid (see Secs. 2.4 and 3.6 of
Part I). We have seen that it is possible to give a satisfactory account of
the viscosity of gases considering their molecules as free particles colliding
from time to time with the body.

This assumption cannot underlie a quantitative analysis of the vis-
cosity of a liquid. The molecules of a liquid cannot be considered free
particles: The special properties of the liquid are due to forces between
its molecules. Hence it is not possible to describe the collisions of the body
with the molecules of the liquid as a sequence of independent collisions
with free particles. A collision with one particle necessarily involves the
nearby molecules. Another aspect of this is the fact that the total energy
of the liquid cannot be considered as a sum of single molecule energies,
since there is a significant contribution due to the intermolecular potential
energy. It is, therefore, impossible to define single particle states of the
molecules of a liquid. Hence a body moving through a liquid and losing
energy does not transfer it to single molecules but to the liquid as a whole.
The energy states of a liquid are states of the collective motion of all the
molecules.

In this sense there is a great similarity between the liquid and the
solid crystal discussed in Chap. 3 of Part IV. There we have seen that
the description of a crystal as N coupled three-dimensional harmonic
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oscillators can be replaced by a description in terms of 3N independent
one-dimensional harmonic oscillators. Each of these oscillators has a well-
defined frequency, and it describes a collective vibration of the molecules
of the crystal, namely a sound wave. This is also the case in a liquid:
A body moving through it will excite sound waves, which are collective
motions of the liquid. The energy of these excitations originates in energy
losses of the moving body. The advantage of the crystal over the liquid
is its periodic structure, which allows a precise calculation of the disper-
sion relation, namely the relation between the frequency of the sound
waves and their wave number. In a liquid it is not possible to calculate
the dispersion relation in a simple manner and it has to be found from
experiment.

Another ingredient is that liquid helium is a quantum liquid. The
sound waves excited in it should be treated as excited states of quan-
tum harmonic oscillators where each oscillator (phonon) is characterized
by its wave vector, q, and its angular frequency, ω. We thus describe
liquid helium at very low temperatures, as collective excitations above
a quantum-mechanical ground state, in which the energy of the liquid is
minimal. These excitations, which are themselves free bosons, are at ther-
modynamic equilibrium, and all the information regarding the properties
of the liquid is contained in the dispersion relation ω(q) or ε(q) of these
excitations. Thus, a body moving through liquid helium at T = 0 does
not excite single atoms from the ground level but rather excites quanta
such as phonons, for example. These excitations carry momentum and
energy.

If the body moving through the liquid excites a phonon with mo-
mentum h̄q and energy ε(q), it is at the expense of the body’s motion.
Momentum and energy conservation imply that




p = p′ + h̄q ,

p2

2M
=

p′2

2M
+ ε(q) ,

(5.4.22)

where M is the mass of the body, p is its initial momentum and p′ is
its momentum after the excitation of the phonon. It turns out, as we
proceed, that the two equations in (5.4.22) can be satisfied simultaneously
only in a narrow range of p or, equivalently, only in a narrow range of
velocities of the body. This means that in the range of velocities in which
the two equations in (5.4.22) are not satisfied, the body moving through
the liquid cannot give rise to an excitation. Hence it cannot lose energy
and will move through the liquid without friction. This is equivalent to
zero viscosity, or superfluidity. In order to see when the two equations
in (5.4.22) are satisfied simultaneously, we substitute p′ = p − h̄q in the
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second equation (5.4.22) and obtain

h̄q · v =
(h̄q)2

2M
+ ε(q) , (5.4.23)

where v(= p/M) is the initial velocity of the body.

Exercise 4.8

(a) Prove Eq. (5.4.23).
(b) Show that if the body has a macroscopic mass, then to a good ap-

proximation the condition for phonons to be excited is

h̄q · v = ε(q) .

Use 240 m s−1 for the speed of sound in liquid He.

Solution on page 533

Therefore, in order to give rise to an excitation with momentum h̄q
the velocity of the body must satisfy (5.4.23). The right hand side of this
equation is positive. Hence, the angle θ between v and q must be acute.
Furthermore, the most “efficient” state is that in which θ = 0, namely
the excited phonon, propagates in the same direction as the body. In this
case the velocity of the body attains the minimum value which still allows
the excitation of a phonon with momentum h̄q. All other angles require
a larger velocity. The minimal velocity required for the excitation of a
phonon with momentum h̄q thus depends on q as follows:

vmin =
ε(q)

h̄q
. (5.4.24)

The question now is: What is the form of ε(q)? ε(q) could describe
ordinary sound waves propagating at a speed vs. Measurements of the
propagation of sound waves in liquid helium yield vs = 237 m s−1. For
sound waves,

ε(q) = h̄ω(q) = h̄vs|q| , (5.4.25)

and if we substitute this into Eq. (5.4.24) we find that the minimal speed
required for the excitation of a phonon of any wavelength is the sound
velocity in helium, vs. Hence any body which moves through liquid helium
at T = 0 with a speed lower than vs, will move without viscosity. But
this conclusion does not fit the experimental results, which give a much
smaller critical speed.

The reason for the discrepancy is that the dispersion relation is not
simply that of phonons, Eq. (5.4.25), but is more complicated. The dis-
persion relation has been measured experimentally by scattering slow neu-
trons from liquid helium. It is depicted in Fig. 5.4.6. The measurement
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Fig. 5.4.6. The dispersion relation ε(q) for excitations in liquid helium at a temperature
of 1.12 K, measured using neutrons with wavelength 4.04 Å. The wave number is given

in units of Å
−1

and the energy in units of K. For instance, ε/k = 32 K corresponds to an

energy of 4.4×10−22 J or 2.8×10−3 eV. The minimum of ε is attained at q = 1.94 Å
−1

,
ε/k = 8.67 K. D. G. Henshaw & A. D. B. Woods, Phys. Rev. 121, 1260 (1961).

is based on the fact that slow neutrons give rise to a single excitation in
each scattering event, so that by measuring their energy and momentum
loss, Eq. (5.4.22), it is possible to deduce ε(q).

At small wave numbers (large wavelengths) the dispersion relation
looks indeed like that of ordinary sound waves, namely like (5.4.25), and is
represented by the dashed line in the figure. But at larger wave numbers
the trend changes and ε(q) begins to decrease, attains a minimum at

q = 1.94 Å
−1

, ε/k = 8.67 K, and then increases again.

In order to understand how such a dispersion relation affects the min-
imum speed required to create an excitation in the liquid, we shall use
a graphical approach: From Eq. (5.4.24) we conclude that the minimum
speed required in order to create an excitation with wave number q is
the slope of the straight line connecting the point on the dispersion curve
corresponding to the wave number q and the origin — see Fig. 5.4.7. A
different minimal speed is required for each q and, as is made clear by the
figure, due to the deviation of the dispersion relation from the straight
line, an increase of q decreases vmin.

Hence vmin has a minimal value which is obtained when the straight
line is tangent to the dispersion curve. In this state the body moves
through the liquid at the critical speed vc, and it can only produce ex-
citations corresponding to the tangent point which is (almost exactly)
the minimum point of the dispersion curve. If the body’s speed is less
than vc, the body will produce no excitations, since momentum and
energy conservation cannot be simultaneously satisfied. If the body’s
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Fig. 5.4.7. A graphical solution of Eq. (5.4.24).

speed is larger than vc there can be additional excitations at other values
of q.

To come back to the case in which it is liquid helium that flows across
a stationary body, we observe that the creation of excitations in the liquid
can only depend on the relative velocity between the liquid and the body.
Hence we obtain the same criterion for the critical speed for superfluidity,
this time for the flow velocity of liquid helium past a body at rest. Note
that our considerations apply to a body of arbitrary shape, across which
the liquid is flowing. Such a body can also be a capillary tube. In a coor-
dinate frame moving with the liquid (in which the liquid is at rest), we can
use Eqs. (5.4.22) and proceed in the same way which led to Eq. (5.4.24).
Then we return to the coordinate frame in which the liquid is flowing and
the capillary is at rest and obtain the condition for the critical speed for
superfluid flow:

vc = min

[
ε(q)

h̄q

]
. (5.4.26)

As we have seen, the graphical meaning of this condition is, finding the
slope of the line which passes through the origin and is tangent to the
dispersion curve. This condition is called Landau’s condition. Landau’s

condition
Exercise 4.9

(a) Calculate the speed of sound in He II from the graph in Fig. 5.4.6.
(b) Calculate Landau’s critical speed.

Solution on page 533

A critical speed of about 60 m s−1, as resulted in the previous exercise,
is attained in very special circumstances. Under ordinary circumstances
a much lower speed is obtained, on the order of 1 cm/s. In light of our
discussion, this implies that there exist excitations which are of a different
type, and are not included in the dispersion relation in Fig. 5.4.6. These
excitations are also created by the motion of the body through He II, and
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are the cause for the low critical speed which is observed. It turns out that
these excitations are vortices. It is possible to excite them in a controlled
manner and to study their properties in experiments performed in He II,
in a rotating vessel. But we leave the subject at this point.

Before concluding we emphasize that the phenomenon of superfluidity
can be understood only by taking into account the interatomic forces
between the helium atoms, since their existence is responsible for the
existence of the collective excitations in the liquid. In the absence of
interatomic forces the liquid would behave as a gas of free particles and
its excitations would be the excitations of the free atoms themselves. The
dispersion relation of a free particle is the usual ε(q) = (h̄q)2/2m, and
applying the Landau condition (5.4.26) to it, we would find vc = 0, since
the minimum of the function ε(q)/q for free particles satisfies

min

[
ε(q)

q

]
= min

[
h̄2q

2m

]
= 0 . (5.4.27)

Alternatively, it is possible to see that the tangent to the dispersion curve
ε = (h̄q)2/2m, which passes through the origin, is the q axis itself, whose
slope is zero. This means that, in the absence of forces between the atoms,
the creation of excitations in liquid helium at T = 0 is possible at any
flow speed, and thus the system will not behave as a superfluid.

The discussion so far has regarded superfluidity at absolute zero. As
noted already, at T > 0 it is possible to treat liquid helium as a collection
of excitations above the ground state. Hence a body moving through
liquid helium at T > 0 will lose energy in one of two ways. The first is by
creating excitations from the ground state, exactly as at T = 0, and this
can occur only above the critical speed. The second is by colliding with
existing excitations in the liquid due to the thermal fluctuations. These
latter excitations disappear at T → 0, and have thus been ignored till
now.

The thermal excitations behave as an ideal gas of phonons (with its
particular dispersion relation) which propagate against a background of
helium atoms in the ground state of the liquid. The motion of a body
through the gas, which involves collisions with the phonons, cannot occur
without energy loss. In this picture the origin of the viscosity of liquid
helium at temperatures above absolute zero are the excitations themselves,
not the helium atoms occupying the single particle excited states. The
latter lost their meaning the moment we took into account the interatomic
forces.

The two-component description of He II takes, therefore, a different
meaning. The superfluid component is composed of the atoms themselves,
whereas the normal component is composed of the phonon gas, which
propagates against the background of the ground state of the atoms.
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In superfluid flow at T > 0, such as the flow of liquid helium through a
capillary out of a container, helium atoms flow through the tube without
carrying excitations along with them. Most of the phonons remain behind
inside the container, since their viscosity does not allow them to pass
through the tube.

Exercise 4.10

Would you expect the specific heat of He4 at very low temperatures to be
proportional to T 3/2, like in a condensed boson gas?

Solution on page 534

4.7 Fermi liquid and superconductivity

Helium has two stable isotopes: He4 atoms, with spin 0, are bosons and
He3 atoms, with spin 1/2, are fermions. Liquid He4 exhibits, as we have
seen, quantum behavior on a macroscopic scale. The following question,
therefore, arises: Will He3 also exhibit at low temperatures a behavior
determined by the fermionic nature of its atoms?

First we mention that it is possible to obtain macroscopic amounts
of He3, which enable the measurement of the physical properties of He3.
It turns out that they are significantly different from those of He4. He3

liquefies at atmospheric pressure at a temperature of 3.2 K (compared to
4.2 K in He4), and like He4 it does not freeze at T = 0. The density of He3

is 0.07 gr/cm3, which is half of that of He4, and its viscosity around 1 K
is 25 µP, about half of that of He4. To a first approximation it is possible
to think of liquid He3 as an ideal fermion gas, as we did for liquid He4

in Sec. 4.5, which we treated as an ideal boson gas. The first question is:
What is the degree of degeneracy of liquid He3? In order to answer this
we calculate its Fermi temperature, and find that it is quite low — 4.5 K!

Exercise 4.11

Calculate the Fermi temperature of He3.

Solution on page 534

From the discussion of the Fermi system in Chap. 3 we know that T
must be much below TF for the gas of fermions to be degenerate. Hence,
at temperatures at which He4 behaves as a degenerate boson gas, He3

is far from being degenerate. The temperatures at which the fermionic
nature of He3 will begin to appear are expected to be at least 10 times
lower (see Fig. 5.3.2). A phenomenon characteristic of a degenerate Fermi
gas that is actually exhibited by He3 at temperatures below 0.5 K, is the
rapid increase of the mean free time between collisions with decreasing
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temperature. The reason is again the Pauli principle, which limits, when
T 	 TF , the number of atoms that can participate in collisions to those
found in an energy range kT around the Fermi level. Recall that we used
an identical argument to obtain the ratio of the thermal to the electrical
conductivity in the Sommerfeld model, in Sec. 3.6. An estimate of the
relative number of atoms in the range ∆ε = kT around the Fermi level is
obtained from the energy distribution function fε(ε) (see Solution 3.12):

fε(εF )kT ≈ kT

εF
. (5.4.28)

In a collision two such atoms must be involved, and the probability (per
unit length) for a He3 atom to collide decreases by a factor of (kT/εF )

2.
Since the probability per unit length is given by 1 over the mean free path
[see Sec. 3.2 of Part I and especially Eq. (1.3.14)], it follows that the mean
free path in a degenerate fermion gas increases by a factor of (εF /kT )

2,
compared to that calculated in Part I for Boltzmann particles. Hence,

< ≈ 1

nσ

(
εF
kT

)2
, (5.4.29a)

where n is the density of fermions (He3 atoms or electrons, etc.) and σ
is their cross section, which we took in Part I to be 4πa2. All numerical
factors of order unity have been suppressed.

The mean free time is obtained by dividing < by the typical velocity
of the particles that participate in collisions, namely the Fermi velocity:

τ ≈ 1

nσvF

(
εF
kT

)2
. (5.4.29b)

This sharp increase in the mean free path with decreasing temperature
affects the transport coefficients, such as the viscosity and the thermal
conductivity, which are proportional to < or τ . The viscosity, for instance,
will be given by Eq. (1.3.47) with v̄ = vF :

η ≈ 1

3
mvF <n . (5.4.30)

When the density n is constant, so are vF and εF , and by (5.4.29a)

η ∝ 1

T 2
. (5.4.31)
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Exercise 4.12

(a) How will the viscosity of a degenerate fermion gas vary with the mass
of the fermions?

(b) How will the viscosity vary with density, at constant T?

Solution on page 534

Such variation of the viscosity with temperature has actually been
measured experimentally and indicates that it is possible, at least ap-
proximately, to describe liquid He3 as a fermion gas, and that the approx-
imation improves as the temperature decreases.

A very long mean free path is not only characteristic of He3 but ap-
pears also in metals, as we have already mentioned. It is also consistent
with the fact that the electric forces between the conduction electrons in
metals are neglected in the Drude model. The justification for Drude’s
assumption is, of course, the good agreement with experiment of the re-
sults obtained by applying the kinetic theory to the conduction electrons.
Later on we will see that this analogy between the properties of liquid
He3 and the properties of electrical conductivity does not end here but
persists at lower temperatures and promises several surprises.

To better understand the properties of liquid He3 we have to take into
account the interatomic forces, which our description of an ideal fermion
gas has ignored. We must, therefore, clarify what are the fundamental
excitations of the liquid above its ground state, as we did for He4. These
excitations, which describe collective motions of He3 atoms, will them-
selves be fermions this time, namely they will satisfy the Pauli principle.
The properties of the liquid will depend on their dispersion relation ε(q),
which is determined by the forces between the atoms. Such a liquid has
been given the name of “Fermi liquid.” Using this description Landau Fermi liquid
succeeded in 1956 in explaining the low temperature properties of liquid
He3 down to a few mK (10−3 K).

At the beginning of the seventies it was discovered that He3 changes
its properties drastically at a temperature of about 1 mK, and that this
change is accompanied by a sharp change in the specific heat which is very
similar to the one of He4 at 2.17 K. The similarity is not only superficial —
it turned out that indeed He3 behaves below the transition temperature
of 1 mK as a superfluid! To understand how superfluidity, a phenomenon
characteristic of a boson liquid, is made possible in He3 one postulates
a mechanism that correlates the motion of pairs of He3 atoms. The pair
forms a sort of diatomic molecule which obeys Bose–Einstein statistics,
and a macroscopic number of such pairs is equivalent to a boson liquid. If
the pairs were stable, a liquid of such pairs would undergo a Bose–Einstein
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condensation at a critical temperature of a Bose gas with a mass double
that of He3, which is about 1 K. It would behave as a superfluid below
that temperature. But He3 becomes superfluid only below 1 mK.

Exercise 4.13

Calculate the critical temperature of Bose–Einstein condensation for pairs
of He3 atoms.

Solution on page 535

One concludes, therefore, that the temperature of 1 mK, below which
ordinary He3 becomes superfluid, cannot be interpreted as the critical
temperature for Bose–Einstein condensation and the analog of He I does
not exist in He3. The reason is that above this temperature there are no
bosons in the liquid. This transition temperature is the temperature below
which it becomes “advantageous” for the He3 atoms to move in pairs. The
mechanism, which is indirect and complicated, gives rise to an effective
attraction between atoms with energies near the Fermi energy, due to an
interaction of the magnetic moment of each atom with its surroundings,
and the back reaction of the surroundings on another atom. The forces
induced in this way are very weak, and the resulting pairs are loose and
extended; they can survive only at very low temperature, where almost
all thermal fluctuations are eliminated.

For the sake of completeness we mention that actually there exist two
phases of superfluid He3. They differ in their magnetic properties, and are
called He3A and He3B. He3A appears at pressures between 21 and 34 atm
for temperatures ranging between 2.2 mK and 2.8 mK. He3B appears for
the entire pressure range between 0 and 34 atm (above this pressure He3

solidifies). At zero pressure He3B appears at a temperature of 1 mK, and
increasing the pressure increases the transition temperature up to 2.5 mK.

Electrons are also fermions, hence one would expect the phenomenon
of superfluidity in He3 to have an electronic analog. The electronic analog
of the superfluidity of He3, known as superconductivity, was discovered
by Kamerlingh–Onnes in 1911.

As implied by its name, superconductivity is the ability of materi-
als to maintain a current without resistivity. In fact, current can flow
in superconducting rings for months or even years with no observable
loss. Superconductivity is much more common than superfluidity. About
30 metallic elements and a countless number of compounds and alloys are
known to be superconductors. Superconductivity appears at temperatures
below a critical temperature that depends on the specific material. Until
1987 superconductivity was considered a low temperature phenomenon.
Its discovery in 1911 was in mercury and the critical temperature mea-
sured was about 4 K. All the superconductors that followed had critical
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temperatures of similar magnitude, except for a few that reached 20 K.
In 1987 this barrier was broken, and materials with critical temperatures
above 100 K have been discovered.

A full theoretical explanation for superconductivity, which was given
in 1957 by Bardeen, Cooper and Schrieffer (BCS theory), is quite compli-
cated and deserves an entire course. A mere “shadow” of this explanation
may be brought here: Superconductivity is interpreted as the superflu-
idity of the electronic Fermi liquid. Just as in He3 below the transition
temperature, there exists in superconductors a mechanism that creates a
net attraction between pairs of electrons with energies close to the Fermi
energy. The electric charge of an electron induces a charge density in its
surroundings, and the latter exerts a force on another electron. In this
way electron pairs (Cooper pairs) are created. The electrons in such a
pair move in a correlated manner, even if the distance between them is
large and there are many other electrons between them, some of which Cooper pairs
belong to other Cooper pairs. Due to this correlated movement which
exists in the ground state, it is difficult to create excitations in the system
and hence the electron pairs can move without friction, like in a boson
superfluid. Since a Cooper pair has a charge, of 2e, the motion of the
pairs is an electric current, and their superfluid flow is an electric current
without resistivity, namely superconductivity.

Superconductors exhibit not only a spectacular electrical behavior,
they also have some extraordinary magnetic properties. A good exam-
ple is perfect diamagnetism, called the Meissner effect. Diamagnetism is dia-

magnetismthe induction of magnetization opposing the external magnetic field. It
implies a negative susceptibility:

M = χH, χ < 0 , (5.4.32)

whereM is the magnetization density [see Chap. 1 and Sec. 5.3 of Part II;
note that χ in Eq. (2.5.15) is defined in terms of the total magnetization
and not in terms of the magnetization density].

Perfect diamagnetism in a superconductor is the fact that the magne-
tization totally cancels the magnetic field inside the material, i.e.

B = 0, or M = − 1

4π
H . (5.4.33)

See Eq. (2.1.3). The magnetization is induced by permanent screening
currents on the surface of the superconductor which appear immediately
upon the application of the magnetic field. This phenomenon is limited to
low magnetic fields. Above a critical value, Hc, of the field, which depends
on the material and on the temperature, the magnetic field penetrates the
bulk material. At that point superconductivity disappears.
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Another unusual phenomenon is observed when cooling takes place
in the presence of a magnetic field, from a temperature T > Tc to a
temperature T < Tc. Above Tc the field penetrates the material, as usual.
When the external field is turned off at a temperature T < Tc, the induced
magnetization is trapped in the material and a macroscopic magnetic field
is felt outside the superconductor.

One can go on to describe many additional fascinating aspects of su-
perconductivity, but for us this is a good point to end our discussion of
superconductivity, and indeed the entire course.



Appendix

Calculation of Some Integrals

In the course of this part we needed integrals of the form

Jν =

∫ ∞
0

xν−1

ex + 1
dx , (5.A.1)

where ν is an integer or half-integer. Note that the expression 1/(ex + 1)
is the sum of the geometric series with alternating signs:

1

ex + 1
=

e−x

1 + e−x
= e−x−e−2x+e−3x−· · · =

∞∑
m=1

(−1)m+1e−mx , (5.A.2)

and substituting into (5.A.1) we obtain in a similar manner to (4.A.3)

∫ ∞
0

xν−1

ex + 1
dx =

∞∑
m=1

(−1)m+1
∫ ∞
0

xν−1e−mxdx

=

∫ ∞
0

yν−1e−ydy
∞∑

m=1

(−1)m+1

mν
. (5.A.3)

We are thus left with the calculation of the sum and the integral appearing
on the right hand side of (5.A.3), and both are quite similar to the ones
calculated in the appendix to Part IV.

We first calculate the integral for integer values of ν. It is identical to
the one we calculated in (4.A.2). Denote the integral by Γ(ν),

Γ(ν) =

∫ ∞
0

xν−1e−xdx . (5.A.4)

Integrating by parts for arbitrary ν we obtain∫ ∞
0

xν−1e−xdx = (ν − 1)

∫ ∞
0

xν−2e−xdx , (5.A.5)

or
Γ(ν) = (ν − 1)Γ(ν − 1) . (5.A.6)
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Using the fact that Γ(2) = 1 and iterating (5.A.6) we regain for integer ν
Eq. (4.A.2):

Γ(ν) = (ν − 1)! . (5.A.7)

For half-integer ν we can repeat the iteration since the recursion relation
(5.A.6) still holds. But we need the value of Γ(1/2). This integral is
calculated via the change of variable x = z2:

Γ

(
1

2

)
=

∫ ∞
0

x−1/2e−xdx = 2

∫ ∞
0

exp(−z2)dz =
√
π , (5.A.8)

where the last integral has been calculated in Part I.
Thus, for example, we have

Γ

(
3

2

)
=

1

2

√
π, Γ

(
5

2

)
=

3

4

√
π, Γ

(
7

2

)
=

15

8

√
π . (5.A.9)

We are left with the calculation of the infinite sum in (5.A.3):

S =
∞∑

m=1

(−1)m+1

mν
= 1− 1

2ν
+

1

3ν
− 1

4ν
+

1

5ν
− 1

6ν
+ · · · , (5.A.10)

which we now express in terms of the zeta function, defined for every
ν > 1 by Eq. (4.A.4). Separating the even and odd terms in the sum we
find that S = S1 − S2, where

S1 = 1+
1

3ν
+

1

5ν
+ · · · , (5.A.11a)

S2 =
1

2ν
+

1

4ν
+

1

6ν
+· · · = 1

2ν

(
1 +

1

2ν
+

1

3ν
+ · · ·

)
= 2−νζ(ν) . (5.A.11b)

S1 can also be expressed in terms of ζ(ν):

S1 = ζ(ν)− S2 = (1− 2−ν)ζ(ν) ,

and then

S = S1 − S2 = ζ(ν)− 2S2 = (1− 21−ν)ζ(ν) . (5.A.12)

We have thus found that for ν > 1∫ ∞
0

xν−1

ex + 1
dx = (1− 21−ν)Γ(ν)ζ(ν) , (5.A.13)

and for the sake of completeness we rewrite Eq. (4.A.5) in a form that
emphasizes the similarities and the differences:∫ ∞

0

xν−1

ex − 1
dx = Γ(ν)ζ(ν) . (5.A.14)

Actually both these equations are valid not only for integer and half-
integer values of ν but for any real ν satisfying ν > 1.
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Finally, we list some useful values of ζ(ν) and Γ(ν):

ν
1

2
1

3

2
2

5

2
3

7

2
4

ζ(ν) −1.460 — 2.612
π2

6
1.341 1.202 1.127

π4

90

Γ(ν)
√

π 1
1

2

√
π 1

3

4

√
π 2

15

8

√
π 6



Self-assessment exercises

Exercise 1 Solution on page 536

A classical (Boltzmann) ideal gas is enclosed in a container of volume V ,
and can exchange energy and particles with a bath of temperature T and
chemical potential µ.

(a) Prove that the average number of particles in the container 〈N〉 is
related to the thermodynamic potential Ω by

〈N〉 = −βΩ(T, V, µ) .

(b) Prove that the probability of finding exactly N particles inside the
container is given by

PN = e−〈N〉
〈N〉N
N !

,

where 〈N〉 = −βΩ. This is the Poisson distribution.

Exercise 2 Solution on page 537

(a) In Sec. 2.4 it is stated that the chemical potential of a phonon gas
is zero, and that hence it is possible to obtain the average number
of phonons in a crystal with frequency ω by substituting µ = 0 into
Eq. (5.2.11b). Explain how it is possible that µ = 0, if the free energy
of an Einstein solid explicitly depends on N [Eq. (3.2.12)] and also
the free energy in the Debye model, as given in Eq. (4.3.11), depends
on it through qD [Eq. (4.3.12a)].

(b) Show directly from the partition function that the average energy of
a gas of fermions or bosons can be written in terms of its average
occupation numbers:

E =
∑
k

〈nk〉εk .
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Exercise 3 Solution on page 538

Calculate the chemical potential of a two dimensional fermion gas as a
function of the temperature T and the density of particles per unit area
n = N/A. (Assume that each fermion has a single spin state.)

Exercise 4 Solution on page 539

(a) Calculate the pressure of a degenerate electron gas, and find the rela-
tion between the pressure and the energy density, E/V .

(b) Calculate the pressure of the electron gas in aluminum.

Exercise 5 Solution on page 540

(a) Calculate the energy density of an extremely relativistic gas of de-
generate fermions with spin 1/2. Compare to the nonrelativistic case
and determine under what conditions this description of an extremely
relativistic degenerate fermion gas is valid.

(b) Calculate the pressure of the gas in (a) and find the relation between
the pressure and the energy density.

Exercise 6 Solution on page 542

(a) Calculate the pressure of a boson gas below the condensation temper-
ature Tc, and explain why it does not depend on the volume.

(b) Explain why there is no need to correct the expression for the ther-
modynamic potential Ω of a degenerate fermion gas by adding a con-
tribution of the ground state, as required for a degenerate boson gas.

Exercise 7 Solution on page 543

Check if the phenomenon of Bose–Einstein condensation occurs in a two-
dimensional boson gas.

Exercise 8 Solution on page 544

Show that the energy density of a gas of massless fermions with spin 1/2
and zero chemical potential at temperature T , is 7/8 that of black body
radiation at the same temperature.

This may serve as an approximation to the gas of cosmic neutrino particles.

Exercise 9 Solution on page 545

Solve Self-Assessment Exercise 9 of Part IV, for extremely relativistic
temperatures: kT 
 mc2.



Solutions to exercises in the text

Solution 1.1 Exercise on page 455

We write the grand canonical partition function (5.1.2) as a sum of two
contributions: One from a state denoted by α = 0, in which there are no
particles in the system, and the other from all the other states. In the
state α = 0

N = 0, E = 0 . (i)

Hence

Z = 1+
∑
N>0

∑
i

eβ(µN−Ei(N)) . (ii)

Because all the numbers N are positive, if µ→ −∞, all the terms in the
sum must vanish since

lim
µ→−∞ e

βµN = 0 . (iii)

Thus, only the 1 remains on the right hand side of (ii) and indeed

lim
µ→−∞Z = 1 . (iv)

Solution 1.2 Exercise on page 456

The average number of particles is calculated using the grand canonical
probabilities:

N = Z−1
∞∑

N=0

∑
i

Neβ(µN−Ei) = Z−1 1
β

∂

∂µ

∑
α

eβ(µN−Ei)

=
1

β

∂

∂µ
lnZ =

∂

∂µ
(kT lnZ) ,

which is Eq. (5.1.7).
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Solution 1.3 Exercise on page 456

To complete the derivation of Eq. (5.1.9) we must compute

kT
dβ

dT

(
∂ lnZ
∂β

)
V,µ

.

Since
dβ

dT
= − 1

kT 2
,

we can write

kT
dβ

dT

(
∂ lnZ
∂β

)
V,µ

= − 1

T

1

Z
(
∂Z
∂β

)
V,µ

.

Substituting the partition function from (5.1.2) and taking the derivative
with respect to β, we can write

1

Z
(
∂Z
∂β

)
V,µ

=
1

Z
∞∑

N=0

∑
i

(µN −Ei)e
β(µN−Ei) = µ〈N〉 − 〈E〉 ,

where use has been made of the definition of the average values, Eq. (5.1.4).
This leads to Eq. (5.1.9), once the brackets have been dropped.

Solution 1.4 Exercise on page 456

Substituting the grand canonical probabilities only into the logarithms of∑
α Pα lnPα gives

S = −k∑
α

Pα[β(µN −Ei)− lnZ] .

After performing the summation, we obtain

S = −kβ(µ〈N〉 − 〈E〉) + k lnZ = −µ〈N〉 − 〈E〉
T

+ k lnZ.

Multiplying by T , dropping the average braces and rearranging, it
becomes

TS + µN −E = kT lnZ ,
and using (2.0.29), we find that

Ω = −kT lnZ .

Solution 2.1 Exercise on page 459

Since nk is the number of particles in state k, it is impossible for it to be
larger than N . In an extreme case all the particles may be in the same
state k0 and then nk0 = N , and all other nk are zero.
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Solution 2.2 Exercise on page 459

The number of states with the same set of nk is the number of ways the N
particles can be distributed in groups of nk each. It is the combinatorial
factor that expresses the fact that all N particles can be interchanged, but
interchanges of particles within each group do not produce new states.
Hence the number is

N !

n1!n2! · · · nk! · · ·
Solution 2.3 Exercise on page 459

The n1 particles in the state with energy ε1 contribute n1ε1 to the total
energy. In the same way, for each k we obtain a contribution of nkεk, and
overall we obtain (5.2.3).

Solution 2.4 Exercise on page 461

(a) The orbital angular momentum of the electrons is always an integer.
Hence the addition of the orbital angular momentum cannot change
an integer spin into a half-integer spin, and vice versa.

(b) In a neutral atom the number of electrons is equal to the number of
protons, and hence their total spin is always an integer. There are
still the neutrons. Since each has half-integer spin, an odd number of
neutrons contribute a half-integer to the total spin and an even num-
ber of the neutrons will contribute integer spin, so that the neutrons
determine the statistical behavior of the atom.

Solution 2.5 Exercise on page 462

The difference stems from the fact that the paramagnet and the Einstein
solid are not gases. Consequently each particle has a constant position
distinguishing it from its neighbors. Hence, even though the spins of
the paramagnet are identical, and so are the oscillators of the Einstein
solid, the method of characterizing the macroscopic states is not by using
occupation numbers but by specifying the quantum state of each of the
spins or the oscillators. For the paramagnet, there is one state in which
all the spins are pointing along the field and N different states in which a
single spin points opposite to the field and all the others point along the
field. In contrast, if we think of the spins as identical particles which are
indistinguishable, then we have to count all of these N possibilities as a
single quantum state.

This difference in points of view allows us to write the partition func-
tion of the paramagnet and the Einstein solid as a product of single par-
ticle partition functions, but does not allow us to do it for the partition
function of a gas of identical particles.
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Solution 2.6 Exercise on page 463

We write (5.2.6) in more detail as

∑
n1,...,nk,...

exp{β[(µ− ε1)n1 + . . .+ (µ− εk)nk + . . .]} .

Since the summation is over all possible values of the occupation numbers
in an independent manner, it is possible to replace the sum of products
by a product of sums:

Z (T, V, µ) =

(∑
n1

eβ(µ−ε1)n1
)
· . . . ·

(∑
nk

eβ(µ−εk)nk
)
· . . . ,

and this is exactly Eq. (5.2.7).

Solution 3.1 Exercise on page 467

The valence of sodium and potassium is 1, namely each of the atoms has
a single outer electron. Hence the density of conduction electrons is equal
to the number of atoms per unit volume. Sodium has an atomic weight of
23, namely 23 grams contain an Avogadro number of atoms. Its density
is 0.97g/cm3, and hence

nc(Na) =
6.02 × 1023 × 0.97

23
= 2.5 × 1022 cm−3 = 2.5 × 1028 m−3 .

The atomic weight of potassium is 39 and its density is 0.86 g/cm3, hence

nc(K) = 1.3× 1022 cm−3 = 1.3× 1028 m−3 .

Solution 3.2 Exercise on page 468

In averaging (5.3.2) we have to calculate the sum of averages:

〈v〉 = 〈v0〉 − e

m
E〈t〉 .

〈v0〉 is the average of all the electron velocities immediately after their last
collision. Because the motions of the electrons are independent of each
other, and their collisions with the ions are random, 〈v0〉 must vanish.

In the second term we must calculate the average time elapsed since
the last collision. This is exactly the mean free time τ , of Part I (Sec. 3.2).
This leads to Eq. (5.3.3).
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Solution 3.3 Exercise on page 468

When the electric field is uniform along the wire, the potential difference
between the edges of a segment of length L is V = E · L. Since the field
is uniform, Eq. (5.3.5a) implies that the current density is also uniform,
and the current crossing through the entire section, of area A, is I = JA.
By substituting into (5.3.5a) we obtain

I

A
=
σV

L
⇒ I =

(
σA

L

)
V .

We can identify the prefactor of the potential as the conductance, and
thus the resistance is

R =
L

σA
=
ρL

A
.

ρ is the resistivity of the material.

Solution 3.4 Exercise on page 468

Suppose we “mix” the isothermal atmosphere until a uniform density is
obtained and then allow it to evolve spontaneously. In this case a down-
ward current will be created, in exactly the same way that an electron
current results when an electric field is applied. In contrast to the electric
case, the molecular current cannot continue indefinitely, since the atmo-
sphere has a bottom. As a result more molecules accumulate near the
bottom, giving rise to a density gradient, which in turn creates an upward
diffusive current. This drives the system towards equilibrium where the
two currents must be equal, as we have seen in Part I (Sec. 3.5).

In contrast, the electrons arriving at the edge of the segment of the wire
can cross it and continue along the electrical circuit, eventually returning
from the other side of the wire by way of the voltage source. Hence no
density gradients appear along the wire, and no diffusive currents.

Solution 3.5 Exercise on page 470

(a) The numerator on the right hand side has the dimensions of momen-
tum:

[
√
mkT ] = [M ][v] = kg ·m s−1 = J · s m−1 .

Resistivity has the dimensions of resistance × length, or

[ρ] = Ω ·m =
V ·m
A

=
J ·m
C · A =

J ·m · s
C2

.

The whole denominator has the dimensions of

[ne2ρ] = J · s m−2 .
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Hence, the dimensions of the right hand side are

J · s m−1
J · s m−2 = m .

(b) The mean free path is given approximately by the product of the
average speed between collisions, v̄, and the mean free time. The
average speed according to the Drude model is the thermal speed
obtained from the Boltzmann distribution:

1

2
mv̄2 ≈ 3

2
kT ,

and using (5.3.5b),

< ≈ v̄τ ≈ mv̄

ne2ρ
=

√
3mkT

ne2ρ
.

Solution 3.6 Exercise on page 471

We use Eq. (5.3.10) to calculate <D. One must first calculate the density
of conduction electrons, n. Since an amount of A grams contains an
Avogadro number, N0, of atoms, the density of atoms per unit volume is
N0d/A, where the mass density d is expressed in g/cm3. Since each atom
contributes v conduction electrons,

n =
vN0d

A
,

where n is in units of cm−3. Hence, substituting in Eq. (5.3.10), we obtain

<D ≈ A
√
3mkT

vN0de2ρ
.

For Li at T = 77 K we substitute

A = 6.941×10−3 kg, m = 9.11×10−31 kg, k = 1.38×10−23 J K−1, v = 1 ,

N0 = 6.02×1023, d = 530 kg m−3, e = 1.6×10−19 C, ρ = 1.04×10−8 Ωm ,

and obtain
<D = 4.40 × 10−9 m = 44.0 Å .

Note that we have expressed all the quantities in SI units in order to refrain
from expressing the electron charge and the resistivity in electrostatic
units.

The calculation of the remaining quantities in the table is carried out
in exactly the same way, and there is no point in bringing it here. Do
check for yourself several more values.
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Solution 3.7 Exercise on page 473

(a) Reconstituting the angular factor of 4π to the integral in (5.3.14) or
calculating N directly from (5.3.12) using Eq. (5.1.11), we obtain

N =
2V

h3

∫
d3p

exp
[
β
(

p2

2m − µ
)]

+ 1
.

Since the number of electrons is an integral over all momenta, the
number of electrons with momentum in the region d3p around p is
given by the integrand [compare with the transition from Eq. (5.2.11)
to Eq. (5.2.12)]. The probability for a given electron to have momen-
tum in the region d3p around p is the number of electrons in this
region divided by the total number of electrons, N :

fp(p)d
3p =

2

nh3
d3p

exp
[
β
(

p2

2m − µ
)]

+ 1
,

where n = N/V . Substituting p = mv we obtain (5.3.15).
(b) The normalization of f(v) is not automatic. It implies a relation

between T, V,N and µ, e.g. Eq. (5.3.14). This is an expression of the
fact that the independent variables we started with were T, V, µ. Once
we have the thermodynamic potential and the average N is expressed
in terms of T, V, µ, it is possible to invert the relation and, in principle,
to express µ in terms of T, V and N . If we think of Eq. (5.3.14) as
an equation from which it is possible to obtain such a relation, then
it also serves as a normalization condition,

8π

nh3

∫ ∞
0

p2dp

exp
[
β
(

p2

2m − µ
)]

+ 1
= 1 ,

and after the variable change p = mv we find that f(v) is also nor-
malized.

Solution 3.8 Exercise on page 474

(a) The variable change ε = mv2/2 leads to dε = mvdv. Hence we obtain
from (5.3.16)

〈ε〉 = 4π

nh3

∫ ∞
0

(mv(ε))3dε

eβ(ε−µ) + 1
=

4π(2m)3/2

nh3

∫ ∞
0

ε3/2dε

eβ(ε−µ) + 1
.

To bring the integral to the standard form of an average,∫ ∞
0

εfε(ε)dε ,

we define the energy distribution function according to Eq. (5.3.17a).
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(b) In order to verify that fε(ε) is normalized we calculate its integral,
performing the variable change ε = p2/2m:

∫ ∞
0

fε(ε)dε =
4π(2m)3/2

nh3

∫ ∞
0

ε1/2dε

eβ(ε−µ) + 1

=
8π

nh3

∫ ∞
0

p2dp

exp
[
β
(

p2

2m − µ
)]

+ 1
,

and the expression we obtained is indeed equal to 1 if Eq. (5.3.14) is
satisfied.

Solution 3.9 Exercise on page 475

In the limit T → 0 the integrand in (5.3.20) becomes ε1/2 for ε < µ0 and
0 for ε > µ0. Hence, the region of integration is 0 ≤ ε < µ0, so that

n =
4π(2m)3/2

h3

∫ µ0

0
ε1/2dε =

8π(2mµ0)
3/2

3h3
,

and Eq. (5.3.23) is obtained.

Solution 3.10 Exercise on page 476

The energy of an electron is given by

ε =
1

2m
(p2x + p2y + p2z) ,

and each of the momentum components is quantized. Since the energy
depends only on the magnitude of p, the state with the lowest energy
of the N electrons will be that in which the electrons are closest to the
origin (of momentum space). In this state the electrons occupy all the
states inside a sphere (the Fermi sphere) whose radius, pF , is determined
by their number.

➤
px

➤

➤

py

pF
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A two-dimensional projection of the three-dimensional case is illus-
trated in the figure. The volume of this sphere is 4

3πp
3
F , and the energy

of the extremal states with momentum pF is p2F/2m. If we show that this
energy is equal to εF , as defined in Eq. (5.3.23), we arrive at the required
result. To this end we note that since a single state occupies a volume of
h3 in phase space, the volume of a single state in momentum space (see
figure) is h3/V . The number of states contained in the Fermi sphere is
given by the ratio of its volume and the volume of a single state. But this
is still to be multiplied by 2 in order to take into account the two spin
states corresponding to each momentum state. Hence

2
4
3πp

3
F

h3/V
= N ,

which leads to the Fermi momentum,

pF =

(
3n

8π

)1/3
h ,

and the relationship to the Fermi energy

εF =
p2F
2m

is indeed satisfied.

Solution 3.11 Exercise on page 477

To calculate εF using Eq. (5.3.23) we need the density of conduction elec-
trons n, which was calculated in Solution 3.6 to be

n =
vN0d

A
.

v is the number of conduction electrons contributed by each atom in the
metal, N0 is Avogadro’s number, d is the mass density of the metal and
A is the atomic weight. We thus obtain

εF =
h2

2m

(
3vN0d

8πA

)2/3
.

The values of v,A and d are given in Table 5.3.2 in cgs units, so we also
express h, m and n in these units. We find for Li

εF =
(6.626 × 10−27)2

2× 9.11 × 10−28

(
3× 1× 6.02 × 1023 × 0.53

8π × 6.941

)2/3

= 7.5× 10−12 erg = 4.7 eV .
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Note that in calculating the chemical potential at T = 0 we have used values of the
density at room temperature, introducing an error of 1–2%.

The Fermi velocity is

vF =

√
2εF
m

=

√
2× 7.5× 10−12

9.11 × 10−28
= 1.3× 108 cm/s = 1.3× 106 m/s .

The calculation of εF and v for the other metals is performed in the same
way. Do check out several more values for yourself.

Solution 3.12 Exercise on page 477

We can calculate 〈ε〉 directly using (5.3.17). It is possible to write fε(ε)
in a simpler form in terms of the Fermi energy:

fε(ε) =
3

2ε
3/2
F

· ε1/2

eβ(ε−µ) + 1
.

Using the approximation (5.3.22), we obtain

〈ε〉 = 3

2ε
3/2
F

∫ εF

0
ε3/2dε =

3

2ε
3/2
F

· 2
5
ε
5/2
F =

3

5
εF .

Solution 3.13 Exercise on page 477

(a) At T = 0 all the lowest energy levels are filled with electrons, and
hence there can be no electron with energy higher than εF . An elec-
tron that is artificially inserted with an energy that is too high will
thermalize and lose its excess energy, ε − εF , which will eventually
reach the heat bath that maintains the electron gas at T = 0. The
energy added to the gas will thus be equal to εF .

(b) As in (a), it is impossible at T = 0 for there to be a “hole” at energy ε
below εF . Hence, in order to maintain the temperature at T = 0, the
hole will be filled by an electron from above which will create a new
hole which will be filled by an electron above it, and so on. The net
result is the filling-out of the hole by an electron dropping down from
the Fermi level to fill the hole. The excess energy, εF − ε, eventually
reaches the heat bath. Thus, the gas loses energy εF .

Solution 3.14 Exercise on page 479

Substitute µ = 0 into (5.3.25) to obtain

2

3
ε
3/2
F =

∫ ∞
0

ε1/2

eβε + 1
dε .
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Perform the variable change x = βε to obtain

2

3
(βεF )

3/2 =

∫ ∞
0

x1/2dx

ex + 1
,

and this equation determines the required temperature in terms of εF .
The integral is read in Eq. (5.A.13) of the appendix with ν = 3/2. Its
value is (

1− 1√
2

)
Γ

(
3

2

)
ζ

(
3

2

)
= 0.678 ,

and hence

βεF = 1.01 ,

or

T = 0.989TF .

Solution 3.15 Exercise on page 480

At low temperatures the Fermi–Dirac occupation function (5.3.19) looks
like a step function, and its derivative is significantly different from zero
only in a narrow range around ε = µ (see figure). Note that we do not
assume that µ = εF .

➤

➤

µ
ε

d <nε >
d ε–

➤

➤

<nε>

µ
ε

In order to use this fact we integrate (5.3.29) by parts so that instead
of nε its derivative will appear. The integral on the right hand side of
(5.3.29) becomes

Il =
2

2l + 3

∫ ∞
0

nε

[
d

dε
εl+3/2

]
dε = − 2

2l + 3

∫ ∞
0

dnε
dε
εl+3/2dε , (i)

where we have used the fact that nε vanishes fast for ε→∞.

Clearly, the principal contribution to the integral in (i) comes from the
region around ε = µ. Hence we expand the function εl+3/2 around this
point and take the first terms. A Taylor expansion around ε = µ yields, to
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the second order,

εl+3/2 = µl+3/2 +

(
l +

3

2

)
µl+1/2(ε− µ)

+
1

2

(
l +

3

2

)(
l +

1

2

)
µl−1/2(ε− µ)2 + . . . (ii)

Substituting this into (i) we obtain to the second order

Il ≈ − 2

2l + 3
µl+3/2

∫ ∞
−∞

dnε
dε
dε− µl+1/2

∫ ∞
−∞

dnε
dε

(ε− µ)dε

−1

2

(
l +

1

2

)
µl−1/2

∫ ∞
−∞

dnε
dε

(ε− µ)2dε . (iii)

In addition to substituting (iii), for mathematical convenience we extended
the range of integration to negative values of ε, justified by the fact that
dnε/dε vanishes for ε	 µ. The next step is to perform the variable change
x = β(ε−µ) , which renders the function dnε/dε symmetric around x = 0,
and the “step” in nε is translated to x = 0. Explicitly

nε(x) =
1

ex + 1
, (iv)

dnε
dx

= − ex

(ex + 1)2
= − 1

4 cosh2(x/2)
. (v)

Equation (iii) is rewritten in the form

Il ≈ − 2

2l + 3
µl+3/2

∫ ∞
−∞

dnε
dx

dx− µl+1/2(kT )

∫ ∞
−∞

dnε
dx

xdx

−1

2

(
l +

1

2

)
µl−1/2(kT )2

∫ ∞
−∞

dnε
dx

x2dx . (vi)

We now note the following:

• The integral in the first term in (vi) is actually the difference between
the values of nε at x → ∞ and at x → −∞, which is −1. This is the
principal contribution to Il.
• The integrand in the second term is an odd function, whereas the region
of integration is symmetric with respect to the origin. Hence the second
term vanishes.
• Making use of the fact that the integrand in the third term is an even
function, and integrating by parts, yield∫ ∞

−∞
dnε
dx

x2dx = 2

∫ ∞
0

dnε
dx

x2dx

= −4
∫ ∞
0

nεxdx = −4
∫ ∞
0

x

ex + 1
dx = −π

2

3
.

The value of the last integral is found from the appendix.
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Substituting in (vi) we obtain

Il ≈ 2

2l + 3
µl+3/2 +

(
l +

1

2

)
π2

6
µl−1/2(kT )2 , (vii)

which, when substituted in (5.3.29), gives (5.3.30).

We summarize the stages of the calculation of Il:

(1) Integration by parts.
(2) The expansion of εl+1/2 around ε = µ up to the second order.
(3) Extension of the range of integration to −∞ < ε <∞.
(4) The variable change x = β(ε− µ).
(5) Calculation of the first integral in (vi).
(6) Noting that the second integral vanishes (parity).
(7) Calculation of the third integral with the help of parity properties and

the appendix.

Solution 3.16 Exercise on page 481

(a) Equation (5.3.31) implies that (µ/εF )
3/2 is somewhat smaller than 1:

(
µ

εF

)3/2
≈ 1− π2

8

(kT )2

ε
3/2
F µ1/2

.

In order to obtain the first correction in the temperature we substitute
µ = εF on the right hand side. Any correction to µ in the denominator
will produce terms of higher order than T 2. Inverting the power in
the above equation and expanding according to (1− x)p � 1− px, we
have

µ

εF
≈
[
1− π

2

8

(
kT

εF

)2]2/3
≈ 1− π2

12

(
kT

εF

)2
.

This leads to Eq. (5.3.32).
(b) Substituting n = 1 in (5.3.30) we obtain

〈ε〉 ≈ 3

5

µ5/2

ε
3/2
F

+
3π2

8

µ1/2(kT )2

ε
3/2
F

.

In order to obtain the T 2 correction we insert Eq. (5.3.32) for µ. In
the second term on the right hand side it suffices to substitute µ = εF ,
since any correction to µ will produce terms of order higher than T 2.
In the first term we must include in µ5/2 also the term with T 2 and
then expand in T , i.e.

µ5/2 ≈ ε5/2F

[
1− 5π2

24

(
kT

εF

)2]
.
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Overall we obtain

〈ε〉 ≈ 3

5
εF

[
1− 5π2

24

(
kT

εF

)2]
+

3π2

8

(kT )2

εF
=

3

5
εF +

π2

4

(kT )2

εF
,

which is Eq. (5.3.33).

Solution 3.17 Exercise on page 482

The phonon contribution to the specific heat is given by (4.3.18) as

Cph = Nk · 12π
4

5

(
T

ΘD

)3
,

while that of the electrons is

Cel = Nk · π
2

2

T

TF
.

Equating the two contributions we obtain

T =

√
5

24π2
Θ3
D

TF
.

The Fermi temperature of lithium is 5.5 × 104K (Table 5.3.3), and the
equality is obtained at a temperature of 5 K.

Solution 3.18 Exercise on page 484

The Fermi wavelength is the de Broglie wavelength corresponding to an
electron with Fermi energy:

λF =
h

pF
=

h√
2mεF

.

We first calculate λF for εF = 1eV:

λF (1 eV) =
6.626 × 10−34√

2× 9.11 × 10−31 × 1.6× 10−19
= 12.27 Å ,

and then, if εF is in units of eV, λF is obtained in Å, by

λF =
12.27√
εF

.

Thus, for example for Li, we obtain λF = 5.66 Å. Do calculate the other
values yourself and fill out the table.

Solution 4.1 Exercise on page 486

From (5.4.7) we obtain

e−βµ − 1 ≈ 1

N
,
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or

βµ ≈ − ln

(
1 +

1

N

)
,

and since N is macroscopic, we can expand the right hand side and obtain

βµ ≈ − 1

N
,

and this is Eq. (5.4.8).

Substituting T = 1 K,N = 1022 yields

µ ≈ −1.4× 10−45 J = −8.6× 10−27 eV .

Solution 4.2 Exercise on page 487

(a) To show that n increases with µ we calculate the derivative from
(5.4.6):

∂n

∂µ
=

2π(2m)3/2β

h3

∫ ∞
0

eβ(ε−µ) · ε1/2dε
[eβ(ε−µ) − 1]2

.

The integrand on the right hand side is everywhere positive, and hence

∂n

∂µ
> 0 .

The maximum of n at µ = 0 is attained at the edge of the region of
allowed values of µ. We further remark that the fact that n increases
with µ is general, and is a manifestation of the fact that µ increases
with n at constant T , expressing the fact that particles tend to flow
from a high density region to a low density region. See, for example,
Part III, Sec. 1.5.

(b) Substituting µ = 0 into (5.4.6) we obtain

n∗ =
2π(2m)3/2

h3

∫ ∞
0

ε1/2dε

eβε − 1
=

2π(2mkT )3/2

h3

∫ ∞
0

x1/2dx

ex − 1
,

where x = βε. The integral can be calculated using Eq. (5.A.14) of
the appendix, to give 1.306

√
π. From here

n∗ =
2.612(2πmkT )3/2

h3
,

which is the result we sought.
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Solution 4.3 Exercise on page 489

(a) To obtain the dependence of µ on β we write Eq. (5.4.6) with x = βε:

n =
2π

h3

(
2m

β

)3/2 ∫ ∞
0

x1/2dx

ex−βµ − 1
, (i)

or
nh3

2π

(
β

2m

)3/2
=

∫ ∞
0

x1/2dx

ex−βµ − 1
. (ii)

When n is constant, the left hand side increases with β and so the
integral on the right hand side must also increase with β. The right
hand side is a monotonic increasing function of βµ, since the integrand
is increasing at every point. Hence, βµ must become less negative as β
increases. Since β itself increases, µ must increase with β and become
less negative.

(b) Substituting µ = 0 into Eq. (i) we obtain the same integral as in
calculating n∗ in Exercise 4.2, and thus

n =
2.612(2πmkT )3/2

h3
, (iii)

and from here Eq. (5.4.12) is immediately obtained.
Note the physical distinction between the two cases. In the previous

exercise the density changed as a result of a change in the chemical
potential. Here the density is constant, and it is the change in tem-
perature that causes the change in the chemical potential.

(c) Using Eq. (5.4.12) it is possible to express n in terms of Tc:

n =
2.612(2πmkTc)

3/2

h3
, (iv)

and from Eq. (5.4.9)

n∗ =
2.612V (2πmkT )3/2

h3
. (v)

By dividing the two we obtain

n∗
n

=

(
T

Tc

)3/2
. (vi)

(d) ne is the density of bosons occupying the excited states, and cannot
be larger than the maximum n∗. When T < Tc, n∗ < n and therefore
ne = n∗ and all other (n−n∗) bosons condensate in the ground state.
When T > Tc, n∗ > n and only a tiny fraction of the bosons occupy
the ground state and thus ne = n.
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Solution 4.4 Exercise on page 494

(a) In order to calculate Tc for helium we have to find its atomic density.
This can be obtained from its mass density, d, which is 0.14 g/cm3,
and the atomic mass, which is four atomic mass units. Hence

Tc =
h2

2πmk

(
d

2.612m

)2/3
=

h2

2πkm5/3

(
d

2.612

)2/3

=
(6.626 × 10−27)2

2π × 1.38 × 10−16 × (4× 1.66 × 10−24)5/3

(
0.14

2.612

)2/3
= 3.1 K .

(b) Instead of substituting all the numerical values again, we note that
the mass of a hydrogen molecule is half that of a helium atom and
the mass density of hydrogen is 3/7 that of helium. Hence, to obtain
the critical temperature of liquid hydrogen we have to multiply the
critical temperature of He4 by 25/3 × (3/7)2/3, to obtain 5.6 K.
Since hydrogen liquefies around 20 K and freezes at 14 K, this tem-

perature range is too far from the value of 5.6 K, and we do not expect
superfluidity in liquid hydrogen.

Solution 4.5 Exercise on page 494

(a) The total energy of a boson gas can be calculated using the energy
distribution function, (5.4.4). We write

E = N〈ε〉 = N

∫ ∞
0

εf(ε)dε =
2πV (2m)3/2

h3

∫ ∞
0

ε3/2dε

eβ(ε−µ) − 1
.

Below the critical temperature µ = 0, and with x = βε, we obtain

E =
2πV (2m)3/2(kT )5/2

h3

∫ ∞
0

x3/2dx

ex − 1
.

The integral on the right hand side is calculated using the appendix
[Eq. (5.A.14)], and its value is

Γ

(
5

2

)
ζ

(
5

2

)
= 1.006

√
π .

Substituting, we obtain

E =
2.012V (2πm)3/2(kT )5/2

h3
.
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(b) First we calculate the average energy per particle in the excited levels
(ε > 0) by dividing Eq. (5.4.14) by Ne = N∗ = V n∗ [with n∗ given by
Eq. (5.4.9)]:

E

N∗
= 0.770kT .

Next, we express the relation between the number of excited parti-
cles and the total number of particles using Solution 4.3(c) for the
corresponding densities, to obtain

E = 0.770N

(
T

Tc

)3/2
kT ,

which leads directly to the average energy per particle, E/N .

Solution 4.6 Exercise on page 496

Writing the integrand in Eq. (5.4.16) as one fraction we obtain

n∗ − n =
2π(2m)3/2(e−βµ − 1)

h3

∫ ∞
0

eβεε1/2dε

(eβε − 1)(eβ(ε−µ) − 1)
.

Since µ is small, the major contribution to the integral comes from regions
of small ε. We expand the exponentials in the integrand to linear order,
and obtain

n∗ − n ≈ −µkT · 2π(2m)3/2

h3

∫ ∞
0

dε

ε1/2(ε− µ) .

Substituting ε = u2,

∫ ∞
0

dε

ε1/2(ε− µ) = 2

∫ ∞
0

du

u2 − µ =
2√−µ tan−1

(
u√−µ
)∣∣∣∣∞

0

=
π√−µ .

Hence

n∗ − n =
2π2kT (2m)3/2

√−µ
h3

.

Solving for µ, the middle expression in Eq. (5.4.17) is obtained.

In order to express the temperature dependence in terms of Tc, to
obtain the rightmost expression of Eq. (5.4.17), we write

n∗ = n

(
T

Tc

)3/2
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(see Exercise 4.3). Hence

µ ≈ − h6

32π4m3

(
n

kT

)2 [( T
Tc

)3/2
− 1

]2
.

We note that [see (5.4.12)]

h6n2

8π3m3
= 2.6122(kTc)

3 ,

and hence we can write

µ ≈ −(kTc)
3

4π
·
(
2.612

kT

)2 [( T
Tc

)3/2
− 1

]2

= −kT
4π

[
2.612

(
Tc
T

)3/2]2 [( T
Tc

)3/2
− 1

]2
,

which leads to the the rightmost expression in (5.4.17).

Solution 4.7 Exercise on page 496

From Eq. (5.4.18) we obtain

E∗ −E =
2πV (2m)3/2(e−βµ − 1)

h3

∫ ∞
0

eβεε3/2dε

(eβε − 1)(eβ(ε−µ) − 1)
.

Since µ is small we expand the exponential in front of the integral. But
we cannot expand the factors in the denominator of the integrand, as was
done in the solution of the previous exercise, since the integral obtained
in this way does not converge. To calculate the integral we use the fact
that it converges for µ = 0. After the variable change x = βε we obtain

E∗ −E ≈ −µ2πV (2mkT )3/2

h3

∫ ∞
0

exx3/2dx

(ex − 1)2
.

Denoting the integral by I and integrating by parts, we obtain

I = −
∫ ∞
0

x3/2
d

dx

[
1

ex − 1

]
dx =

3

2

∫ ∞
0

x1/2dx

ex − 1
=

3

2
· 1.306√π ,

where the last integral was calculated in Solution 4.2 using (5.A.14).
We arrive at

E∗ −E ≈ −3

2
µ ·
[
2.612V (2πmkT )3/2

h3

]
,

where the expression in the square brackets is N∗(= V n∗) [Eq. (5.4.9)].
From here Eq. (5.4.19) is immediately obtained.
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Solution 4.8 Exercise on page 499

(a) Substituting p′ = p− h̄q into the energy equation we obtain

p2

2M
=
p2 − 2h̄q · p+ (h̄q)2

2M
+ ε(q) .

The initial kinetic energy term drops out of both sides. Writing p =
Mv, we obtain

0 = −h̄q · v +
(h̄q)2

2M
+ ε(q) ,

which leads to Eq. (5.4.23).
(b) q is the wave number of a phonon in liquid helium. It can be at most

2π/a, where a is the interatomic distance, which is of the order of 1 Å.

Hence, q < 6Å
−1

. Next we show that indeed

(h̄q)2

2M
	 ε(q) .

We substitute M ∼ 1 g, to find that

(h̄q)2

2M
≈ 10−67erg ∼ 10−55 eV .

This energy is smaller by many orders of magnitude than typical
phonon energies, which are

ε ≈ h̄vsq ∼ 10−14 erg ∼ 10−2 eV ,

where vs, the speed of sound in liquid helium, is about 240 m s−1.
Hence, for a macroscopic body, even a thousand times lighter,

h̄q · v = ε(q) .

Solution 4.9 Exercise on page 501

(a) Measuring the slope near the origin we obtain

∆q = 0.6 Å
−1
,

∆ε

k
= 10.77 K ,

and since the slope of the graph of ε versus q is h̄vs,

h̄vs =
∆ε

∆q
⇒ vs =

∆ε

h̄∆q
=

10.77 × 1.38× 10−23

1.05 × 10−34 × 0.6× 1010
= 236 m s−1 ,

and this value is very close to the speed of sound in liquid helium.
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(b) The critical speed is obtained from the solution of Eq. (5.4.26), which
is equivalent to the solution of (5.4.24) for the value at the minimum
point of the dispersion curve:

vc =
8.67× 1.38 × 10−23

1.05 × 10−34 × 1.94× 1010
= 59 m s−1 .

Solution 4.10 Exercise on page 503

The description of He II as a boson gas below its condensation temper-
ature is not very accurate. In a description that takes into account the
interatomic forces, He II behaves as a phonon gas. As we have seen in
Part IV, the specific heat of a phonon gas at low temperatures is propor-
tional to T 3 and not to T 3/2. Thus we expect the specific heat of He4 at
low temperatures to behave this way. And indeed experiments show that
this is the case below a temperature of 0.6 K.

Solution 4.11 Exercise on page 503

Substituting the mass density of liquid He3, d, and its atomic mass,
Eqs. (5.3.23) and (5.3.24) give

TF =
h2

2mk

(
3n

8π

)2/3
=

h2

2m5/3k

(
3d

8π

)2/3
= 4.5 K .

Solution 4.12 Exercise on page 505

Substituting (5.4.29a) into (5.4.30), we obtain

η ≈ mvF
3σ

(
εF
kT

)2
,

and using the expression for the Fermi energy, Eq. (5.3.23), we have

η ≈ h5

12σm2(kT )2

(
3n

8π

)5/3
.

Namely,

(a) η ∝ 1/m2;
(b) At constant T , η ∝ n5/3.

Note the significant difference between this behavior and the behavior of
the viscosity of a classical gas; see Exercise 3.14 of Part I.
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Solution 4.13 Exercise on page 506

Since the bosons in this case are pairs of He3 atoms, we substitute into
Eq. (5.4.12) the mass of two He3 atoms, which we shall denote by 2m,
and for the density, one half that of ordinary He3. We thus obtain

Tc =
h2

25/3 · 2πmk
(

n

2.612

)2/3
=

h2

(2m)5/32πk

(
d

2.612

)2/3
,

where d is the mass density of liquid He3 andm is the mass of a He3 atom.
Substituting the numerical values we obtain

Tc = 0.98 K .
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Solution 1 Exercise on page 512

(a) The grand canonical partition function given in Eq. (5.1.3) can be
written using the general form of the canonical partition function of
an ideal gas (with the Gibbs correction), i.e. Eq. (3.5.3):

Z =
∞∑

N=0

eβµN
zN

N !
. (i)

This equation can also be written in the form

Z =
∞∑

N=0

(zeβµ)N

N !
= exp[z exp(βµ)] . (ii)

The thermodynamic potential is obtained from (5.1.8):

Ω = −kT lnZ = −kTzeβµ , (iii)

and the average number of particles is obtained from (5.1.10):

〈N〉 = −∂Ω
∂µ

= zeβµ = − Ω

kT
, (iv)

and this is the required relation.
(b) The probability for there to be exactly N particles in the container can

be obtained from an inspection of (5.1.3), since the partition function
is the sum of all the (unnormalized) probabilities, or from (5.1.1), and
a summation over all the microscopic states with a constant number
of particles, N . In both ways we obtain

PN = Z−1eβ(µN−F ) = Z−1eβµNZ(T, V,N) . (v)

If we write 

Z = e−βΩ ,

Z =
zN

N !
,

(vi)

536



Solutions to self-assessment exercises 537

we obtain from (v)

PN =
eβΩ(zeβµ)N

N !
, (vi)

and with the help of (iv) we obtain the required result.

Solution 2 Exercise on page 512

(a) Indeed, the free energy depends on N . However, N is not the number
of phonons in the crystal but the number of molecules in it as well as
the number of its different modes of vibration. When we describe the
vibrations of the crystal as a gas of phonons, the number of phonons
is arbitrary and is not subject to any restriction. Hence we can calcu-
late the free energy from the canonical partition function, Eq. (5.2.5),
without the constraint (5.2.2):

Z =


 ∞∑

n1=0

e−βε1n1

 · . . . ·


 ∞∑

nk=0

e−βεknk

 · . . . (i)

Each occupation number nk is the number of phonons with that k and
it varies between zero and infinity, since phonons are bosons. The free
energy is, therefore, the sum over all the vibration modes {k}, exactly
as in calculating Ω:

F = −kT lnZ = kT
∑
k

ln(1− e−βεk) . (ii)

This sum cannot depend on the number of phonons, which we will
here denote by NP , but it does depend on the number of molecules in
the crystal, N . Hence the chemical potential of the phonon gas is

µP =
∂F

∂NP
= 0 . (iii)

(b) In order to calculate the energy from the grand canonical partition
function, it is not enough to differentiate lnZ with respect to β as we
did in the canonical case, since

∂ lnZ
∂β

= µN −E . (iv)

But, if we also express N in terms of the partition function, we obtain
our goal. We do this using Eq. (5.1.7), to obtain

E = µN − ∂ lnZ
∂β

=
µ

β

∂ lnZ
∂µ

− ∂ lnZ
∂β

. (v)
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We now use Ω, for a boson gas:

lnZ(B) = −βΩ(B) = −∑
k

ln(1− e−β(µ−εk)) , (vi)

and substituting this into (v) we obtain

E =
µ

β

∑
k

βeβ(µ−εk)

1− eβ(µ−εk) −
∑
k

(µ− εk)eβ(µ−εk)
1− eβ(µ−εk)

=
∑
k

εke
β(µ−εk)

1− e−β(µ−εk) =
∑
k

εk

eβ(εk−µ) − 1
, (vii)

which is exactly the required expression for bosons. For a fermion gas
we use

lnZ(F ) = −βΩ(F ) =
∑
k

ln(1 + eβ(µ−εk)) , (viii)

and substituting into (v) we obtain this time

E =
µ

β

∑
k

βeβ(µ−εk)

1 + eβ(µ−εk)
−∑

k

(µ− εk)eβ(µ−εk)
1 + eβ(µ−εk)

=
∑
k

εke
β(µ−εk)

1 + eβ(µ−εk)
=
∑
k

εk

eβ(εk−µ) + 1
, (ix)

which is the required result.

Solution 3 Exercise on page 513

First we calculate the thermodynamic potential Ω from Eq. (5.2.9a), as a
sum over single particle states, which are eigenstates of momentum. For
three-dimensional motion d3p includes V d3p/h3 states and for the volume
element of a two-dimensional motion d2p includes Ad2p/h2 states. We
thus obtain the two-dimensional analog of Eq. (5.3.12):

Ω = −kTA
∫

ln

{
1 + exp

[
β

(
µ− p2

2m

)]}
d2p

h2
. (i)

Integrating over all directions in momentum space using polar coordinates
we obtain

Ω = −2πAkT

h2

∫ ∞
0

ln

{
1 + exp

[
β

(
µ− p2

2m

)]}
pdp . (ii)

From (5.1.10)

N = −∂Ω
∂µ

=
2πA

h2

∫ ∞
0

pdp

exp
[
β
(

p2

2m − µ
)]

+ 1
, (iii)
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and with the usual change of variables,

x = βε =
βp2

2m
, dx =

βp

m
dp , (iv)

we have, for the two-dimensional density n,

n =
N

A
=

2πmkT

h2

∫ ∞
0

dx

ex−βµ + 1
. (v)

This equation is an implicit relation between n and µ. In the present case
it is possible to calculate the integral as

∫ ∞
0

dx

ex−βµ + 1
=

∫ ∞
0

eβµ−x

1 + eβµ−x
dx = − ln(1 + eβµ−x)

∣∣∣∣∣
∞

0

= ln(1 + eβµ) .

From here

n =
2πmkT

h2
ln(1 + eβµ) , (vi)

and inverting we have

1 + exp(βµ) = exp

(
nh2

2πmkT

)
,

from which we find µ(T, n):

µ = kT ln

[
exp

(
nh2

2πmkT

)
− 1

]
. (vii)

Solution 4 Exercise on page 513

(a) The pressure is obtained by differentiating the thermodynamic poten-
tial with respect to the volume. From Eq. (5.1.6) with Eq. (5.3.13)
we obtain

P =
8πkT

h2

∫ ∞
0

ln

{
1 + exp

[
β

(
µ− p2

2m

)]}
p2dp .

If the gas is degenerate, there are no electrons above the Fermi energy
εF , or above the Fermi momentum pF . In order to use this and the
fact that the occupation function behaves like a step function, we
integrate by parts to find that

P =
8πkT

3h3

∫ ∞
0

p3
d

dp
ln

{
1 + exp

[
β

(
µ− p2

2m

)]}
dp (i)

=
8π

3h3m

∫ ∞
0

p4dp

exp
[
β
(

p2

2m − µ
)]

+ 1
. (ii)
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Now, we use the fact that the occupation number appearing in the
integrand vanishes above pF and is equal to unity below pF so that

P =
8π

3mh3

∫ pF

0
p4dp =

8πp5F
15mh3

. (iii)

Using (5.3.23) we express the Fermi momentum in terms of the density
and obtain

P =
8π

15mh3

[
h5
(
3n

8π

)5/3]
=

(
3

8π

)2/3 h2n5/3
5m

. (iv)

A simpler way of obtaining the same result is to use the free energy
F = E − TS. At T = 0, F = E and we can calculate the pressure
from the energy:

P = −
(
∂F

∂V

)
N

= −
(
∂E

∂V

)
N

, (v)

and we obtain the energy using the average energy at T = 0 calculated
in Exercise 3.12:

E =
3

5
NεF =

(
3

8π

)2/3 3h2

10m

N5/3

V 2/3
. (vi)

By differentiating E we obtain the pressure as in Eq. (ii).
Note that the pressure and the energy density E/V satisfy the usual

nonrelativistic relation [Eq. (1.1.6)]:

P =
2

3

E

V
. (vii)

(b) The electron density in aluminum is obtained using the data appearing
in Table 5.3.2 (see Solutions 3.1 and 3.6 as well):

n =
vN0d

A
= 1.8× 1023 cm−3 = 1.8× 1029 m−3 , (viii)

and substituting into Eq. (iv) we obtain

P = 1.4× 1011 N/m2 ≈ 1.4× 106 atm. (ix)

Solution 5 Exercise on page 513

(a) For extremely relativistic particles, ε(p) = cp. Thus we cannot use
the energy distribution function obtained in Eq. (5.3.17a). We begin,
therefore, from Eq. (5.2.11a). The number of states per unit volume
in phase space does not change when the particles become relativistic.
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The only change is in the relation between the momentum and the
energy. Thus we obtain from (5.2.11a)

N =
2V

h3

∫
d3p

exp{β[ε(p) − µ]}+ 1
=

8πV

h3

∫ ∞
0

p2dp

exp{β[ε(p) − µ]}+ 1
.

This is, after integrating over all angles, the generalization of
Eq. (5.3.14). Writing cp = ε,

n =
8π

(hc)3

∫ ∞
0

ε2dε

eβ(ε−µ) + 1
, (i)

and the energy distribution function is identified as

fε(ε) =
8πε2

n(hc)3
· 1

eβ(ε−µ) + 1
. (ii)

When the gas is degenerate the occupation number is a step function
[like (5.3.22)], and the relativistic Fermi energy, εR, is obtained from

n =
8π

(hc)3

∫ εR

0
ε2dε =

8πε3R
3(hc)3

,

hence

εR = hc

(
3n

8π

)1/3
. (iii)

We can write fε(ε) in terms of εR in the form

fε(ε) =
3ε2

ε3R

1

eβ(ε−µ) + 1
. (iv)

The average energy is, in the degenerate case,

〈ε〉 =
∫ ∞
0

εfε(ε)dε =
3

ε3R

∫ εR

0
ε3dε =

3

4
εR , (v)

and the energy density,

E

V
= n〈ε〉 =

(
3

8π

)1/3
× 3

4
hcn4/3 . (vi)

The energy density in the relativistic case is proportional to n4/3, in
contrast to the nonrelativistic case, in which it is proportional to n5/3.
Such a relativistic treatment is required when the average energy

per particle is much larger than its rest energy. Since the average
energy is of the same order of magnitude as εR we can write

εR 
 mc2 ,
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and from here
h

mc


(
8π

3n

)1/3
. (vii)

The left hand side is the wavelength that characterizes the quantum
motion of the relativistic particle and is called the Compton wave-
length. Condition (vii) requires, therefore, that the average distance
between particles in the gas be much smaller than their Compton
wavelength. For an electron, the Compton wavelength is 0.02 Å, and
the relativistic correction appears only at very high electron densities
(above 1030 cm−3). Such densities do not exist on earth. It is possible
to find such densities in dense stars, such as white dwarfs, whose mass
is the same as the sun’s and whose radius is a hundredth of its radius.
In fact such stars do not collapse under their self-gravity even though
their nuclear fuel has run out, precisely due to the pressure of the
degenerate electron gas.

(b) The pressure can be calculated by differentiating the thermodynamic
potential Ω with respect to V , but at T = 0 it is simpler to use E.
From (vi)

E =
3

4

(
3

8π

)1/3 hcN4/3

V 1/3
, (viii)

and then

P = −
(
∂E

∂V

)
N

=
1

4

(
3

8π

)1/3
hcn4/3 . (ix)

Comparing this to (vi) we obtain the regular relativistic relation be-
tween the pressure and the energy density, (1.1.7):

P =
1

3

E

V
.

Solution 6 Exercise on page 513

(a) To calculate the pressure we write the potential Ω of Eq. (5.4.10)
using (5.4.5):

Ω = Ω0 +
2πV kT (2m)3/2

h3

∫ ∞
0

ε1/2 ln(1− eβ(µ−ε))dε ,

and then

P = −
(
∂Ω

∂V

)
T,µ

= −2πkT (2m)3/2

h3

∫ ∞
0

ε1/2 ln(1− eβ(µ−ε))dε .
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Note that the first term, which represents the contribution of the
bosons occupying the ground level, does not contribute to the pres-
sure since these bosons have zero kinetic energy. Below the critical
temperature, µ = 0 and we obtain

P = −2π(2m)3/2(kT )5/2

h3

∫ ∞
0

x1/2 ln(1− e−x)dx ,

where x = βε. We integrate by parts and use Eq. (5.A.14) to find
that∫ ∞

0
x1/2 ln(1− e−x)dx = −2

3

∫ ∞
0

x3/2dx

ex − 1

= −2

3
Γ

(
5

2

)
ζ

(
5

2

)
= −0.67√π , (i)

and

P =
1.341(2πm)3/2(kT )5/2

h3
. (ii)

The fact that the pressure is independent of the volume is because
the system is below the critical temperature. In this case decreasing
the volume does not increase the pressure but reduces the density of
bosons in the excited states, n∗ [see (5.4.9)], transferring them to the
ground state.
Comparison with the expression for the energy (5.4.14) gives once

more

P =
2

3
· E
V
. (iii)

(b) Even when the fermion gas is fully degenerate the occupation of the
ground level cannot become macroscopic as in the case of the boson
gas, since the Pauli principle forbids this. Hence the relative error due
to the fact that the contribution of the ground level is not included in
Eq. (5.3.14), for instance, is negligible: of relative order 1/N .

Solution 7 Exercise on page 513

To determine if the phenomenon of Bose–Einstein condensation occurs, we
have to check the relation between the density of particles (per unit area)
in the excited states ne and the chemical potential µ. If ne is bounded from
above and hence also Ne = neA, particles added above the maximum of
Ne will accumulate in the ground state, and Bose–Einstein condensation
will occur.

From Eq. (5.4.3) or (5.4.2), we obtain in the two-dimensional case

ne =
Ne

A
=

1

h2

∫ ∞
0

d2p

exp
[
β
(

p2

2m − µ
)]
− 1

,
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and after integrating over the angles and changing to the energy variable,
we obtain

ne =
2πm

h̄2

∫ ∞
0

dε

eβ(ε−µ) − 1
. (ii)

The right hand side is again a monotonic increasing function of µ.

When µ → 0 the denominator vanishes in the low energy region and
the integral diverges. To see this we note that at µ = 0, the integrand
behaves as

1

eβε − 1
∼ 1

βε
, (iii)

for small ε. The integral of such a function diverges. The reason why the
corresponding integral in three dimensions does not diverge is that there is
an additional factor of ε1/2 in the numerator, which causes the integrand
to behave like ε−1/2 near ε→ 0. The integral of ε−1/2 converges.

This implies that ne is unbounded, and hence additional particles can
be accommodated in the excited levels, and the ground level will not be
occupied by a macroscopic number of bosons.

It is true that as the energy ε decreases, the occupation number in-
creases as implied by (ii), but this is not Bose–Einstein condensation, since
for any finite number of particles µ < 0.

In order to see the explicit dependence of µ upon ne, which is actually
n, we calculate the integral as in Self-Assessment Exercise 3:

n =
2πmkT

h2

∫ ∞
0

dx

ex−βµ − 1
=

2πmkT

h2

∫ ∞
0

eβµ−x

1− eβµ−xdx

= −2πmkT

h2
ln(1− eβµ) ,

and hence

µ = kT ln

[
1− exp

(
− nh2

2πmkT

)]
. (iv)

Note that µ (as well as βµ) is always negative and only vanishes in the
limit n→∞ or T → 0.

Solution 8 Exercise on page 513

Since the fermions are massless and have zero chemical potential, they
can be created and destroyed freely like photons, and their number is not
conserved. The average number of fermions at temperature T is obtained
by substituting µ = 0 in the general expression for n which was obtained
for extremely relativistic fermion gas in the solution of Self-Assessment
Exercise 5:

n =
8π

(hc)3

∫ ∞
0

ε2dε

eβε + 1
. (i)
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The number of fermions per unit volume and per unit energy is thus

nε(ε) =
8π

(hc)3
ε2

eβε + 1
. (ii)

We transform to a frequency variable, using ε = h̄ω, and write Eq. (i) as

n =
1

π2c3

∫ ∞
0

ω2dω

eβh̄ω + 1
, (iii)

and their density per unit frequency:

nω(ω) =
1

π2c3
ω2

eβh̄ω + 1
. (iv)

It is instructive to compare with the corresponding expression for photons,
Eq. (4.4.13). The energy density of the fermions per unit frequency is
obtained by multiplying nω(ω) by the fermion energy, h̄ω:

ρ(ω) =
1

π2c3
h̄ω3

eβh̄ω + 1
, (v)

and we find that the total energy density is an integral over all frequencies:

u =
1

π2c3

∫ ∞
0

h̄ω3dω

eβh̄ω + 1
=

(kT )4

π2(h̄c)3

∫ ∞
0

x3dx

ex + 1
. (vi)

For the calculation of the integral we use Eq. (5.A.13) from the appendix.
It gives the value

7

8
Γ(4)ζ(4) =

7

8
· π

4

15
, (vii)

and hence

u =
7π5k4

15(hc)3
T 4 .

The radiation density of a black body satisfies a similar law:

uBB =
8π5k4

15(hc)3
T 4

[see Eqs. (4.4.16) and (4.4.17)] and their ratio is 7/8.

Solution 9 Exercise on page 513

We begin from the condition

µ+ + µ− = 0 , (i)

where µ± are the chemical potentials of e±, given implicitly by Eq. (i) or
(ii) in the solution of Self-Assessment Exercise 5. If the gas is electrically
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neutral, the densities of the electrons and the positrons are equal and so
are their chemical potentials:

µ+ = µ− . (ii)

Hence,
µ± = 0 . (iii)

At extremely relativistic temperatures it is possible to neglect the mass of
the particles and then we can use Eq. (i) in the solution of Self-Assessment
Exercise 5 with µ = 0. The result is

n± =
8π

(hc)3

∫ ∞
0

ε2dε

eβε + 1
=

8π

(hc)3
(kT )3

∫ ∞
0

x2dx

ex + 1
, (iv)

with x = βε. The integral can be calculated using Eq. (5.A.13), and its
value is 3

2ζ(3).
The density of electrons and positrons is, therefore,

n± =
12πζ(3)

(hc)3
(kT )3 . (v)



Index

absolute zero, 133, 239, 281, 283, 476
absorber, perfect, 391
absorbing power, 395, 443
absorption, 429

spectrum, 370
acceleration, 61, 255

average, 62
adiabatic, 187, 189

compression, 189
cooling, 281
equation, 127, 186
expansion, 17, 20
process, 126, 185
system, 214

Adkins, 133
aluminum, 513
angular

deviations, 47
frequency, 243, 391

angular momentum, 138–141, 143, 359
component, 359
internal, 139, 358
of molecule, 356
orbital, 143, 177, 461, 516
quantum, 139, 358, 359
total, 177

annihilation, 405, 429, 485
antiquarks, 17
argon, 350
astronomical measurements, 398
atmosphere, isothermal, 20, 23, 29, 64, 468,

518
atom, neutral, 461, 516
atomic

assumption, 35
level, 435, 438
structure of matter, 32

atoms, 121
free, 366, 373
identical, 373, 375, 378, 485
in ground level, 491, 497

number of, 421
of metal, 466

attraction, 330
effective, 506
electron pairs, 507
energy, 330
force, 328, 340
region of, 330

average, 3, 8, 27, 28, 30, 37, 71, 85, 122, 137,
143, 144, 169, 195, 455

of a physical quantity, 316
of observable, 145, 167, 260
of v2x, 8

averaging time, 121
Avogadro’s law, 6, 8
Avogadro’s number, 10, 43, 250, 305, 517, 522

balance, detailed, 397
Bardeen, Cooper and Schrieffer (BCS theory),

507
big bang, 399
binding energy, 407, 441
black body, 391, 395, 397, 405, 427, 443, 447,

545
radiation, 376, 391, 394, 398, 453, 472, 513

spectral distribution of, 398
black hole, 399, 400
Bloch, F., 484
Bohr magneton, 139
Boltzmann, 4, 49, 125, 153, 167

constant, 10, 33, 43, 162, 235, 428
distribution, 6, 158, 165, 166, 464–466, 475,

479, 519
electron gas, 483
factor, 20, 123, 165, 179, 237, 254, 357, 360,

448, 475
formula, 164
gas, 447, 478, 490
limit, 486
statistics, 448

Born–Oppenheimer approximation, 352

547



548 Index

Bose–Einstein
analog, 485
condensation, 460, 489–493, 506, 513, 544
distribution, 246, 464, 485–487
particle, 460
statistics, 453, 505

boson(s), 247, 248, 453, 460–464, 486, 503
addition of, 489
atom, 461
average number of, 485
condensate, 529
free, 498
gas, 486, 489, 506, 534, 538

ideal, 490, 493, 503
in excited states, 489
in ground level, 489, 543

noninteracting, 487
two-dimensional, 513

liquid, 505
noninteracting, number of, 487
superfluid, 507

density of, 490
box, three-dimensional, 258, 269, 271, 292
Brillouin function, 208, 209, 333
Brown, Robert, 32, 33
Brownian

motion, 32, 37, 39, 43, 45–47, 61, 62, 122
particle, 43, 49, 63

canonical
ensemble, 166, 167, 176, 179, 214, 225, 229,

243, 254, 287, 293, 316, 453, 454, 461
distribution, 166, 261
partition function, 235, 278, 291, 455, 456,

459, 462, 536, 537
probabilities, 231, 233
system, 286

capacitor, 47, 48
capillary tube, 501
cavity, 386–388, 396, 445

at temperature, 443
of matter, 385
shape of, 387

center of mass, 11, 14–16, 18, 20, 37, 341, 344,
356–358

degrees of freedom, 362
energy, 80, 353
motion, 345, 361, 362, 365
of molecule, 416
variables, 347
velocity, 15

charge, 48, 259
density, 507

fluctuations, 48
moving, 385

chemical
equilibrium, 370, 448

constant, 369
formulae, 367
reaction, 6, 130, 339, 366, 367, 369, 405,

454
work, 130

chemical potential, 130–132, 187–189, 239,
241, 242, 280, 300, 351, 368, 370, 371,
403, 413, 420, 421, 429, 437, 448, 462,
473, 474, 478, 481, 487, 489, 513,
529

at T = 0, 475, 477, 523
change in, 414
constant, 494
constraint on, 463
decreases, 479
for monoatomic gas, 130
increases, 489
negative, 463
of phonon gas, 512, 537
of ideal gas, 449
of electrons, 449
of photon gas, 132, 448
temperature dependence of, 475, 495
tends to zero, 488
zero, 485, 489, 544

chlorine
atomic, 403
isotope of, 415
nucleus, 415

classical
approximation, 353, 375, 415, 464
behavior, 475
continuum, 249
gas, 272, 477
limit, 391, 392
mechanics, 18–20, 121, 125
statistics, 461
system, 260, 282, 334, 362
thermodynamics, 3

Clausius, 49, 128
COBE, 399
Coblentz, 394
collimator, 442, 443
collision(s), 10, 14, 18, 35, 39–41, 43, 46, 49,

51, 55, 56, 61, 93, 467, 468, 483, 497,
504

between molecules, 366
elastic, 7, 13, 15, 34, 88
first, 50
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number of, 3
number per unit length, 55
of electrons, 47
random, 62, 80
time between, 3, 56, 61
with free particles, 497
with ions, 466, 517
with phonons, 502
with wall, average rate of, 51

compressibility, 393
Compton wavelength, 542
concentration gradients, 50
conductance, 518
conduction electrons, 505, 517, 522

number of, 467
conductivity, 453
configuration(s), 24, 27, 141, 204, 239

number of, 192
of coordinates, 28
space, 143

confinement, 231
conservation

laws, 88, 122, 147
of energy, 124, 147, 179, 235
of momentum, 293
number of particles, 453

constituent, 18, 340, 341, 421
of molecule, 348
of gas, 313

constraints, 122, 147
continuity equation, 59
continuous

degrees of freedom, 347
distribution, 75
energy, 18
momentum, 488
variable, 225

continuum approximation, 418
controlled

quantity, 166, 454
variable, 473

Cooper pairs, 507
coordinate, 4, 28, 121, 226, 278, 341, 345, 458

and momenta, 225
distribution, 27
frame moving with liquid, 501
internal, 341, 346
of center of mass, 343
of particles, 24
relative, 343, 409, 416

copper, 140
correlation, 80, 151
cosmic background radiation, 398, 399, 404

cosmic neutrino particles, 513
covariance, 151, 152
creation of excitations, 501
critical speed, 499, 500, 502, 534

low, 502
critical temperature, 489, 490, 493, 506, 530,

543
above 100 K, 507
below, 494, 543
of Bose condensation, 494, 506
of He4, 530
of liquid hydrogen, 530
for superfluidity, 501

cross section, 34, 51, 504
crystal, 140, 248, 251, 288, 306, 376, 377, 380,

381, 471, 512
cubic, 378
hard, 250
ionic, 140
perfectly periodic, 484
three-dimensional, 378
triatomic, 379

crystalline structure, 466
Curie, P., 171
Curie’s law, 171, 181, 217, 218, 333
current, 46, 47, 50, 56, 59, 66, 69, 134

circular, 138
density, 56, 57, 468, 518
direction of, 58
drift, 64
flows, 57
of electrons, 466
of particles, 64
of the normal component, 493
without resistivity, 506

Dalton’s law, 12, 77, 225, 265, 280, 316
damping, 61
de Broglie

momentum, 382, 458, 472
relation, 270
wavelength, 269, 527

of electron, 484
thermal, 271

waves, 268
Debye, 248, 251, 382, 384

approximation, 290, 327
frequency, 383
model, 252, 289, 326, 388, 390, 453, 480,

512
temperature, 482

degeneracy, 281, 282, 356, 360, 474
of ground state, 283
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degenerate
boson gas, 489, 503, 513
doubly, 403
electron gas, 476, 513

approximation, 479
Fermi gas, 478, 479, 489, 503, 513
ground state, 351

degrees of freedom, 4, 9, 16–19, 32, 80, 88,
121, 141, 153, 178, 225, 243, 249, 260,
283, 309, 317, 328, 362, 454

classical, two, 364
freeze, 365
internal, 348, 350, 366

frozen, 328, 356
per molecule, 125
total number of, 381
two, 362
unfreeze, 375

density, 3, 7, 21–23, 33, 50, 51, 64, 82, 242,
271, 439, 440, 474, 475, 478, 487, 488,
540

at room temperature, 523
average, 486
distribution, 64
gradient, 61, 64
high, 57
in isothermal atmosphere, 20
of atoms, 373, 439,440
of conduction electrons, 519
of constituents, 420
of electronic states, 486
of electrons, 449, 469, 475

and positrons, 405
low, 57, 448, 486, 489, 491, 528

of excited states, 490
of fermions, 504
of gas, 81
of He3, 503
of hydrogen molecules, 369
of molecules, 56 74, 75, 318, 369, 373, 440
of particles, 487, 513

in ground level, 489
of photons, 446
of radiation, 443
of states, 474
two-dimensional, 539
uniform, 66, 67
zero, 488

diamagnetic, 138
diamagnetism, 507
diamond, 251
diatomic

gas, 328, 362, 373, 440

molecule, 14, 19, 339, 342, 352, 362, 505
dielectric, 135
diffusion, 50, 61, 63

coefficient, 49, 57
current, 64
equation, 59, 60
slow, 49
speed, 49

dimensional analysis, 30, 51, 87
dimensionless, 29, 83, 86

arguments, 273
variable, 170, 274

dimensions, 24, 29, 38, 57, 61, 75, 86, 87, 93
of energy, 157
of force, 89
of length, 86, 309, 470
of momentum, 518
of pressure, 25, 83
of space, 31, 42, 43
of volume, 309

dipole moment, 134, 135, 138
Dirac, 140
disorder, 174, 211, 277
dispersion curve, 534

ε(q), 498–502, 505
of a free particle, 502

dissipation, 33
dissociation, 366

degree of, 373, 375
energy, 374, 441
of diatomic gas, 373
of molecules, 370
of water, 370

distance, average, 56
distribution, 30, 56

Boltzmann, 469
function, 85, 87, 221, 474

classical, 472
in phase space, 267

moments of, 30
of directions, 76
of electron, 472
of radiation, 386, 425
of velocity, 24, 52

drag, 62
Drude, 466, 469

model, 469–472, 478, 482–484, 505, 519
Dulong–Petit

law, 250, 251
value, 470

dynamical
evolution, 3
model, 4, 121, 226
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dynamics, 156
laws of, 3
Newtonian, 4, 9

Einstein,
Brownian motion, 32, 35, 37
general theory of relativity, 399
model of a solid, 251, 268, 276, 281, 289,

290, 325–327, 339, 363, 376, 383, 384,
398, 427, 461, 462, 516

temperature, 251
theory, modify, 252
solid, classical, 283
solid, quantum, 320

electric, 135
charge, 253

of electron, 507
conductivity, 466, 468, 469, 482, 504, 505
current, 56, 466, 467, 507

density, 468
dipole, 134
field, 136, 389, 426, 518

uniform, 467, 468
force, 253, 505

repulsive, 340
polarization, 136
resistivity, 468, 484

electromagnetic
field, 388, 389
radiation, 9, 385, 390, 392, 429
theory, 134, 136

electromagnetism, 4
electron(s), 3, 17, 121, 138, 139, 340, 348,

352, 449, 453, 460, 461, 476, 504, 506,
527, 546

as fermion, 474
at high temperature, 474
average number of, 472
charge, 519
colliding with ions, 471
Compton wavelength, 542
deep, 483
density, 475, 481
effective, 483
free, 467
gas, 477–480

relativistic, 448
in metal, 472
nonmagnetic, 178
number of, 470
outer, 517
pairs, 507
spin 1

2 , 472

statistical properties of, 471
velocities, 517

electron–positron pairs, 405
electronic, 350, 363, 365

degrees of freedom, 80
frozen, 351

energy level, 350, 436
excitation energy, 351, 366
levels, 403, 436
spins, 359
states, 19, 352

electrostatic
constant, 259
units, 519

elementary particles, 405
emission, 429

of infinite power, 428
rate of radiation, 391
spectrum, 370

emissive power, 397, 433
function, 395

emissivity, 387, 391, 397, 427, 443
per unit wavelength, 444

emittance, 443
emitted energy, maximal, 404
energy, 12, 13, 42, 75, 125, 131, 141, 144, 150,

157, 162, 165–167, 174, 175, 187–189,
192, 203, 219, 229, 235–239, 254, 255,
257, 258, 263, 278, 284, 296, 298, 308,
316, 317, 322, 330, 346, 357, 377, 379,
380, 384, 423, 454, 463, 496, 498, 500,
541

absorbed, 396, 397, 436
at equilibrium, 213
at minimum, 299
average, 67, 72, 122, 163, 167, 170, 181,

205, 212, 227, 237, 249, 250, 267, 289,
291, 298, 302, 305, 321, 324, 328, 330,
335, 383, 385, 390, 392, 456, 481, 512,
541

at T = 0, 540
of electron, 473
internal, 234, 263
kinetic, 8–11, 13–16, 18, 20, 27, 32, 77–

79, 84, 93, 256, 308
of oscillator, 246
of paramagnet, 332
per degree of freedom, 287
per molecule, 13, 88, 321, 361, 372
per particle, 494, 531
per spin, 217

changes, 370
characteristic, 172
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conserved, 122
constant, 166, 167, 178, 453

surface, 255, 307
current, 67
decreases, 38
density, 384, 385, 387, 393, 394, 430, 513,

540–542
per unit volume, 390

dissipation, 38
distribution function, 13, 392, 444, 473,

480, 486, 504, 520, 530, 540, 541
erosion of, 33
exchange, 14, 153, 165, 167, 239, 248, 512
excitation, 80
flow, 242
fluctuation of ideal gas, 287
flux, absorbed, 396
function, 454
function of state, 184
increase, 136, 163
internal, 189, 228, 234, 235, 238, 239, 291,

294, 311, 328, 329, 341, 342, 344, 346,
350, 353, 357, 360, 410, 411, 414

correction to, 411, 412
of diatomic molecule, 355, 356, 358
of ideal gas, 334
of molecule, 346, 349, 356

kinetic, 8, 16, 19, 20, 48, 163, 249, 254, 258,
263, 264, 292, 341, 409, 476, 483

level, 243, 244, 249, 314, 323, 347, 350, 351,
356, 358, 359, 445, 463, 523

lowest, 282
loss, 232, 502
maximal, 150
mechanical, 124, 334
minimal, 150, 153, 172
minimum, 377
most probable, 71, 240
near Fermi energy, 506
of triatomic molecule, 345
of center of mass, 16, 344
of crystal, 376
of electromagnetic field, 137
of electron, 352, 521
of excitations, 498
of gas, 361, 481
of harmonic oscillator, 307, 374, 378
of internal motions, 16, 353
of ion, 331
of magnetic moment, 214, 217
of microscopic state, 230, 244, 260, 314
of molecule, 231, 352, 374
of microscopic state, 228, 237, 285,

of oscillator, 244
of paramagnet, 299
of particle, 458
of quantum particle, 292
of radiation, 385
of reactants, 372
of reaction products, 372
of relative motion, 344
of single spin, 180
of state, 167, 462
of subsystem, 143
per degree of freedom, 213
range kT , 504
relativistic, 448
released in reaction, 441
rest, 541
scale, 449
separability of, 361
shifted, 298
single particle, 377, 459, 464, 472

molecule, 340
oscillator, 302, 424
sum of, 461

spacing, 365, 436
spectrum, 163
states of a liquid, 497
states low, 476
subnuclear, 19
susceptibility of, 286
thermal, 22, 33, 171, 172, 211, 247, 351
total, 14, 17, 28, 38, 78, 142, 166, 241, 264,

309, 341
kinetic, 80
of boson gas, 530
of liquid, 497
of particle, 254
of radiation, 393
of state, 461

transfer, 483
variation of, 129
zero point, 323, 374, 379

engine, 128
ensemble, 39, 143, 156, 226

averaging, 122
grand canonical, 453, 454, 461–463, 485
microcanonical, 122, 164, 166, 167, 178,

225, 238, 262
of harmonic oscillators, 392
state in, 455

enthalpy, 129, 133, 187, 214, 288, 322, 331,
410

entropy, 128, 129, 131, 158, 159, 162, 164,
172, 179, 190, 219, 228, 234–236, 239,
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241, 248, 250, 263, 265, 273–275, 277,
280, 282, 289, 291, 296, 299, 306, 312,
314, 315, 319, 320, 323, 324, 332, 393,
411, 456

behavior of, 315
bounded, 320
change, 137, 158, 162, 190, 281, 319
correction to, 350
decrease, 163
differences, 128
extensive, 160
function of pressure, 311
increase, 128, 277
magnitude of, 174
maximal, 237
maximum, 159, 241, 300
of harmonic oscillator, 304, 305
of ideal gas, 128, 129, 188, 276
of mixture of gases, 280, 313
of paramagnet, 206
of photon gas, 132
of quantum system, 281
partial, 313, 319
per molecule, 411

additional, 349
per spin, 207

equation of motion, 89, 93, 377
equation of state, 6, 21, 125, 131, 183–185,

214, 242, 290, 317, 318, 327, 328, 330,
430, 446, 457

of relativistic gas, 331
equilibrium, 10, 11, 14, 20, 32, 33, 38, 39,

42–44, 47, 48, 53, 56, 78, 79, 156, 164,
179, 241, 284, 300, 367, 371–373, 385–
387, 422, 443, 467

at temperature T , 404
condition for, 64, 368, 421
constant, 370–372, 375, 441
deviation from, 49, 50
distance, 342, 345, 378, 407, 408
equation of reaction, 420
mechanical, 431
position, 248, 376–379
state, 4, 5, 8, 10, 12, 13, 18, 25, 61, 64, 75,

76, 157, 165, 281, 368, 372, 397
thermal, 13, 20, 21, 23, 33, 46, 71, 77, 148,

156, 158, 165
with cavity, 442
with heat bath, 254

equipartition, 256
energy, 80
law, 249, 309, 346, 392, 470, 476

for electrons, 470

of thermal energy, 13, 33
principle, 42, 44, 361
theorem, 14, 266, 267, 362
value, 362

ergodic hypothesis, 39, 63, 122
escape, rate, 53

velocity, 399
exact differential, 126, 186, 234, 235, 295
excitation, 501

atomic, 439
degree of, 244, 246, 384, 390

average, 247, 324, 464
collective, 498

in liquid, 502
creating, 501, 502
electronic, first, 350
fundamental, 505
in liquid helium, 500
internal, 18
intranuclear, 80
momentum, 499
number, 322, 380
single, 500

expansion, isothermal, 334
Joule’s, 316, 349

extensive
quantity, 130, 275, 287, 314
entropy, 153
variable, 125, 128, 130, 136, 214

external
coordinate, 229
parameter, 164, 228

change of, 234
extremely relativistic gas, 513

Fermi, 133
energy, 475–478, 482–484, 522, 523, 527,

534, 539
close to, 507
relativistic, 541

level, 504, 523
liquid, 505
momentum, 476, 522, 539, 540
sphere, 476, 521, 522
system, 503
temperature, 476–478, 480, 481, 503

of lithium, 527
of metal, 478

velocity, 476, 477, 482, 483, 504
wavelength, 484, 527

Fermi–Dirac, 473
distribution, 464, 466, 471, 479, 483
function, 480
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occupation, 479
function, 524

particle, 460
statistics, 453, 472
velocity distribution, 473

fermion(s), 460, 461, 463, 464, 486, 487, 503,
505, 506

occupation numbers of, 464
average number of, 544
energy, 545
gas, 485, 486, 538

ideal, 503, 505
two dimensional, 513

massless, 513, 544
ferromagnet, 138
Feynman, 63
field, 135, 137, 216, 331

constant, 171, 172, 180, 207, 217, 218, 236
critical, Hc, 507

direction of, 173, 211
external, 135, 136, 170, 215, 217, 228, 258,

508
gravitational, 38, 228, 255, 259
small, 210
weak, 217, 218

filter, 386, 395, 442
filter-coated, 443
flow
inviscid, 497

liquid helium, 503
through capillaries, 491, 492

fluctuation, 44, 225, 239, 285, 335
in resistor, 47, 48
of energy, 286, 291
thermal, 33, 47, 486, 502

focal plane, 43
force, 6, 7, 12, 14, 39, 64, 82, 121, 122, 229,

267, 377
between atoms, absence of, 502
between molecules, 497
constant, 44, 65
elastic, 45
external, 49, 56, 61, 62, 89, 259, 261, 49749,

56, 61, 62, 89, 259, 261, 497
field, 20, 81,228
interatomic, 491, 502, 505, 534
internal, 19, 20
mutual, 259
per unit area, 7
random, 4, 37, 39–41, 46
restoring, 46, 47
restraining, 37, 38

Fourier equation, 73

free energy, 131, 132, 188, 237–239, 241, 249,
262, 264, 273–275, 280, 288, 298, 305,
315, 319, 320, 323, 332, 334, 348, 353,
355, 361, 363, 380, 389, 390, 429, 455,
456, 477, 537, 540

minimal, 367
change, 368

in reaction, 370, 371
decrease, 239, 371
Helmholtz, 131, 227, 228, 235, 236, 296
independent of number of photon, 429
minimum, 239, 240
of crystal, 382
of electromagnetic radiation, 430
of gas of molecules, 365
of harmonic oscillator, 248, 304
of mixture, 312, 318
of monoatomic gas, 353
of paramagnet, 314
of photon gas, 132
of single molecule, 371
volume derivative of, 317

free path, 35
frequency, 248, 251, 252, 326, 353, 377, 378,

381, 385–388, 390, 391, 394, 397, 433,
444

distribution, 252
of oscillator, 322
of phonons, 388
of photon, 390
low, 427

friction, 37, 38, 46, 491, 498, 507
coefficient, 37
force, 497
negligible, 12
phenomena, 33

function of state, 125, 128, 129
fundamental function, 238

gadolinium, 141, 177
galvanometer, 33, 46, 47
gas, 4, 8, 65, 71, 121, 136, 225, 227, 228, 339

constant, 250, 496
dense, 491
density, 82
dilute, 6, 72, 225, 265
degenerate, 539, 541
dilute, 51, 261
equation, 17
helium, 73
interstellar, 72
law, 14, 16
molecule, 3, 7, 226



Index 555

monoatomic, 8, 14, 17, 19, 329, 351, 413
noble, 50, 350
of bosons, 485
of diatomic molecules, 355
of electrons, positrons and photons, 405
of fermions, 462, 463, 512

degenerate, 503
of free electron, 469
of molecules, 71
of particles, 387
of phonons, 537
of photons, 388, 447
rare, 19
reaction, 404

Gaussian
distribution, 154, 160, 182, 221
integral, 262

three-dimensional, 320
Gibbs, Willard, 4, 122, 235, 281

correction, 280, 283, 317, 375, 421, 536
free energy, 288, 322
paradox, 275, 371, 461
probability, 454

grand potential, 132, 456, 457
gravitation, 20, 21, 73
gravitational field

earth’s, 81
Newtonian, 83
uniform, 21

gravity, 253
ground level, 463, 476, 486, 490, 493, 498, 544

accumulate in, 495
doubly degenerate, 413
nondegenerate, 413

ground state, 247, 350, 356, 403, 434, 502,
505, 507, 513, 529

energy, 352, 363, 374
of electrons, 352
quantum-mechanical, 498

Guldberg, 369
gyromagnetic factor, 140, 143

harmonic
approximation, 342, 352, 357, 376, 407, 408
oscillator, 243, 249, 269, 288, 308, 320, 324,

376, 388, 464
classical, 244, 255, 268
damped, 44
independent, 378
three-dimensional, 283, 497

potential, 31, 87, 267, 345
attraction, 329, 362

three-dimensional, 353

vibration, 424
Hawking, 399
He3 atoms, 503, 504

pairs of, 505, 506, 535
He I, 491
He II, 491, 502

boils without bubbles, 491
two-component description of, 502

heat, 179, 235
absorbed, 372, 422
bath, 165, 167, 179, 237, 239, 241, 247, 248,

284
capacity, 19, 20, 127, 128, 218

at constant pressure, 349
at constant volume, 133
of solids, 398
per spin, 205
problem, 17, 250

flow, 67, 493
reservoir, 122
transfer, 124, 126, 129, 136, 234, 238

helium, 350, 490, 491
atom, 351, 502
thin layer of, 492, 493
vapor, 492

Henshaw, 500
hydrogen, 421, 490

atom, 403
free, 370
molecule, 366, 530

ideal gas, 6, 27, 28, 125, 127, 180, 187, 214,
230, 242, 265, 268, 272, 274, 281–283,
313, 321, 327, 328, 351, 446, 447, 466,
470, 496, 536

classical (Boltzmann), 512
equation of state, 311, 263
law, 158, 225, 268
monoatomic, 72, 187
of molecules, 340
of phonons, 502

impurities, 484
induction, 47, 48
information, 174, 176
infrared region, 447
initial condition, 3, 42, 90, 93
insulator, 469
intensive

parameters, 314
quantity, 157
variable, 125, 130, 136, 214, 275

interaction, 147, 340, 466
energy, 211
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of magnetic moment, 506
interatomic distance, 356, 471, 483, 533
intermolecular distance, 20, 21, 54, 81
internal energy

average change of, 233
excess, 477

internal motions in molecule, 365
internal structure, 13, 14, 339, 351, 365, 435

of atoms, 350
of molecule, 340, 341, 348–350, 366, 369,

411
internuclear distance, 352
ions, positive, 466
iron, 177
isobaric process, 183
isochoric process, 126, 128, 183, 184, 311
isothermal, 128, 184
isotopes, stable, 503
isotropy, 53

Johnson noise, 47, 48

Kamerlingh–Onnes, 506
Kapitza, 491
Kappler, 47
Keesom, 491
Kelvin, 128
kinetic energy

change by collisions, 482
conserved, 293
part, 423

per degree of freedom, 270
term, 317
transfer of, 483
zero, 543

kinetic theory, 4, 5, 23, 35, 123, 165, 225, 253,
265, 266, 466, 469, 505

classical, 249
Kirchhoff’s law, 396, 397

laboratory frame, 416
Landau, 497, 505

condition, 501, 502
critical speed, 501

Langevin, Pierre, 37, 40
equation, 37, 40, 41, 48, 63, 91
function, 333

lattice, 244
frequencies, 326
vibrations, 178

law of mass action, 369, 370, 373, 404, 405,
420, 439, 449

Le Chatelier’s principle, 372

Legendre transformation, 131, 132, 137
level

excited, 435, 436, 531
low, 434
scheme, 435
vibrational, frozen, 358

liquid, 136, 490, 498
layers, 38

liquid helium, 490, 493, 497–499, 501, 502,
533

at atmospheric pressure, 503
crawling, 492
flow in capillary, 491, 492
He I, 491
He3, 505, 534

degree of degeneracy of, 503
He4, 491, 503
normal component, 502
viscosity, origin of, 502

lithium, 482
London, F., 491
longitudinal vibrations, 344, 381

macroscopic, 178
dimensions, 346
mass, 499
number of bosons, 486, 544
number of electrons, 466
number of helium atoms, 491
number of pairs, 505
number of particles, 63
parameter, 233
properties, 4, 235
state, 148, 238, 258
system, 3, 81, 229, 258, 293
variables, 124
volume, 472

magnetic, 156, 228, 243, 438
energy, 172
field, 135, 136, 138, 140, 141, 147, 150, 157,

164, 173, 178, 181, 291, 230, 237, 403,
426

cancels, 507
external, 180

forces, 253
induction, 135
ions, 141, 290
levels, 436

number of, 439
moment, 121, 137–143, 162, 173, 180, 181,

243, 244, 290, 331, 333, 403
average, 144
intrinsic, 138
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of electron, 139
total, 142

properties, 506, 507
susceptibility, 181

magnetization, 136, 138, 149, 162, 169–172,
177, 195, 203, 215, 216, 218, 229, 230,
237, 284, 298, 333, 334

at saturation, 177, 333
average, 168, 173, 178, 180, 204, 216, 218,

291, 332
per spin, 208, 286

density, 507
per degree of freedom, 149
trapped, 508

manganese, 140
mass, 6, 253, 255, 259, 314, 340

double of He3, 506
of molecule, 3, 21
of nucleus, 415
reduced, 343
rest, 448

Maxwell, 4, 49, 65
distribution, 30, 52
equation, 426

in vacuum, 389
law, 253
relations, 131–133, 189–191

Maxwell–Boltzmann distribution, 24, 69, 83,
122, 233, 386, 464, 472, 473, 476, 482

Maxwell distribution, 54
mean free path, 34, 49, 50, 54, 57, 66, 470,

471, 483, 484, 504
infinite, 425
long, 505
problem of, 471

mean free time, 35, 49, 50, 54, 470, 482, 517,
519

between collisions, 503
of electrons, 467

Meissner effect, 507
mercury, 506
metal, 3, 466, 469, 470, 476, 484, 505, 522,

523
properties of, 453
wire, 466

microcanonical description, 287
microscopic, 6, 143, 282

energies, 281, 298
evolution, 121
laws, 228
scale, 3
state, 121, 141–143, 147, 151, 156, 165,

173, 223, 226, 231, 243, 244, 258, 278,

281, 284, 292, 301, 317, 322, 331, 346,
379, 388, 454, 455, 459, 462, 536

of crystal, 380
single, 460

states, number of, 149, 317, 384, 390
theory, 235

mirror, ideal, 75
mixing, 277
mixture, 56, 77

of gases, 10, 12, 54, 263
mobility, 49, 63, 468

coefficient, 32, 61, 468
molecular

chaos, 74
current, 518
level, 251
mass, 27
velocities, 33
vibrations, 344, 356

molecule(s), 11, 17, 121, 124, 225, 341, 373,
375

center of mass, 342
energetic, 12
identical, 347
moment of inertia, 357
number of, 6, 367, 371, 537
of ideal gas, 447
of liquid, 497
parts of, 15
translational motion of, 436
triatomic, 16, 409

moment of inertia, 46, 359, 404, 416
of diatomic molecule, 358

momentum, 7, 9, 15, 65, 75, 121, 226, 253,
256, 264–267, 270, 272, 278, 279, 293,
310, 330, 340–342, 345, 353, 458, 483,
498, 520, 541

transfer, 232
component, 7, 267, 356

quantized, 521
conservation, 231, 498, 500
current, 66
distribution function, 486
eigenstates of, 538
exchange, 13, 18, 39

of center of mass, 346
of entire molecule, 341

imparted, 15
initial, 498
integration over, 320
internal, 346
loss, 500
relative, 343, 344
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space, 254, 330, 521, 522, 538
variable, 270, 311, 313, 409

motion, 356
collective, 377, 497

of He3, 505
of liquid, 498

of center of mass, 341
of electrons, 365, 484
of heavy nuclei, 365
of nuclei, 352
random, 33, 63
thermal, 33, 66

nearest neighbors, 377
neon, 490
Nerst’s law, 281
neutrons, 17, 460, 500, 516

wavelength of, 500
Newton, 61

law, 6–8, 61, 253
second law, 467

nitrogen, 421, 491
noise, 33
nonequilibrium, 394
nonrelativistic, 453

particles, 448
normal mode equation, 380
normalization, 85, 151, 155

coefficient, 316
condition, 27, 83, 201, 481, 520
constant, 159, 204, 256
factor, 260
of f(v), 520
of probabilities, 454

nuclear, 19, 350
nucleus, 138, 340, 348, 352

observable, 169, 255, 455
occupation

function, 539
number, 459, 461, 462, 464, 516, 517, 537,

540, 544
average, 464, 465, 512
step function, 541

of ground level, 487, 488, 491
negligible, 495

Ohm’s law, 467, 468, 470
one-dimensional, 44, 59, 82, 90, 231

harmonic oscillator, 244, 358, 498
motion, 268, 269
partition function, 269, 271
system, 38

oscillator, 323, 388, 516

bounded, 289, 323
damped, 45

excitation of, 248
free, 377, 423
independent, 378

three, coupled, 423
three-dimensional coupled, 377

oxygen, 54, 415, 421
molecules, 366, 369, 370

pair creation, 405, 448
pairs, stable, 505

paramagnet, 141, 178, 180, 181, 214, 217,
225–228, 230, 236, 239, 240, 243, 276,
286, 317, 413, 435, 436, 454, 462, 516

classical, 283, 290
ionic salts, 177
isolated, 158, 161, 165

moment, 436
with spin 1, 439

paramagnetism, 138, 141, 436
particle(s), 4

addition of, 477

average number of, 456, 463, 464, 512, 536
classical, 292, 453

density, 24, 68
description, 4
exchange, 453, 454

extremely relativistic, 330, 540
flow, 242

free, 42, 49
identical, 262, 309, 316, 453, 460, 461
independent, 24

indistinguishable, 317
interacting, 340
mass, 269

material, 386
momenta, 485

noninteracting, 458
number of, 226, 241, 265, 455, 456, 459,

460, 462, 463

given, 454, 485
maximal, 487

excited, 531
constant, 536

pointlike, 363, 484

position, 254
relativistic, 290, 542
state, 253, 258, 269, 459

trajectory, 307
transfer of, 241

quantum-mechanical, 271, 453
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partition function, 167, 173, 180, 207, 208,
214, 217, 218, 227–229, 233, 234, 237,
243, 245, 246, 249, 260, 262, 263, 266,
268, 271, 272, 276–280, 288, 290, 298,
301, 304, 310–312, 316, 320, 323, 327,
328, 332, 340, 346, 347, 354, 370, 375,
377, 380, 388, 411, 437, 455, 462, 512,
516

at high temperatures, 418
classical, 271
corrected, 317
dimensionless, 271
grand canonical, 462, 536
internal, 350, 351, 353, 355, 357, 360, 363,

370, 374, 375, 440, 413, 414, 421
of ideal gas, 271, 461
of mixture of gases, 311
of paramagnet, 279
of single electron, 448
of single molecule, 340, 347, 348, 372
of single oscillator, 302, 323, 380
of single particle, 217, 248, 256, 269, 273,

279, 301, 310, 330
of single state, 462
quantum, 272, 273

Pauli principle, 453, 460, 464, 471, 482, 487,
504, 505, 543

does not apply, 486
Penzias, 398
periodic ionic lattice, 484
periodic structure, 498
periodicity, deviations from perfect, 484
permeable, 316
permutations, internal, 317
Perrin, 43
phase space, 254, 255, 258, 267, 272, 273, 307,

308, 522
of photons, 389

phase transition, 491
He I to He II, 493

phonon(s), 247, 380, 384, 388, 389, 482, 484,
498, 499, 512

as particles, 382
as waves, 382
contribution to specific heat, 527
energy, 464, 533
excited, 499
gas, 502, 534
in crystal, 485
states, number of, 382

phonons, number of, 380, 537
average, 247, 384, 464

photoelectric effect, 398

photon(s), 9, 75, 189, 388, 390, 391, 403, 425,
485, 544, 545

created, 429
density, 76
energy, 445
gas, 188, 189, 446

adiabatics of, 132
number density, 390
number of, 430, 447

average, 404, 429, 445, 446
of black body, 467, 485
states, 389

Pippard, 133
piston, 6, 7, 12, 13, 15, 74, 75, 78, 79, 232,

293, 294
Planck, Max, 391, 392, 398, 472

assumption, 252
constant, 18, 139, 249, 269, 273, 283, 375,

391, 428
distribution, 376, 427, 447
formula, 391, 394, 398

polarization, 383, 386, 389, 443
density, 135
of radiation, 443
saturates, 170
three, 381

position, 265, 272, 353
average of, 36
of particles, 309
relative, 344
variables, 311, 313

positrons, 449, 546
potassium, 467, 469
potential, 23, 24, 28, 30, 39, 64, 81, 82, 91,

231, 254, 409, 466
attractive, 329
between two atoms, 407
central, 71, 344
depth of, 407
energy, 17, 19, 20, 22, 24, 39, 46, 48, 134,

226, 249, 254, 259, 328, 340, 342, 352,
353, 374, 376, 377

average, 71, 93, 256
electrostatic, 259
minimal, 345, 374, 407

external, 265
gravitational, 82
in diatomic molecule, 342
intermolecular, 497
of harmonic oscillator, 257, 377, 423
well, infinite, 268

power, 444
emitted, 391
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total, 428
of radiation, 394

precipitation rate, 73
pressure, 4, 6, 12, 21, 54, 66, 68, 72, 74, 78–

81, 124, 131, 136, 188, 229, 231, 233,
237, 242, 263, 265, 317, 327–329, 446,
457, 513, 540, 542

atmospheric, 73
average, 233
balance, 13
constant, 58, 129, 263
equal, 241, 315
increase, 430, 316
independent of volume, 543
of boson gas, 513
of gas, 15, 47, 431, 446, 513
of radiation, 431
of photon gas, 132
of radiation, 393, 446
of sun’s radiation, 394
partial, 77, 318
total, 76, 316

probability, 23–25, 27, 28, 55, 69, 83, 89, 122,
143, 149, 156, 158, 164–167, 170, 175,
192, 201, 211, 215, 219, 220, 238, 239,
253, 254, 257, 265, 266, 278, 292, 319,
348, 504, 512

density, 24, 253, 254, 260
function, 473

distribution, 176, 455
equal, 178

function, 313
normalized, 266

of magnetic moment, 302
of oscillator, 302
in canonical ensemble, 229
in phase space, 260
in velocity space, 27
maximal, 219, 239
of configuration, 240
of microscopic state, 302, 316
of state, 167, 216, 454
relative, 226, 227
sum of, 212

process, 234
infinitesimal, 229
isobaric, 126, 184, 311
isothermal, 126, 183
quasistatic, 229, 234
reversible, 276, 277

product concentrations, 369, 441
projection, 164

along H, 143

average, 170
of spin, 142, 173

proper modes, 378
protons, 17, 121, 460, 516

quantization, 243
of electromagnetic radiation, 398
of energy, 18, 268
of motion, 271
of particle wave functions, 460

quantized, 139
momentum, 458
wavelength, 458

quantum, 243
analysis, 484
behavior on macroscopic scale, 503
condition, 453
electrodynamics, 140
energy, 249

levels, 353, 357
ground state energy, 374
harmonic oscillators, 225, 244, 390, 498
liquid, 498
mechanics, 4, 17, 121, 139, 346, 356
motion, 542
particles, 272, 458, 472

identical, 458
state, 268, 272, 358, 516

discrete, 488
number of, 486
of diatomic molecule, 360

statistics, 458, 485
system, 253, 283
theory, 18, 19, 243, 250, 276, 346, 391, 399,

471
wave function, 458

of identical particles, 460
quantum-mechanical, 3, 249, 271, 365, 379

effect, 460
treatment, 484

quark, 17
degrees of freedom, 80

radiation, 75, 391, 426, 445
absorbed, 396, 442, 447
amount of, 385
chemical potential of, 393
density, 390, 395, 404, 545
emission, 391, 395, 404, 443, 447
energy, 425

amount of, 387
frequency, 442
gas, 393
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in equilibrium, 394, 396
incident, 442, 447
intensity of, 396, 404
pressure, 430, 431
spectrum of, 398
thermal, 398
transmited, 443

random walk, 35, 181
randomness, 36
Rayleigh–Jeans

distribution, 428
law, 392, 427

reactants, 371
reaction, 371, 372, 403, 421, 439

absorbs heat, 372
between nuclei, 405
equation, 421
releases heat, 422
reverse, 422

recoil, 232
Reimann zeta function, 402
relativistic

correction, 542
effects, 140
mechanics, 121

resistance, 47
resistivity, 469, 471, 483, 518, 519
resonant frequency, 47, 48
response coefficients, 284, 286
response to temperature changes, 372
rigid bodies, 18
rotating cylinder, 492
rotation, 9, 16, 17, 344, 353, 366

of molecule, 344
rotational, 18, 356, 358, 363, 365, 374

degrees of freedom, 362
freeze, 363, 364

energy, 357–360
level, 359, 360, 417
motion, 361–363
state, 359, 360, 361

scattering
of electrons, 484
of slow neutrons, 499

second law, violation of, 395, 443
self-interaction, 259
sensitivity, limits on, 33
short time behavior, 45
sinusoidal electromagnetic wave, 426
sky diver, 38, 90
sodium, 467, 469, 490, 497
solid angle, 69

Sommerfeld, 471
model, 482–484, 504

sound waves, 377, 498–500
space, D-dimensional, 88

6N-dimensional, 258
six-dimensional, 254
two dimensions, 35, 87

specific heat, 80, 171, 173, 180, 181, 236,
249, 251, 280, 286, 287, 289, 305, 306,
321, 323, 324, 326, 329, 339, 350, 351,
361–365, 376, 383, 403, 425, 435, 436,
438, 439, 457, 481–483, 494, 495,
505

above critical temperature, 495
change, 437
constant field, 210, 213, 296
constant pressure, 127, 311, 312, 331, 410
constant volume, 67, 127, 263, 290, 310,

312, 328, 331, 349, 355, 405, 410, 414,
494

asymptotic behavior of, 289, 325
per photon, 405

low temperature, 481
molar, 250, 305, 306
near Tc, 496
of atomic levels, 403
of Bose gas, 494
of crystalline sodium, 289
of diatomic gas, 356
of electrons, 482
of gases, 351
of ground level, 488
of He4, 496, 503, 534
of lead, 251
of metal, 480, 482
of mixture, 265
of paramagnet, 291, 334, 438
of phonon gas, 534
of photon gas, 447
of radiation, 393
of solids, 243
partial, 265, 312
per degree of freedom, 213
per electron, 469, 470, 482
per molecule, 321, 412

of ideal gas, 405
per photon, 447
per spin, 217
problem, 362, 470, 471

spectral line, 403
spectroscopic measurements, 370
speed, 3, 88

between collisions, average, 519
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constant, 467
of light, 75, 290, 386, 430
of sound in liquid He, 499, 501, 533
thermal, 49

spin, 139, 147, 150, 156, 157, 165, 172, 175,
177, 192–194, 211, 236, 243, 317

aligned, 215
classical, 333
flip, 171
freeze, 171
half-integer, 460
integer, 460, 485, 516
independent, 203
nonzero, 486
number of, 296
of electron, 140
of ions, 178
of paramagnet, 516
partition function, 215
projection, 162

average, 171
quantum, 333
states of electron, 448
total, 516

spring constant, 243, 345, 408
square deviation average, 29, 86, 285
standard conditions, 21, 33, 54
standard deviation, 160
standing wave(s), 378, 379, 381, 388, 389, 458

number of, 389
state, allowed, 143

discrete, 347
empty, 483
equally probable, 147
function, 228, 234, 295

states, 353, 435, 436, 489, 490, 529
internal, 15

in molecule, 350
many-particle, 459
microscopic

distinguishable, 460
individual, 233, 459

most probable, 237, 238
microscopic, 153
macroscopic, 237

N-particle, 459
number of, 157, 158, 161, 176, 178, 180,

192–194, 197, 199, 241, 272, 317, 380,
424

finite number of, 333
infinite number of, 225
with energy, 154, 164

of given J , 360

one-particle, 216

quantum, single, 516

single particle, 269, 458, 460, 463, 464, 472,
476, 485, 538

accessible states, 458

single spin, 217, 513

space, 124

uniform, 316

statistical mechanics, 4, 6, 9, 23, 29, 162, 225,
226, 235, 258, 265, 341, 386

classical, 276

Stefan–Boltzmann law, 392, 393

step function, 524

stifness, 251

Stirling, approximation, 199, 371

formula, 153, 154, 182, 198, 220, 279

Stokes, 38

law, 43

subsystem, 164, 166, 180, 191

sum of pressures, 12, 265

sum over states, 227, 254

sun, center of, 431
superconducting ring, 506

superconductivity, 453, 506, 507

superfluid, 491, 492, 505, 506

He3, 506

component, 492, 497, 502

concentration of, 493

flow, 503, 507

superfluidity, 453, 498, 502, 506

at absolute zero, 502

in He II, 491, 493

in liquid hydrogen, 494

of electronic Fermi liquid, 507

susceptibility, 173, 177, 210, 284, 285, 287,
333

negative, 507

of paramagnet, 285

symmetry, 215

constraint, absence of, 461

properties, 460

system

combined, 157

composite, 160, 239, 241

insulated, 122

isolated, 151, 160, 164, 166, 178, 225, 237,
239, 453, 454

of electrons, 352

of oscillators, 279, 301, 317

of bosons, 485

of identical particles, 464

state of, 124, 258
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temperature, 4, 8, 11, 13, 20, 22, 23, 27, 46,
54, 57, 63, 66, 71, 80, 81, 122, 126,
129, 131, 156, 157, 162–164, 166, 170,
177, 178, 181, 184, 186, 203, 207, 214,
227, 228, 237, 241, 242, 248, 251, 257,
258, 271, 282, 284, 289, 299, 305, 315,
316, 324, 327, 333, 348, 350, 351, 353
356, 360, 362, 373, 374, 385, 393, 395,
397, 403, 404, 435, 441–443, 446, 454,
460, 469, 472, 473, 478, 488, 526

1 mK, 506
2.7 K, 399
above absolute zero, 502
absolute, 9, 125, 158, 162, 164
at sun’s center, 393
change, 234, 349, 529
characteristic, 171, 251, 351, 358, 362, 363,

365, 403, 435
condensation, 513, 534
constant, 58, 66, 72, 166, 170, 172, 183,

207, 238, 249, 367, 430
control, 225
dependence, 247, 248, 403, 483

of µ, 479
of energy, 495, 496
of equilibrium constant K, 372, 374, 440
of radiation density, 396

differences, 78
electronic characteristic, 436
equal, 241
extremely relativistic, 513
finite, 484
fixed, 165
gradient, 50, 67, 493
high, 19, 171, 172, 247–249, 268, 271, 289,

303, 306, 307, 320, 324, 333, 375, 427,
437, 475, 486, 487, 489

identification of, 187
independence of, 447
increase, 422, 443
infinite, 163
low, 3, 18, 19, 172, 247–249, 250, 289, 303,

315, 320, 324–326, 333, 334, 363, 383,
384, 403, 412, 437, 441, 471, 474, 475,
477, 480, 482, 484, 486, 487, 490, 498,
503, 524

approximation, 307, 326
behavior, 503
limit, 478

magnetic, characteristic, 436
negative, 163
of gas, 72, 448
of liquid He3, 505

of sun’s surface, 404
of walls, 386
range, 354, 355, 415, 436
relative, 156
relativistic, 546
room, 10, 76, 251, 351, 355, 415, 447, 471,

478, 479, 481, 482, 484, 491
rotational, low, 441
scale, logarithmic, 437
scales, 363, 441
T < Tc, 490, 508, 530
tending to zero, 281
transition, 248, 305, 491, 494, 505
uniform, 20, 386
very high, 211, 365
very low, 506
zero, 281

thermal
average, 44, 248, 279, 280
conduction, 483
conductivity, 49, 50, 64, 469, 482, 504

large, 491, 493
of metals, 491
ratio of, 482

contact, 165, 239
fluctuations, eliminated, 506
interaction, 10, 156, 237
velocity, average, 62

thermodynamic, 4, 10, 123, 124, 136, 137,
169, 174, 228, 234, 235, 275, 276

average, 231
behavior, 324
equilibrium, 71, 83, 124, 160, 161, 163, 166,

237, 239, 248, 284, 380, 391, 466, 498
state of, 463

functions, 166
information, 130, 131, 456
limit, 152, 160, 197, 198, 284–287
measurement, 17
potential, 129, 137, 485, 520, 536, 539

Ω, 132, 463, 472, 488, 512, 538, 542
properties, 228, 262, 376, 453, 457, 460,

463
quantities, 156, 225, 249, 273, 323, 351,

455, 457
relation, 410, 456
system, 169
variable, 130
work, 228–231, 233, 272, 455

thermodynamics, laws of, 4, 9, 134, 225, 226,
228, 455

first law of, 124, 234, 235
second law of, 234, 235, 386, 387
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third law of, 281, 291
does not apply, 334

thermodynamics of electromagnetic radiation,
339, 376

Thomson, J. J., 466
time, characteristic, 42, 47, 91, 121
torque, 134
trajectory, 143, 258, 308

of particle, 255
translation, 436
transport, coefficients, 5, 49, 504

problem, 468

ultraviolet catastrophe, 428
uncertainty principle, 359, 458
unfreezing, 19
units, 8

valence, electrons, 466, 471
of sodium, 517

Van der Waals equation, 328
variable

classical, 353
conjugate, 287

intensive, 130
independent, 4
random, 169, 221

velocity, 4, 14, 28, 34, 38, 40, 54, 71, 232, 253,
259, 278, 293, 340, 499

range of, 498
average, 40, 50, 61, 63, 67, 72, 467, 468,

482
changes, 89
distribution, 21, 23, 27, 28, 53, 57, 79

isotropic, 52
Maxwellian, 53
of electrons, 469

drift, 61, 62, 468
gradient, 65, 492
initial, 90
minimal, 499
most probable, 71
relative, 11, 15, 53
space, 25, 83, 254, 473
thermal, 43, 72, 469, 483
typical, 33
volume, 24

vibration, 9, 16, 17, 19, 344, 366, 381
collective, 252, 498
modes of, 537
of crystal, 251, 379
of ions, 480
of solid, 248

radial, 353
thermal, 387

vibrational, 18, 357, 363, 365, 374
amplitude, 309
angular frequencies, 404
degrees of freedom, 362

frozen, 362, 375
energy, 357, 358, 360

average, 88
frequency, 363
kinetic energy, 362
level, 360

spacing, 358, 417
mode, 252, 377, 378, 382, 383, 388, 389,

445, 537
motion, 360, 361
partition function, 374
state, 361

state, nondegenerate, 360
viscosity, 4, 32, 37, 38, 43, 49, 50, 62, 64, 497,

503, 504
coefficient, 38, 73
low, 491
measurement, 492
of classical gas, 534
of degenerate fermions, 505
of gaseous helium, 491
of gases, 497
of He II, 491
of normal component, 492
typical, 491
zero, 492, 498

voltage fluctuations, 48
volume, 4, 136, 227, 237, 257, 327, 473

active, 328
change, 272
confining, 258
constant, 129, 321, 367, 384
D-dimensional, 87
dependence, 233
element, 24
free, 328
independence of, 314, 315, 317
of gases, 6

vortices, 502

Waage, 369
walls of container, 228

structure of, 388
water, 43

molecules of, 366, 369
wave, 376, 427

amplitude, 426
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frequencies, 378
moving, 389
numbers, small, 500
number, 378, 422, 498

of phonon, 533
vector, 378, 381–383, 386, 388, 389

space, 383, 389, 424
transverse, 387

wavelength, 270, 385, 394, 404, 542
21 cm, 403
large, 500

minimal, 388
of electron, 484
of emitted line, 434
yellow, 447

width of distribution, 225, 284
Wiedemann and Franz, 469, 470, 482, 483
Wien’s law, 433, 445
Wilson, 398
Woods, 500
work, 44, 124, 136, 189, 231, 235, 238, 316

performed by gas, 334


