

Dr. B. C. Roy Engineering College, Durgapur Paper: Physics-I Paper Code: BS-PH 101 1st Semester 1st Internal Examination (SET 2)

Full Marks: 25Session- 2022-23		Time: 50 mins.		
Continuous Assessment – 3				
Q. No.	Question	Marks	COs	BL
	GROUP – A (Multiple Choice Type Questions)			
	Choose the correct answer for <u>any five</u> of the following:			
1. (i)	In Fraunhofer diffraction, the incident wave front is (a) Plane (b) Cylindrical (c) Spherical (d) None of these	1	CO2	R
(ii)	In Fraunhofer diffraction minima are (a) All perfectly dark (b) Never perfectly dark (c) Perfectly bright (d) None of these	1	CO2	R
(iii)	The Compton Shift depends on (a) Angle of scattering (b) Material of the target (c) Wavelength of the incident X-ray (d) None of these	1	CO4	U
(iv)	The de-Broglie wavelength of a particle with momentum p is (a) $\frac{h}{p^2}$ (b) $\frac{p^2}{h^2}$ (c) $\frac{h}{p}$ (d) $\frac{p}{h^2}$	1	CO4	R
(v)	The Compton shift is maximum when the scattering angle is (a) 45° (b) 90° (c) 180° (d) 60°	1	CO4	E
(vi)	If \hat{n} is the unit vector in the direction \vec{A} then (a) $\hat{n} = \frac{\vec{A}}{ \vec{A} }$ (b) $\hat{n} = \vec{A} \vec{A} $ (c) $\hat{n} = \frac{ \vec{A} }{\vec{A}}$ (d) None of these	1	CO1	Р
	GROUP – B (Short Answer Type Questions)			
	Answer all the questions from the following			
2.	X-rays of wavelength 10 ⁻¹¹ m are scattered by loosely bound electrons. Find the maximum wavelength present in the scattered rays and maximum kinetic energy of the recoil electron.	3 + 2	CO4	E
3.	(a) Find the relation between Phase velocity and Group velocity.	2 + 3	CO4	Р
	(b) Write the Heisenberg's uncertainty principle and explain its physical significance.			R
4.	 (a) Differentiate Interference and Diffraction. (b) A light of 6000Å falls normally on a straight slit of 0.1mm width. Calculate the total angular width of the central maxima. OR 	3 + 2	CO2	R E
	Define the terms and find the expressions in connection with damped vibration (a) Decay Constant (b) Logarithmic decrement	2 + 3	CO1	Α
5	What is Brewster's law in polarization of light? Show that sum of angle of polarization and angle of refraction is 90 ⁰ .	1 + 4	CO2	R E
	Find $\vec{\nabla}$. \vec{F} and $\vec{\nabla} \times \vec{F}$ where $\vec{F} = \vec{\nabla}(x^3 + y^3 + z^3 - 3xyz)$ OR	1.5+2	CO1	E
	Establish the differential equation of damped vibration and solve it.	2 + 3	CO1	Α