
CHAPTER III 

REAL GASES 

III.1. Ideal Gases and Real Gases 

Careful experiments have revealed that the gas laws such as Boyle's Law, Charles' Law, etc are 
only approximately obeyed by different gases. Even at ordinary pressures, the deviations from the 
relatuon, Py= nkT, are appreciable. Moreover, the deviations are different in different gases. It is 

only at very low pressures and at relatively high temperatures the gases tend to behave in accordance with the laws. The equation, Pv = nRT, is hence applicable for approximate calculations and is 

insufficient for accurate measurement. A gas, really a hypothetical one, which follows the gas-laws 
rigorously under all circumstances, has been named an ideal gas or a perfect gas as distinct from 
the real gases with which we carry out our experim ents. 

III.2. Deviations of Real Gases from Ideal Behaviour 

The departure from ideal behaviour in real gases has been observed in different types of 
investigations. Some of these are mentioned here. 

(a) In accordance with the Boyle's Law, PV = constant, at a given temperature, the pressure of 
a gas plotted against its volume would give a rectangular hyperbola. At fairly high temperatures, the 
P-V isothermals are found to be hyperbolic, though-not exactly coinciding with the rectangular ones 
theoretically predicted. But at temperatures below the critical ones, the P-V curves are far from 
hyperbolic and really exhibit two discontinuities. The historically famous experiments of Andrews 
on the study of relations for carbon dioxide are represented in Fig. I.13, which indicates the wide 
deviations from the Boyle's Law. Similar deviations are observed with other gases too. The failure 
of the relation, Pv = nRT to predict the change of state is its major inadequacy. 

(b) The coefficient of thermal expansion (a) of a gas is given by, 

Ov 

nR 
Since V="p.T, hence 3T 

nR 
P T IL. 1) or 

This means that a will be independent of the nature of the gas and will be a function of 
temperature only. But, the a-values for different gases are found to be different, contrary to the 
expectations from the- gas-laws. The coefficients of expansion for hydrogen and CO0,. are 2.78 x 
107 and 3.49 x 10 -7 respectively at. 0°C and 500 atm. 

(c) The coefficient of compressibility (B) of a gas is given by 

p--P 
Ov nRT. v hence 8P nRT 

p2 Since 

-9P- or 
(III.2) 

That is, B should be a function of pressure only and should be the same, for all gases. Experimentally the coefficient of compressibility has been found to be an individualistic property. 
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Regnault and, later on, Amagat made extensive 
studies on this aspect. At a given temperatur 

Pv should remain constant. 
Hence Pv plotted against P should be a straight line parallel to the P-axi 

But the experimental 
Py-P curves are of the nature as shown in Fig. M.1 and III.2. 

At very low pressures (below 1 atmosphere), the plots of Pv versus P is linear but different far 

different gases and not parallel to the P-axis (Fig. 111.1). For wide high ranges of pressure isothermal 

Py-P curves are given in Fig. II.2. In the case of CO,. O,, CH, etc. the Py-value first diminishes 

reaches a minimum and then increases, forming a cup, with increase in pressure. In the case of 

hydrogen, the Py-value begins to increase continuously from the zero-pressure. Hydrogen however 

is not an exception. If the temperature be made sufficiently low, hydrogen also would exhibit identical 

behaviour. 
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It is also interesting to note the variation of the P V-P relations with temperature. In Fig. III.3 

are plotted the PV-P curves of carbon dioxide at different temperatures, which are also typical of 
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Fig. IlI.3. PV-P isothermals of carbon dioxide 
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other gases. It is seen that the extent of higher compressibility decreases with rise in temperature. 
As the temperature increases, the troughs of the curves become shallower and flattened. The minimal 

points of these curves lie approximately on a parabola, shown by the dotted line. At relatively high 

temperatures, the minimals gradually approach the PV-axis. 

Boyle Point : There exists for every gas a characteristic temperature, where the curve (PV.P 
runs sensibly parallel to P-axis from zero pressure to moderate values of pressure (P). It means that at this temperature, the value of P Vremains constant for an appreciable range of pressure, i.e., Boyle's 
Law is obeyed. This temperature is known as the Boyle temperature or Boyle Point of the gas, p 

Mathematically we may express the Boyle point as the temperature where 

OPV) - 0, when P->0. 
OP 

The Boyle temperature for a few gases are given below. 

TABLE. BOYLE TEMPERATURES 

Gas N CH NH He 

T, K 24 117 332 498 860 

(d) The cooling due to Joule-Thomson effect is another evidence of the deviation of the real gases 
from the ideal ones in their behaviour. According to the kinetic theory, the energy of a given quantity 

of gas depends on the temperature only and is independent of the pressure or volume. But in fact, 

when a gas is allowed through a fine orifice or porous plug from a high pressure to vacuum (say), 

the temperature drops down generally. Under certain circumstances, there may also be tempera- 
ture-rise. This is obviously contrary to the expectations from the theory. 

III. 3. Reasons for Deviations 

The gas laws have been derived from the postulates of the kinetic theory. Now that these laws 

are found to be only approximate, it is obvious that some of the postulates of the theory are inadequate 

and need modification. The deviations from the Ideal laws are primarily due to two factors which 

were not taken account of in the theory 

(i) the molecules were considered as point masses, practically having no volume 

(ii) the existence of the forces of attraction between the molecules were ignored.

In fact, in a real gas, the volume of the bodies of the molecules may be quite appreciable even 

at ordinary pressure, 

To illustrate : At N.T.P. one gm-mole of a gas, i.e., 6.02 x 10* molecules, occupy a volume, of 

22400 c.c. 
The diameter of a molecule may be taken as of the order 2x 10* cm. So that the effective opace occupied 

physically by a molecule is 4/3. n (2 x 10*)* » 3.3 x 10-23 c.c. 

Hence, the space taken up by the molecules = 6.02 x 103 x 3.3 x 10-2 = 20.46 c.c. That is, at N.T.P 

the space occupied by the molecules themselves is nearly 1000 of the volume of the gas. 

If the pressure be increased to say 10 atmospheres, the volume of the gas would be approximately 2240 

c.c. Then the fraction of this volume occupied by the molecule& physically = 20.46/2240 1/100, i.e. nearly 

one percent of the volume, which is by no means negligible. 

Again, in the kinetic theory it has been presumed that no inter-molecular force exists and as such 

the collisions are perfectly elastic, the energy is all Kinetic. But, in fact, there does exist a force of 

attraction between the 'molecules. On cooling. the gases are converted into liquids when the 

molecules exhibit appreciable cohesion. This indicates that a similar attraction exists between the 

molecules in the gas-phase also. A more clear evidence comes from the experiments of Joule and 
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Thomson. When a stream of gas is allowed to pass through a porous plug of cotton or earthen-wre 

there is a fall of temperature called Joule-Thomson effect. The only explanation is that the outgoina 
molecules have to overcome the attraction of molecules from behind and thus have to perform work 
The energy thus spent causes the lowering in temperature. In an idea gas, there 1S no attractive forçce 

between the molecules and hence no cooling would be expected. 
Due to intèr-molecular attractions, the number of impacts on the wall is restrained, i.e., the 

number of collisions with the wall would have been greater if there were no attractive force on the 

colliding molecules from behind. In consequence the pressure exerted on the wall is less. Thus the 
pressure of one atmosphere actually exerted by oxygen, at 0°C, would be about (1+0.0025) atmo. 

spheres had it behaved as an ideal one. 
It is only at very low pressures when the gas-volume is quite large the space occupied by the 

molecules themselves becomes negligible comparatively; and because the molecules are then far 
apart, the force of mutual attraction becomes too feeble. So, at very low pressures, the real gases 
would satisfy the postulates of the kinetic theory. That is why real gases are observed to obey 
Pv = nRT relation at very low pressures. The expression Pv = nRT is therefore a limiting law only. 

IIL4. Equations of State for Real Gases 

Many attempts have been made during the last hundred years to modify the ideal gas equation 
and change it into a form which would represent P-V-T relations of real gasses. Corrections had to 
be introduced both for the pressure as well as the volume and often two or more constants entered 
into the form. These equations are derived on empirical or semi-empirical basis. The forms of some 

of these equations are 

:P V-b) - RT van der Waal's 

Dieterici P(V-b) = RTe 

:(P7) (V-b) = RT Berthelot 

:PtTV a (V-b)= RT 
Clausius T(V+ 

RT 
:P=y-Be al (V+1 

A 
Keyes 

P= RT(1-(y+ B)- y 
RT log1-e 

Beattie-Bridgeman y2 

Saha & Bose P = - 

RT 

:P=-V-bVv-b) * v 
a C 

Wohl 

:PV = RT Kammerling Onnes 

etc. etc 

We shall briefly discuss here a few of these equations. One of the earliest and more widely 

employed equation is that of van der Waals. 
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IH.5. van der waals' Equation 
To rectify the error for neglecting intermolecular attraction and the space ocupied by the 

molecules themselves, van der Waals introduced two correction terms in the idea> gas equation, one 
for the pressure and the other for the volume. 

Due to intermolecular attraction, the number of impacts a molecule would make on the wall 

would be less than what it could if it were free from attraction. This is true for each molecule. As 
result the observed pressure (P) will be less than the pressure (P,) the gas would have if it were 

ideal and there were no intermolecular attraction. If the decrease in pressure be denoted by p', then 
the ideal pressure would be (P + p'). 

It is also easily seen that the space available for the motion of the molecules is less than the volume 

gas occupies. Suppose a molecule is moving at right angles to the opposite walls (Fig. IL4) of 
the containing vessel whose distance is I. If the molecules were point masses, 
the distance to be travelled by a molecule between two successive impacts 
on the same wall would be 2. But the molecules have dimensions, and 

therefore the distance actually covered by the molecules is (2-G), where a 
is the diameter of the molecule. This is true for all molecules. As a result, 2r 
the space for free motion of the molecules would be measurably reduced. 
Suppose v denotes the reduction in space, then the true volume for motion 

of the molecules would be v-' where V is the volume of the gas. We may 
then write the equation of state, corrected for the volume and the pressure, of a real gas in the form 

Fig. III.4 

(P+p'(V- v) = RT (for 1 gm-mole) 
/Pressure correction, p'. During collision a molecule changes its velocity. When it approaches 

another molecule, there is a drop in velocity. This is followed by an acceleration on separation. Every collision therefore causes a certain loss of time t. This time t is a measure of the inter-molecular 
attraction and is therefore also a measure of p', the inward pressure. 

Let us imagine that the molecule would strike the wall z times per second if there were no 
inter-molecular attraction. During its journey to make z bombard on the wall, suppose the molecule 
makes x inter-molecular collisions. The x collisions will take up xt seconds. Now, because of the 
existence of inter-molecular attraction, the time needed for making z bombardments on the wall 

would be 1+xT seconds. That is, in 1 second it would make 
1+: bombardments. The pressure is 

proportional to the rate of bombardments. If P is the observed pressure and P, the ideal pressure 
the pressure corrected for inter-molecular attraction), then, 

=1+Xt 
i.e., P P(1+xt) = P+ Pxt 
Now, x, the number of molecules which the particular molecule would collide with, is propor tional to its own velocity u, and the density of the gas, p. That is, 

x =k'up (where k' =constant) 

So, Pxt = Pk'upt 

1 mNgC,k'upt 
3 k'upt PmNe1 v 
tmn,'eukr| since p- mN 

It is assumed that for a definite amount of a given gas, the quantity within the parenthesis remains parenthesis remains almost constant, and is substituted by a. 



a 
So, Pxt y 
There is no evident justification for this assumption but nevertheless the value of 'a' experimen 

tally determined shows sensible constancy unless the temperature is widely varied. This assumption 
18 indeed a weak point in van der Waals treatment. The pressure of the gas, corrected for molecular 

attraction, 
a 

P= P+Prt = P+ 2 

The quantity a is the additional amount of pressure, (p') to be added to the observed 

pressure P. This is often called the cohesive pressure or internal pressure 

Volume correction, v'. Consider a gm-mol of a gas occupy- 

ing a volume V. In deducing the ideal gas equation, the molecules 
were regarded as point-masses and hence the entire volume Vwas 

available for movement of each molecule. Since the molecules 
have definite size, the volume or space available for molecules 
to move about in real gases would be less. Assuming the mol- 
ecules to be spherical, suppose r is the radius and 

o (= 2r) be the diameter of a molecule of the gas, so that the 

volume of the body of each molecule, b = T. . 

When two molecules encounter each other, the distance 
between the centres of the two molecules would be a. These
cannot approach closer than this. In consequence, as shown in the 

figure, a space indicated by the dashed circle having a diameter 20, will be unavailable to the pair 

of colliding molecules. This space, often called 'excluded volume for the pair of molecules is 4 to 

Fig. IIL5. Excluded volume for a 

pair of molecules 

2 Then, the excluded volume for each molecule, B' = Ta. But the volume of the body of each 

molecule; bh =r=zTo' 
hence, B' 4b 

For a gm-mol of the gas, such excluded volume will be, 4N b, = b (say), which is a constant. 
The 'volume correction v'" is thus b, which is equal to four times the actual volume of the bodies 

of the molecules. The observed volume should therefore be reduced by this amount (b) in computing the pressure of the gas. The volume V should be replaced by (V-b). The equation of state, corrected for the two factors, takes the form, 

P+(V-b)= RT (for 1 gm-mol) 1.3) 
This is known as van der Waals' equation. 

Ifn gm-mols of gas be present in volume v, the volume of one gm-mol would be v/n. So, » have, 

P+ a (vIn -b) = RT 

(v/n) 

P+(- nb) = nRT Or 
.. (III.4) 



IT.S-6 
REAL GASES 19 

The van der Waals' constants, a and b are different for different gases. 'a' is expressed in 
atm-litre/mole? and 'b' is expressed in litre/mole units. 

These can be evaluated from a knowledge of the pressure coefficient, B' = for, from van der Waal's equation 

V T.P.B-and b = V- 
B'P 

The values of a and b for some gases are given here. 

Gas H N NH CH CO, A He 

0.244 1.36 2.25 a 1.39 3.59 4.17 1.35 0.034 
b 0.027 0.032 0.039 0.043 0.037 0.043 0.032 0.024 

The values of both 'a' and 'b' are actually found to vary with temperature and volume at which they 

are measured, With rise of temperature, the value of a diminishes, i.e., the attractive forces tend to decrease. 
The value of 'b' also decreases slightly with rise in temperature.

III.6. Validity of van der Waals' equation 
A critical examination of the van der Waals' equation may now be made to ascertain to what 

extent it corresponds to the experimental observations. 
(a) With knowledge of 'a' and 'b' for a given gas, its P-V isothermals are plotted at different 

temperatures (T) from the equation. These isothermals are then compared with the experimental 
P-V curves (Andrews curves). These are shown in 
Fig. 111.6. for CO,; the bold lines represent the theoretical 
curves and the broken ones the experimental curves. 

It would be readily seen that at high temperatures, the 
theoretical and the experimental curves coincide and the 
van der Waals' equation is satisfactory. But at low tempera- 
tures, there is considerable divergence between the theo- 
retical and the experimental curves, especially in the region 
where liquid and gas coexist. The van der Waals' curves at 
low temperatures show minima and maxima, where as the 

P 
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90 

80 
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48°c 
35°c

31.1°c 
70 experiments indicate a plateau. 

Let us examine one such curve, say at 21.1®C. as 

represented by pqrstuv. The liquid range pq as also the 

gaseous range uv practically follow the experimental curve. 

But the portion qrstu remarkably differs from the experi- 

mental straight path qsu, where liquid and gas are present 

together. In fact, the system is supposed to have three 

volumes at the same pressure, the equation being a cubic 

60 

** 21.1°c 
13.1°c 50 

4 6 8 

Specific Volume. 

Fig. Il.6. P-V. isothermals of Co, (Dotted 
one. [The portion qr and ut may sometimes be realised by 

careful superheating or "super. cooling. But the portion rst 

lines experimental; bold lines theoretical) 
where the curve rises from the minimum to the maximum 

point, that is, volumes would increase with increase in pressure, can never be realised experimentallv 

The equation therefore fails to represent the behaviour of gases. 

With increase in temperature, the maxima and the minima of the curves come closer and closer 

And at the critical isothermal, the maxima and the minima actually coalesce at the point C which 

is really the critical state of the substance. Above this temperature (7), the maxima and the minima 

are not observed, 
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But inspite of this anomaly, van der Waals' equation is decidedly an improvement over the idant 

cquation of state as will be borne out from the observed and calculated values of pressure (Tahi 

A) and PV-values (Table B). 

80 

re (Table 

TABLE A (Temp. 100°C) 

Pressure calculated from 

Pressure van der Waals deviation 
ideal eqn. deviatio 

Gas observed 
75.7 +0.9% 

72.3 -3.6% 
Hydrogen 75 

-5.0% 100.8 +0.8% 
100 95.0 

+17.3% 732 -2.3% 
75 93 Carbon dioxide 95.8 4.2% 

133.5 +33.5% 100 

TABLE B (Ethylene at 20°C) 

Pressure PV (arbitrary units) 

obs. van der Waals 
(atm.) 

1.0 1.0 

32 0.914 0.895 

74 0.420 0.384 

110 0.454 0.456 

233 0.807 0.805 
330 1.067 1.067 

(b) At the critical point C, the maximum and the minimum points coalesce, it is thus a point of 

inflexion. As such the first differentia! and the second differential would both be 

zero. 

RT 
P= 
V-b y 

a 

RT 2a aV 
2P 2RT 6a 
aV2 (V- b)s V 

At the critical point, T = T, when both differentials are zero. Hence, 
RT 2a 

(V-b (i) 

2RT 
(-b V 

6a 

.(i) 

Dividing () by (i) 
, or V. = 3b 

(iii) 

Substituting (i) in () T=2a-b 
RV 

8a or T 1 Rb 
RT a 

-b V 27b (3b-b) 9 or P= PV-b So, 
8a 1 a 

27b2 
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Thus, for a van der Waals' gas, the critical constants are given by, 
8a V. 3b, P21 27 Rb 

.. (IIL.5) 
27b 

It can also be shown that RT/P V., often called the 'critical coefficient' would be a constan 
RT 26 =2.66 
PV 27b 3b =2.66 (III.6) 

From egn. 1. 5, the van der Waals' constants may be expressed in terms of critical constants. 

a = 3PV = (9/8)RTTV b b-V 
(III.7) 

27 R'T a E 
P 

b=R 
8P 64 

The van der Waals equation thus predicts that 
() the ratio V/b should be equal to 3.00 

and (i) the critical coefficient RT/PV, should be equal to 2.66. 
The critical constants are determined by methods mentioned earlier (Sec 1.14). The value ofb 

is obtained from a study of P-V isothermals at different high temperatures. The experimental values 

for Vb and also for RT/PV, are given in table C and D, for some gases. 
The ratio V/b tends approximately to a value 2.00 instead of 3.00, whereas the value of RT/PY 

tends to a constant value of 3.6 instead of 2.66. The van der Waals' equation is thus quantitatively 
not quite accurate. 

TABLE C 

Gas N H CO He A 

V/b 1.41 1.76 2.80 1.86 1.46 2.50 

TABLE D 

Substance RTPV RT/ PV. 
3.084 

Substance 
Helium Methane 3.47 

Argon 3.424 Ethane 3.64 

Neon 3.086 Benzene 3.75 

3.06 Pentane 3.76 Hydrogen 
Oxygen 
Nitrogen 
Carbon dioxide 

3.42 Octane 3.87 

3.42 Chlorine 3.63 

3.49 Chlorobenzene 3.78 

3.61 Carbontetrachloride 3.68 Sulphur dioxide 
4.39 Ether 3.81 

Water
4.02 Ammonia 4.12 

Ethyl alcohol 

(c) We have seen from the Amagat's curves (PV-P isothermals) that at the Boyle temperature, 

a real gas tends to obey Boyle's Law. The minimum of the PV-P curve is on the PV-axis 

(i.e., P = o). 

Hence for the Boyle point, 7, at P=0 =0 
OP 

The van der Waals' equation, P=, 2 may be written as 

PV RTVa PV= b -v 
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differentiating at constant temperature, 

RTV V-b (V-bF* P T 

-bRT 

bRT 
OP) 

So, at the Boyle point, where 0, we have (V-b? remembering 
L OP 

cannot be zero. 

Hence 
Rb V 

Since when P->0, the volume V will be Infinitely large; i.e., V- b»V 

8a From van der Waals' equation, we have, T, =- e. T,21 Rb 

Hence, the ratio, =l-3.375 
8 

The experimental determinations, however, show that T/T, is a almost constant but the mag- nitude of the ratio approaches 2.98 instead of 3.375. The van der Waals' equation, therefore, is only qualitatively valid. 

TABLE E 

Ne H N, 
Gas He A 

TT 3.65 3.00 2.73 3.21 2.56 2.72 

() Reduced equation of state. Since the critical constants are definite quantities for a gas, it is possible to express its, P, V, T, the pressure, volume and temperature in any given state as multiples or sub-multiples of the critical values. Let us say, 
P TP. V= ¢V, and T= 07, 

where T,¢ and 0 which are numbers called reduced pressure, reduced volume and reduced temperature. These numbers indicate how many times the critical values are greater or smaller than the respective given quantities. 
The van der Waals' equation may then be changed as, 

-b) = RT 

-b)= R67 Or 

Substituting the critical constants by equation (111.5) we have, 
a 

27 (3b-b) = ROT, 
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(3-1) 80 or 

This relation interms of the reduced parameters of the system is called the van der Waals' reduced 

equation f state. The most interesting aspect of this relation is that it would be applicable to all gases, 

since it is independent of the constants a, b and R. 

The equation implies that if two substances have the same reduced pressure t (i.e., their pressures 
are t times their respective critical pressures) and are also at the same reduced temperature , (Le., 
their temperatures are e times their respective critical temperatures), then their reduced volumes 

should be the same, (i.e., the ratio should be the same). Substances under such conditions are 

said to be in corresponding states and the principle laid above is called the law of corresponding 

states. 
It gives us a clue to test the validity of the van der Waals' equation from which this relation is 

derived. By maintainin different gases at the same n and e. we can find out if is the same. In 
the table below are incorporated the data for a number of gases, which show that the law of the 

corresponding states is approximately obeyed. The equation can be tested in any homogeneous phase 

liquid or gas. 

CORRESPONDING VOLUMES OF DIFFERENT SUBSTANCES 

Vgas ol= VlGuid 

V T = 0.08846 

Substance 

Benzene 0.7277 0.4065 28.3 

Hexane 0.7476 0.4056 29.1 
29.4 Octane 

Chlorobenzene
Carbon tetrachloride 

0.7544 

0.7345 
0.4006 
0.4028 28.5 

27.5 
28.3 

0.7241 0.4078 
0.4030 
0.4001 

Ether 0.7380 
0.7504 30.25 Ethyl acetate 

Ethyl alcohol 0.7794 0.4061 32.15 

I.7. The Dieterici Equation 
Another equation of state was proposed by Dieterici in the empirical form, 

P RT 
eRTV 

A theoretical basis for this equation was later developed by Jeans. The volume correction here 

was evidently the same as that in the van der Waals' equation. For the correction of pressure, Jeans 

introduced the exponential factor T The reasonings given by Jeans may broadly be stated as 

follows. A molecule in coming to the wall from the interior has to overcome the forces of attraction 

and thereby attains a potential energy higher than that possessed by a molecule in the bulk. In 

consequence, the density of molecules near the walls will be less than that in the interior. If n and 

n denote the number of molecules per c.c. at the walls and in the interior, then, according to the 

distribution law, 

=e RT 

where A is the excess energy per mole at the walls. 
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