SCHRODINGER WAVE EQUATION

Erwin Schrodinger proposed that if the electron is wave-like, it should obey the same equation
of motion as all other known types of wave motion obey. On the basis of this simple idea, he substituted
the value of de-Broglie relation (i.e., A= i) into the classical equation for wave motion. Thus, the
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equation obtained should describe the wave motion of the electron and is called Schordinger wave
equation. The equation can be written in many forms. The simplest form of equation is given below:
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where E = Total energy of the electron i.e., K.E. + P.E.

V =Potential energy of the electron i.e., work done against the attractive
force when the electron moves away from the nucleus.

m = Mass of the electron

h = Planck’s constant



letter Psi) is called “Wave function” and is amplitude of the electromagnetic wave.
quation canalsobeexpressedas
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1 of Schrédinger Wave Equation

: ﬁnm of the equatlon can be derived by de-Broglie 1dea of dual nature of matter
n within all atoms.

- (E) of an electron = Kmetlc energy + Potentlal energy .
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s of an electron, v is its velocity, and 4 is the Planck’s constant. Substituting this
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_ﬁnple of quantum theory is that matter can be regarded as wave and the equatmn
= motion of a vibrating strmg can be represented as: ,
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e function, x is the displacement,
length, and A is the amplitude of the wave.
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Putting the value of 7 from Eqn. (1.2) in the above equation, we have
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Substituting the value of A from Eqn. (1.2) in eqn. (1.3), we get

dy  8w’m

b s it

When the electron moves in three directions x, y ang 7 {BP ahis: . o
. - == ¢ vv s wnes ULECUONS X, P and z, the above equation becomes
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This is the Schrodinger wave equation. It relates the wave function y of the electron with its
energy E. It is a second order differential equation and can be solved only for certain definite values of
* energy (E) possessed the electron under reference.

1.3.2 Eigen Values and Eigen Functions

The schrédinger wave equation basically considers the electron motion as the motion of a vibrating
string in three directions mutually perpendicular to one another. The motion in one direction can be
compared with the motion of a vibrating string between two fixed points. This motion can be represented
as a stationary or standing wave shown in the F ig. 1.1. The amplitude is maximum in one direction and
then becomes minimum in the same plane in the opposite direction. The position when the amplitude
becomes zero is called a node and the sign of the wave changes on passing through this nodal point.

Node Node Node Node Node
s e ; _________ e W e ; _________ e ; ________
0 A

Fig. 1.1 Stationary wave in a vibrating string

Equation (1.4) represents the motion of a stationary wave in one direction, say along the x-axis.
It is clear from this equation that for a stationary wave in a stretched string the amplitude function (w)
can have significance only for a certain definite values of wave length (A). The wavelength is related to

h - :
the total energy as E = Tc . It means energy (E) is a function of the wavelength i.e., each wave having

a definite wavelength has a definite value of energy.

Being a second order differential equation, the Schrédinger wave equation can have number of
solution, many of them being without any significance. But for some definite values of the total energy
E, the solutions will certainly have significant values. The values of the total energy (E) for which the



PARTICLE IN ONE DIMENSIONAL BOX

This is the simplest application of Schrédinger wave equation to the transitional motion of 2
particle (electron, atom or molecule) in space. The motion of a particle in a one dimensional box is like
the flow of electron in a wire, but still it is called @ particle in a box. However, for convenience, we will
first derive the result for a particle in one dimensional box and then extend it to a particle in three
dimensional box.



Consider a particle which moves along X-axis between ?
x =0 and x = a inside a box. The particle bounces back and i /
forth between the walls of the box, which are considered as
rigid. The particle does not lose energy when it collides with —c
the walls, so that its total energy remains constant. From the ~ V V=
point of quantum mechanics, potential energy (V) of the
particle is infinite on both sides of the box and inside the box
V is constant. For convenience, we take V = 0 inside the box. - s e
Since the particle cannot possess infinite amount of energy, it
cannot exist outside the box, so its wave function y is zero
forx<0andx2a.

With box, the Schrodinger’s wave equation for one dimension:
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Fig. 1.2 One dimensional potential box
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where y has been taken as the function of x coordinate only.
As outside the box, V = oo, therefore for outside the box Eqn. (1.7) becomes
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Neglecting E in comparison to oo, Eqn. (1.8) reduces to
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This proves that outside the box y = 0 which implies that the particle cannot go outside the box,
For the particle within the box, V = 0, therefore, the Schrédinger wave equation takes the form
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As for the given state of the system, the energy, E is constant (which is one of the postulates of
the quantum mechanics), therefore, we put
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where 2 is a constant, independent of x.
Equation (1.10), then becomes
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A general solution of this differential equation is given by
Y = A sin kx + B cos kx 3y

where A and B are constants.



Depending upon the value of A, B and &, ¥ can have many values. But all the values are not
acceptable. Only those values of are acceptable (i.e., are eigen functions) which satisfy the boundary
conditions, viz.,

y=0 at x=0 and x=a

Putting = 0 when x = 0, Eqn. (1.13) becomes

0=Asin0+Bcos0
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Thus, when x = 0, Eqn. (1.13) becomes (by putting B = 0),
Y = A sin kx ..(1.14)
Now putting y = 0 when x = a, Eqn. (1.14) becomes
0=Asinka
sinka=0 (1.15)
This equation holds good only when the values of ka are integral multiple of it i.e.,
ka=nm (1106)

When 7 is an integer i.e., n =0, 1, 2, 3, .... However the value n = 0 may be excluded which .
makes k = 0 and hence W = 0 for any value of ‘a’ between 0 and a i.e., within the box. This is because the
particle is always assumed to be present within the box.

Form Eqn. (1.16)
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Substituting this value in Eqn. (1.14), we get
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This gives the expression for the eigen function y.
The expression for the eigen value of the energy may be obtained as follows:
From Eqn. (1.11),
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Substituting the value of k from Eqn. (1.17), we get
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Equations (1.18) and (1.20) are the solutions of the Schrédinger wave equation for a particle in
one-dimensional box. However, the Eqn. (1.18) contains the undetermined constant a, its value can be
obtained by the process of normalisation of the wave function as follows:
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Substituting the value of y (= y *) from Eqn. (1.18), we get
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Hence the normalised wave function (which will also be solution of the Schrédinger equation is
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It can be shown that there are any two eigen functions y and y * corresponding to two different

values of n, then y, and y, will be orthogonal to each other.

1.4.1 Some Important Applications for the Study of Particle in

One-Dimensional Box

1. Quantization of energy: Since 7 can have E, = 16/%/8ma?
only integral values equal to 1, 2, 3 etc., n=4
therefore from Eqn. (1.14), it follows that the E, = 9%%*/8ma*
energy E associated with the motion of a n=3
particle in a box can have only discrete values E, = 4h*/8ma?
i.e., the energy is quantized. The integer » is il
called the quantum number of the particle. sl E, =#*/8ma®

Further puttingn=1, 2, 3.... etc., the discrete

energy levels obtained for the particle of mass ~ Fig. 1.3 The discrete energy levels of a particle of
m confined in the box of length a are shown mass ma confined in a box of length a

in Fig. 1.3. It is important to note that as the :
quantum number increases, the separation between them increases. It may also be noted that
energy levels also depends upon the box length a. As a increases i.e., the space available to a
particle increases, energy quanta become smaller and energy levels move closer together.

Knowing the values of energy of different energy levels, the energy difference between any two
levels can be calculated. From the above values, it can be calculated that
£ S
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This shows that the energy difference between any two consecutive (successive) energy levels is
not constant.

Existence of zero point energy: The minimum value of 7 is 1, therefore the energy corresponding
to n= 1, will be minimum and is given by putting » = 1 in Eqn. (1.20), we get
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This shows, when the particle is present in the potential box, the energy of the lowest level
(n=1) is called zero point energy. It is characteristic of the system executing to-and-fro motion

(vibration) that the energy of their lowest allowed state is greater than zero, i.e., a zero-point
energy exists.

B, =



1.5.2 Concept of Atomic Orbital

In the light of Heisenberg’s uncertainty principle, Bohr’s concept that the electrons move along
definite circular path, lost its significance. Now we can talk of only probability of finding the electron at
different points around the nucleus. The probability of finding the electron of a give energy E at any
point can be calculated using Schédinger wave equation, i.e., by solving the equation for y corresponding
to the co-ordinates of that point and then finding them.



By calculating the probabilities at different points, it is found that there is a three dimensional
space around the nucleus. Within which the probability of finding the electron of a given energy is
maximum. This space is called an atomic orbital.

Hence an atomic orbital may be defined as a three dimensional space
around the nucleus within which the probability of finding the electron of
given energy is maximum.

If dots are used to represent-the electron probabilities, i.e., a dot
represents a point where there is a probability for the electron to be persent,
then the orbital corresponding to 1s electron may be represented as shown in
Fig 1.7.

Such a representation of an orbital is called the electron cloud picture.
It may be noted that the intensity of dots which represents the electron
srobability, is greater near the nucleus and fall off as the distance from the
sucleus increase. No where is the probability of finding the electron is equal to zero. Even at large
Sistances from the nucleus, there is a finite, though small, probability of finding an electron of a given
snergy. This means that electron clouds do not have sharp boundaries. However, for the sake of pictorial
clarity and for convenience of representation, a boundary surface may be drawn which encloses a
sertain, volume of the space around the nucleus within which the probability of finding the electron of
& ziven energy is maximum i.e., 90-95%.

Fig. 1.7 Representation
of 1s orbital

It may be noted that it is not possible to determine the exact position of the electron at any instant
» time (in accordance with Heisenberg’s uncertainty principal). Hence, the proababilities are calculated
= small segments of volume (called volume elements) in space around the nucleus.

1.5.3 Probability Distribution Curves

The curves obtained by plotting the prbabilities (y?) of finding the electron at different distance
« Fom the nucleus versus the distances are called probability distribution curves.

It has already been mentioned above that the probability of finding 1s electron is maximum near
e mucleus and this probability decreases as the distance from the nucleus increases. Hence the probability
Seibution curve for 1s electron is as shown in Fig. 1.8 (a). From this curve, it may be further noted
#r the curve does not touch the x-axis even at very large distances showing that the probability does
sut become zero even at large distances from the nucleus.
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Fig. 1.8 Probability distribution curves for, (a) 1s (b) 2s and (c) 3s orbitals



1.5.6 Radial Probability Distribution Curves for other Orbitals

The radial probability distribution curve for 2s orbital consists of two maxima, separated by a
region where the radial probability is zero. This region is called a node. Thus, the 2s orbital has one
node. Similarly, 3s orbital has three maxima and two nodes. In general, for any ns orbital, there are
maxima and (# — 1) nodes. Further, it may be seen from the curves that as » increases, the distance of
maximum radial probability increases but the average electron density decreases as shown by the heights
of the humps.
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Fig. 1.10 Radial probability distribution curves for 1s, 2s, 2p and 3s, 3p, 3d orbitals of hydrogen atom



summarize this angular independence by saying that 1s orbital is spherically symetrical. The
s-orbital has no radial node whereas 2s and 3s orbitals have one and two radial nodes, respectively,
as shown in Fig. 1.12.
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(a) ls-orbital (b) 2s-orbitals (b) 3s-orbitals

Fig. 1.12 The shapes of various s-orbitals



SHAPES OF ORBITALS
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