Algorithms for Intelligent Systems Series Editors: Jagdish Chand Bansal · Kusum Deep · Atulya K. Nagar

Anupam Yadav Satyasai Jagannath Nanda Meng-Hiot Lim *Editors*

Proceedings of International Conference on Paradigms of Communication, Computing and Data Analytics

PCCDA 2023

Algorithms for Intelligent Systems

Series Editors

Jagdish Chand Bansal, Department of Mathematics, South Asian University, New Delhi, Delhi, India

Kusum Deep, Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India

Atulya K. Nagar, School of Mathematics, Computer Science and Engineering, Liverpool Hope University, Liverpool, UK

This book series publishes research on the analysis and development of algorithms for intelligent systems with their applications to various real world problems. It covers research related to autonomous agents, multi-agent systems, behavioral modeling, reinforcement learning, game theory, mechanism design, machine learning, meta-heuristic search, optimization, planning and scheduling, artificial neural networks, evolutionary computation, swarm intelligence and other algorithms for intelligent systems.

The book series includes recent advancements, modification and applications of the artificial neural networks, evolutionary computation, swarm intelligence, artificial immune systems, fuzzy system, autonomous and multi agent systems, machine learning and other intelligent systems related areas. The material will be beneficial for the graduate students, post-graduate students as well as the researchers who want a broader view of advances in algorithms for intelligent systems. The contents will also be useful to the researchers from other fields who have no knowledge of the power of intelligent systems, e.g. the researchers in the field of bioinformatics, biochemists, mechanical and chemical engineers, economists, musicians and medical practitioners.

The series publishes monographs, edited volumes, advanced textbooks and selected proceedings.

Indexed by zbMATH.

All books published in the series are submitted for consideration in Web of Science.

Anupam Yadav · Satyasai Jagannath Nanda · Meng-Hiot Lim Editors

Proceedings of International Conference on Paradigms of Communication, Computing and Data Analytics

PCCDA 2023

Editors Anupam Yadav Department of Mathematics Dr. B. R. Ambedkar National Institute of Technology Jalandhar, India

Meng-Hiot Lim School of Electrical and Electronic Engineering Nanyang Technological University Singapore, Singapore Satyasai Jagannath Nanda Department of Electronics and Communication Engineering Malaviya National Institute of Technology Jaipur Jaipur, India

 ISSN 2524-7565
 ISSN 2524-7573 (electronic)

 Algorithms for Intelligent Systems
 ISBN 978-981-99-4625-9

 ISBN 978-981-99-4625-9
 ISBN 978-981-99-4626-6 (eBook)

 https://doi.org/10.1007/978-981-99-4626-6
 ISBN 978-981-99-4626-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Preface

This book contains outstanding research papers as the proceedings of the International Conference on Paradigms of Communication, Computing and Data Analytics (PCCDA 2023). PCCDA 2023 has been organized by Dr. Akhilesh Das Gupta, Institute of Technology and Management, Delhi, India, and technically sponsored by Soft Computing Research Society, India. The conference is conceived as a platform for disseminating and exchanging ideas, concepts and results of researchers from academia and industry to develop a comprehensive understanding of the challenges of the advancements of intelligence in computational viewpoints. This book will help in strengthening congenial networking between academia and industry. We have tried our best to enrich the quality of the PCCDA 2023 through the stringent and careful peer-review process. This book presents novel contributions to Communication, Computing and Data Analytics and serves as reference material for advanced research. PCCDA 2023 received many technical contributed articles from distinguished participants from home and abroad. After a very stringent peer-reviewing process, only 68 high-quality papers were finally accepted for presentation and the final proceedings.

Jalandhar, India Jaipur, India Singapore Anupam Yadav Satyasai Jagannath Nanda Meng-Hiot Lim

Contents

1	Philosophical Review of Artificial Intelligence for Society 5.0 Ggaliwango Marvin, Micheal Tamale, Benjamin Kanagwa, and Daudi Jjingo	1
2	A Review of Different Approaches for Emotion Detection Based on Facial Expression Recognition Sonu Mittal, Kamal Parashar, Priyanshu Belwal, and Tushar Gahlaut	17
3	The Long Short-Term Memory Tuning for Multi-step AheadWind Energy Forecasting Using Enhanced Sine CosineAlgorithm and Variation Mode DecompositionMohamed Salb, Luka Jovanovic, Nebojsa Bacanin,Goran Kunjadic, Milos Antonijevic, Miodrag Zivkovic,and V. Kanchana Devi	31
4	Design of Traffic Monitoring System by Greedy Perimeter Stateless Routing Protocol Movva Ganesh Kasyap, Arepalli Gayathri, Yaram Chandana, Vadithe Venkatesh Naik, and Yaddanapudi Sarada Devi	45
5	Crop-Weed Detection, Depth Estimation and Disease Diagnosis Using YOLO and Darknet for Agribot: A Precision Farming Robot Medha Wyawahare, Jyoti Madake, Agnibha Sarkar, Anish Parkhe, Archis Khuspe, and Tejas Gaikwad	57
6	Audio Classification of Emergency Vehicle Sirens UsingRecurrent Neural Network ArchitecturesArya Shah, Amanpreet Singh, and Artika Singh	71
7	Assessment of Variable Threshold for Anomaly Detection in ECG Time Signals with Deep Learning Biraja Mishra and Rajeev Kumar	85

8	Green Cloud Computing: Achieving Sustainability Through Energy-Efficient Techniques, Architectures, and Addressing Research Challenges Sneha, Prabhdeep Singh, and Vikas Tripathi	97
9	AI-Based Smart Dashboard for Electric Vehicles Narayana Darapaneni, Anwesh Reddy Paduri, B. G. Sudha, Dilip Kumar Mohapatra, Ghanshyam Ji, Mrudul George, and N. Swathi	107
10	Solving Systems of Nonlinear Equations Using Jaya and Jaya-Based Algorithms: A Computational Comparison Sérgio Ribeiro, Bruno Silva, and Luiz Guerreiro Lopes	119
11	In-Depth Analysis of Artificial Intelligence in Mammography for Breast Cancer Detection Shweta Saraswat, Bright Keswani, and Vrishit Saraswat	137
12	The Task Allocation to Virtual Machines on Dynamic LoadBalancing in Cloud EnvironmentsRudresh Shah and Suresh Jain	145
13	Ensemble of Supervised Machine Learning Models for Cardiovascular Disease Prediction Archi Agrawal, Dinesh Singh, Charul Dewan, and Shipra Varshney	157
14	Computing Model for Real-Time Online FraudulentIdentificationRamani Jaydeep Ramniklal and Jayesh N. Zalavadia	167
15	Ontology and Machine Learning: A Two-Way Street to Improved Knowledge Representation and Algorithm Accuracy Leila Zemmouchi-Ghomari	181
16	Nonmetaheuristic Methods for Group Leader Selection, Cluster Formation and Routing Techniques for WSNs: A Review	191
17	A Comprehensive Review of Machine Learning-Based Approaches to Detect Crop Diseases Rajesh Kumar and Vikram Singh	203
18	Physiological Signals for Emotion Recognition Shruti G. Taley and M. A. Pund	221

Contents

19	Visual HOG-Enabled Deep ResiNet for Crime Scene Object Detection T. J. Nandhini and K. Thinakaran	233
20	Scheming of Diamond Ring Harvestor for Low-Powered IoT Devices Shruti Taksali and Amruta Lipare	245
21	Smart Computer Commands Using Gesture Recognition Sonali Patil, Chinmay Shyam Mukhedker, Mukul Sanjay Chaudhari, Jaspreetsingh Kulwindarsingh Pannu, and Varun Prasannan	253
22	A New Software Approach to Automated Translation (On the Example of the Logistics Sublanguage) Rodmonga Potapova, Vsevolod Potapov, and Oleg Kuzmin	263
23	Recent Advances in the Index Calculus Method for Solving the ECDLP Aayush Jindal, Aman Jatain, and Shalini Bhaskar Bajaj	275
24	Pedestrian Detection Using YOLOv5 and Complete-IoU Lossfor Autonomous Driving ApplicationsE. Raja Vikram Reddy and Sushil Thale	287
25	Health Ware—A New Generation Smart Healthcare System Nihar Ranjan, Maya Shelke, and Gitanjali Mate	297
26	EEG-Based Sleep Stage Classification System Medha Wyawahare, Rohan Bhole, Vaibhavi Bobade, Akshay Chavan, and Shreya Dehankar	311
27	FLoRSA: Fuzzy Logic-Oriented Resource Scheduling Algorithm in IaaS Cloud Kapil Tarey and Vivek Shrivastava	323
28	Real-Time Audio Communication Using WebRTC and MERN Stack	335
29	Ego Network Analysis Using Machine Learning Algorithms S. Vaibhav, M. P. Dhananjay Kumar, Tejashwini Hosamani, Vrunda Patil, and S. Natarajan	343
30	Brain Tumor Detection and Classification	353
31	Safe Vote–Fraudulent Vote Prevention System Neethu Chandrasekhar, Arjun B. Nair, Avinash Thomas George, Binitta Varghese, and Diya Anna Thomas	363

32	Intelligent Framework for Early Prediction of DiabeticRetinopathy: A Deep Learning ApproachAdil Husain Rather and Inam Ul Haq	377
33	Advanced Footstep Piezoelectric Power Generation for MobileCharging Using RFIDKiran Ingale, Atharva Jivtode, Sakshi Bandgar, Ayush Biyani, and Vedant Chaware	389
34	Radial Distribution Networks Reconfiguration with Allocationof DG Using Quasi-Oppositional Moth Flame OptimizationSneha Sultana, Sourav Paul, Poulomi Acharya,Pronoy Das Choudhury, and Provas Kumar Roy	401
35	Recent Trends in Risk Assessment of Electromagnetic Radiations Juhi Pruthi and Ashutosh Dixit	415
36	RGB and Thermal Image Analysis for Marble Crack Detection with Deep Learning Eleni Vrochidou, George K. Sidiropoulos, Athanasios G. Ouzounis, Ioannis Tsimperidis, Ilias T. Sarafis, Vassilis Kalpakis, Andreas Stamkos, and George A. Papakostas	427
37	Rover with Obstacle Avoidance Using Image Processing Krishneel Sharma, Krishan P. Singh, Bhavish P. Gulabdas, Shahil Kumar, Sheikh Izzal Azid, and Rahul Ranjeev Kumar	439
38	A Systematic Literature Review of Network Intrusion Detection System Models Yogesh and Lalit Mohan Goyal	453
39	A Comprehensive Study on Online and Offline Evaluation of Recommendation System Tamanna Sachdeva, Lalit Mohan Goyal, and Mamta Mittal	469
40	Autonomous Delivery Vehicle Using Raspberry Piand Computer VisionVijay Ravindran, S. Chandrika, Ram Prakash Ponraj,C. Krishnakumar, S. Devadharshini, and S. Lakshmi	481
41	Standard Plane Classification of Fetal Brain Ultrasound Images	495
42	Panoramic Radiograph Segmentation Using U-Netwith MobileNet V2 EncoderSuvarna Bhat and Gajanan K. Birajdar	509

х

Contents

43	Molecular Recognition and Feature Extraction System Dannerick Elisha, Jimson Sanau, Mansour H. Assaf, Rahul R. Kumar, Bibhya Sharma, and Ronesh Sharma	523
44	Object Recognition with Voice Assistant for Visually Impaired Deepanshu Jain, Isha Nailwal, Arica Ranjan, and Sonu Mittal	537
45	Emotion Recognition-Based Emoji Retrieval P. Parvathi Sreyani, Kandula Rakshitha, Nasalai Sanjana, Yeddula Greeshma, and Ashwini M. Joshi	547
46	An Outage Probability-Based RAW Station Groupingfor IEEE 802.11ah IoT NetworksMd. Arifuzzaman Mondal and Md. Iftekhar Hussain	559
47	Machine Learning Algorithms and Grid Search CrossValidation: A Novel Approach for Diabetes DetectionVishal V. Mahale, Ashish G. Nandre, Mahesh V. Korade,and Neha R. Hiray	571
48	Environment Mapping Using Ultrasonic Sensor for ObstacleDetection and NavigationMedha Wyawahare, Aditya Shirude, Akshara Amrutkar,Anurag Landge, and Ashfan Khan	583
49	Identification and Classification of Skin Diseaseswith Erythema Using YOLO AlgorithmC. Santhosh Kumar, K. Amritha Devangana, P. L. Abirami,M. Prasanna, and S. Hari Aravind	595
50	PSO-Based Controller for LFC of Deregulated Power System Dharmendra Jain, M. K. Bhaskar, and Manish Parihar	607
51	Solar Maximum Power Point Tracking and MachineLearning-Based ForecastingAkshay Pandya, Galav Bhatt, Jash Patadia, and Het Patel	625
52	Comparative Performance Analysis of Various Controllers for Quadruple Tank System C. Praveen Kumar and K. Ayyar	639
53	Supervised Machine Learning Text Classification: A Review Nisar Ahmad Kangoo and Apash Roy	651
54	Train Delay Prediction Using Machine LearningNilesh N. Dawale and Sunita Nandgave	663
55	Logical Formalization for a HMDCS-UV Salima Bella and Ghalem Belalem	675

Co	nte	nts

56	SANKET—A Vision Beyond Gestures Isha Gawde, Jisha Philip, Kanaiya Kanabar, Shilpa Tholar, and Shalu Chopra	689
57	Assessing the Effectiveness of Different Mass Communication Approaches Used for Government Medical Programs in Rural Areas of Uttarakhand Pradeep Joshi, Omdeep Gupta, Mayank Pant, Kartikeya Raina, and Bhanu Sharma	699
58	Computer Vision-Based Virtual Mouse Cursor Using Hand Gesture Tanmay Sonawane, Sarvesh Waghmare, Abhishek Dongare, Avadhut Joshi, and Anandkumar Birajdar	713
59	A Review of Machine Learning Models for Disease Prediction in Poultry Chickens Divya Verma, Neelam Goel, and Vivek Kumar Garg	723
60	Technological Approach Toward Smart Grid Security: A Review	739
61	Storage and Verification of Medical Records Using Blockchain, Decentralized Storage, and NFTs Shubham Thakur and Vijay Kumar Chahar	753
62	A Study on Prediction of Temperature in Metropolitan Cities Using Machine Learning Shweta S. Aladakatti, A. Bharath, V. T. Adarsha, B. J. Ajith, and H. R. Chaithra	769
63	A Review of Secure Authentication Techniques in Fog Computing	783
64	SafeMaps: Crime Index-Based Urban Route Prediction Ria Singh, Shatakshi Mohan, Harsh Pooniwala, V. V. Gokul, and S. Shilpa	793
65	Controlling the Steering Wheel Using Deep Reinforcement Learning: A Survey Narayana Darapaneni, Anwesh Reddy Paduri, B.G. Sudha, Vidyadhar Bendre, Midhun Chandran, M. Mohana Priya, and Varghese Jacob	805
66	NL2SQL: Rule-Based Model for Natural Language to SQL Kevin Tony, Kripa Susan Shaji, Nijo Noble, Ruben Joseph Devasia, and Neethu Chandrasekhar	817

67	7 VANET-Based Communication in Vehicles to Control		
	Accidents Using an Efficient Routing Strategy	829	
	Humera Maahin, Deepthi Kondamuri, Sarvani Polisetty,		
	and Sarada Devi Yaddanapudi		
68	ECG Image Classification for Arrhythmia Using Deep		
	Learning	839	
	Shasmita Nair, Prerna Peswani, Jai Rohra, and M. Vijayalakshmi		

About the Editors

Dr. Anupam Yadav is Associate Professor, Department of Mathematics, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, India. His research area includes numerical optimization, soft computing and artificial intelligence; he has more than ten years of research experience in the areas of soft computing and optimization. Dr. Yadav has done a Ph.D. in soft computing from the Indian Institute of Technology Roorkee, and he had worked as Research Professor at Korea University. He has published more than 25 research articles in journals of international repute and has published more than 15 research articles in conference proceedings. Dr. Yadav has authored a textbook entitled *An Introduction to Neural Network Methods for Differential Equations*. He has edited several books which are published by various book series of Springer. Dr. Yadav was General Chair, Convener and Member of the steering committee of several international conferences. He is Member of various research societies and editorial boards.

Dr. Satyasai Jagannath Nanda is Assistant Professor at the Department of Electronics and Communication Engineering, Malaviya National Institute of Technology Jaipur, since June 2013. Prior to joining MNIT Jaipur, he has received the Ph.D. degree from School of Electrical Sciences, IIT Bhubaneswar, and M.Tech. degree from the Department of Electronics and Communication Engineering, NIT Rourkela. He was the recipient of Canadian Research Fellowship-GSEP, from the Department of Foreign Affairs and Intern. Trade (DFAIT), Government of Canada, for the year 2009–2010. He was awarded Best Ph.D. Thesis Award at SocPros 2015 by IIT Roorkee. He received the best research paper awards at SocPros-2020 at IIT Indore, IC3-2018 at SMIT Sikkim, SocPros-2017 at IIT Bhubaneswar, IEEE UPCON-2016 at IIT BHU and Springer OWT-2017 at MNIT. He is the recipient of prestigious IEI Young Engineers Award by Institution of Engineers, Government of India, in the field of Electronics and Telecommunication Engineering for the year 2018–2019. Dr. Nanda is Senior Member of IEEE and IEEE Computational Intelligence Society.

Dr. Meng-Hiot Lim is Faculty at the School of Electrical and Electronic Engineering. He is holding a concurrent appointment as Deputy Director for the M.Sc. in Financial Engineering and the Centre for Financial Engineering, anchored at the Nanyang Business School. He is Versatile Researcher with diverse interests, with research focus in the areas of computational intelligence, evolvable hardware, finance, algorithms for UAVs and memetic computing. He is currently Editor-in-Chief of the *Journal of Memetic Computing* published by Springer. He is also Series Editor of the book series by Springer titled *Studies in Evolutionary Learning and Optimization*.

SPRINGER NATURE Link

<u></u> ■ Menu

Q Search

Home > Proceedings of International Conference on Paradigms of Communication, Computing and

Data Analytics > Conference paper

Radial Distribution Networks Reconfiguration with Allocation of DG Using Quasi-Oppositional Moth Flame Optimization

| Conference paper | First Online: 11 October 2023

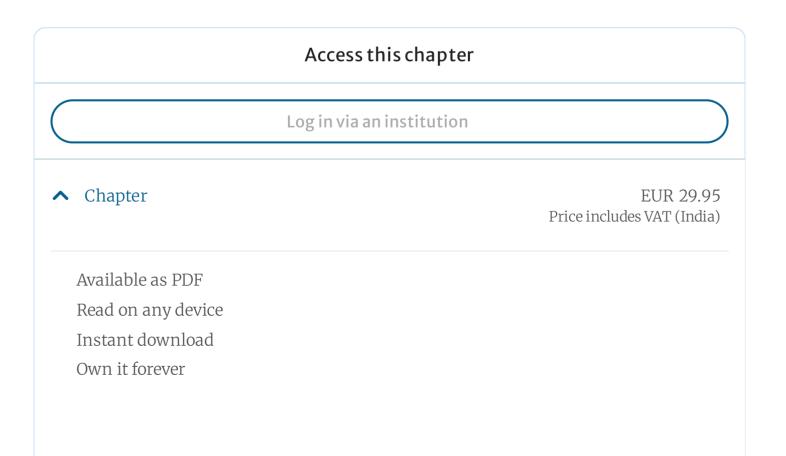
| pp 401–413 | <u>Cite this conference paper</u>

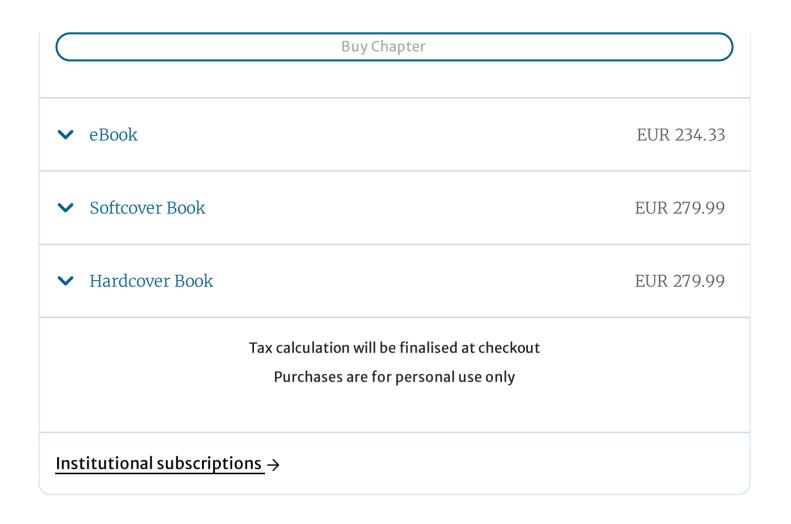
<u>Proceedings of International</u> <u>Conference on Paradigms of</u> <u>Communication, Computing and</u>...

(PCCDA 2023)

Sneha Sultana 🖂, Sourav Paul, Poulomi Acharya, Pronoy Das Choudhury & Provas Kumar Roy

Part of the book series: <u>Algorithms for Intelligent Systems</u> ((AIS))


Included in the following conference series: <u>International Conference on Paradigms of Communication, Computing and Data</u> <u>Analytics</u>

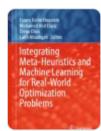

Ъ Cart

Abstract

This research aims to reconfigure radial distribution networks in presence of distributed generators (DGs) using the quasi-oppositional moth flame optimization (QOMFO) method in order to minimize power losses in the power system network and maintain a constant voltage profile throughout the power system network, which will aid in increasing system efficiency. The primary goal is to demonstrate the proper placement of distributed generators (DGs) in the radial distribution network, as well as the reconfiguration and installation of DGs in the radial distribution network. The primary benefit of this algorithm is continuous guiding search with changing goal, which can be used for real-time applications with only minor adjustments because the power from distributed generation is constantly changing. This algorithm has been tested for loss minimization on a standard 33 and 69 bus radial distribution systems, and the results show that it is efficient and suitable for real-time applications.

This is a preview of subscription content, <u>log in via an institution</u> **2** to check access.

Similar content being viewed by others



<u>Chaotic Quasi-</u> <u>Oppositional Moth Flame</u> <u>Optimization for Radial</u> Distribution Network...

Chapter © 2024

Optimal Multi-Indices Application of Distributed Generations in Radial Distribuion...

Article 01 March 2019

Combined Optimization Algorithms for Incorporating DG in Distribution Systems

Chapter © 2022

References

1. Tabares A, Puerta GF, Franco JF, Romero RA (2021) Planning of reserve branches to increase reconfiguration capability in distribution systems: a scenario-based convex programming approach. IEEE Access 9:104707–104721

Google Scholar

2. Gao Yuanqi, Wang Wei, Shi Jie, Nanpeng Yu (2020) Batch-constrained reinforcement learning for dynamic distribution network reconfiguration. IEEE Trans Smart Grid 11(6):5357–5369

Article Google Scholar

3. Akbari MA, Aghaei J, Barani M, Niknam T, Ghavidel S, Farahmand H, Korpas M, Li L (2018) Convex models for optimal utility-based distributed generation allocation in radial distribution systems. IEEE Syst J 12(4):3497–3508

Google Scholar

 4. Shaheen Abdullah, Elsayed Abdallah, Ginidi Ahmed, El-Sehiemy Ragab, Elattar Ehab (2022) Reconfiguration of electrical distribution network-based dg and capacitors allocations using artificial ecosystem optimizer: practical case study. Alexandria Eng J 61(8):6105–6118

Article Google Scholar

 Tan S, Xu J-X, Panda SK (2013) Optimization of distribution network incorporating distributed generators: an integrated approach. IEEE Trans Power Syst 28(3):2421– 2432

Google Scholar

6. Srinivasa Rao R, Ravindra K, Satish K, Narasimham SVL (2012) Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation. IEEE Trans Power Syst 28(1):317–325

Google Scholar

7. Mohamed Imran A, Kowsalya M, Kothari DP (2014) A novel integration technique for optimal network reconfiguration and distributed generation placement in power distribution networks. Int J Electri Power Energy Syst 63:461–472

Google Scholar

8. Merlin A (1975) Search for a minimum-loss operating spanning tree configuration for an urban power distribution system. In: Proceedings of 5th PSCC, vol 1. pp 1–18

Google Scholar

9. Shirmohammadi D, Wayne Hong H (1989) Reconfiguration of electric distribution networks for resistive line losses reduction. IEEE Trans Power Delivery 4(2):1492–1498

Google Scholar

10. Civanlar S, Grainger JJ, Yin H, Lee SSH (1988) Distribution feeder reconfiguration for loss reduction. IEEE Trans Power Delivery 3(3):1217–1223

Google Scholar

11. Georgilakis PS, Hatziargyriou ND (2013) Optimal distributed generation placement in power distribution networks: models, methods, and future research. IEEE Trans Power Syst 28(3):3420–3428

Google Scholar

12. Sultana S, Roy PK (2016) Oppositional krill herd algorithm for optimal location of capacitor with reconfiguration in radial distribution system. Int J Electri Power Energy Syst 4:78–90

Google Scholar

13. Biswal SR, Shankar G, Elavarasan RM, Mihet-Popa L (2021) Optimal allocation/sizing of dgs/capacitors in reconfigured radial distribution system using quasi-reflected slime mould algorithm. IEEE Access 9:125658–125677

Google Scholar

14. Barnwal AK, Yadav LK, Verma MK (2022) A multi-objective approach for voltage stability enhancement and loss reduction under pqv and p buses through reconfiguration and distributed generation allocation. IEEE Access 10:16609–16623

Google Scholar

15. Tran TV, Truong B-H, Nguyen TP, Nguyen TA, Duong TL, Vo DN (2021) Reconfiguration of distribution networks with distributed generations using an improved neural network algorithm. IEEE Access 9:165618–165647

Google Scholar

16. Mirjalili Seyedali (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowledge-based Syst 89:228–249

Article Google Scholar

17. Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: International conference on computational intelligence for modelling,

control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC'06), vol 1. IEEE, pp 695–701

Google Scholar

18. Kashem MA, Ganapathy V, Jasmon GB, Buhari MI (2000) A novel method for loss minimization in distribution networks. In: DRPT2000. International conference on electric utility deregulation and restructuring and power technologies. Proceedings (Cat. No. 00EX382), IEEE, pp 251–256

Google Scholar

19. Tran TT, Truong KH, Vo DN (2020) Stochastic fractal search algorithm for reconfiguration of distribution networks with distributed generations. Ain Shams Eng J 11(2):389–407

Google Scholar

Author information

Authors and Affiliations

Dr. B. C. Roy Engineering College, Durgapur, India Sneha Sultana, Sourav Paul, Poulomi Acharya & Pronoy Das Choudhury

Kalyani Government Engineering College, Kalyani, India Provas Kumar Roy

Corresponding author

Correspondence to <u>Sneha Sultana</u>.

Editor information

Editors and Affiliations

Department of Mathematics, Dr. B. R. Ambedkar National Institute Technology, Jalandhar, India

Anupam Yadav

Department of Electronics and Communication Engineering, Malaviya National Institute of Technology Jaipur, Jaipur, India Satyasai Jagannath Nanda

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore Meng-Hiot Lim **Rights and permissions**

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Sultana, S., Paul, S., Acharya, P., Choudhury, P.D., Roy, P.K. (2023). Radial Distribution Networks Reconfiguration with Allocation of DG Using Quasi-Oppositional Moth Flame Optimization. In: Yadav, A., Nanda, S.J., Lim, MH. (eds) Proceedings of International Conference on Paradigms of Communication, Computing and Data Analytics. PCCDA 2023. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-99-4626-6_34

.RIS ± .ENW ± .BIB ±

Published 11 October 2023 Publisher Name Springer, Singapore

DOI

https://doi.org/10.1007/97 8-981-99-4626-6_34

Print ISBN 978-981-99-4625-9 Online ISBN 978-981-99-4626-6 eBook Packages Intelligent Technologies and Robotics Intelligent Technologies and Robotics (R0)

Publish with us

Policies and ethics [7