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a b s t r a c t

The delta operator modeling provides a unified framework for both continuous-time and discrete-
time modeling in system theory. At high sampling rate, the shift operator fails to provide meaningful
information whereas, the delta operator parameterized system provides the same results as of
continuous time systems. In this paper reduced order modeling of delta operator parameterized
systems is considered. A complex domain (δ) optimal frequency matching (OFM) technique is proposed
and frequency points are optimized using Particle Swarm Optimization (PSO) algorithm. This OFM is
then utilized to find the reduced order model of the higher order system. PSO algorithm is a robust,
global optimization technique, used to find these OFMs and thereby used to find the coefficients of the
reduced order model by minimizing a cost function developed based on the responses of the higher
order model and that of the reduced order model when both are excited by pseudo random binary
sequences (PRBS). The performance characteristics are evaluated in software simulation using MATLAB
considering example of higher order system in delta domain and time & frequency responses of the
corresponding reduced model.

© 2024 Elsevier Ltd. All rights reserved.
1. Introduction

Every physical system can be converted into mathematical
odel. Representation of the complex high order mathematical
odels impose lot of difficulty on simulation, analysis and control
esign. It is therefore requiring, finding the possibilities of some
quation of the same type but of lower order and also they
ave the same dominant characteristics of the system under
onsideration. Reduced order modeling (ROM) is a systematic
rocedure to design and analysis of higher order systems. ROM
inds its application in various fields of science and engineering
ike modeling of MEMS devices (Nayfeh, Younis, & Abdel-Rahman,
005), chemical processes (Dorneanu, Bildea, & Grievink, 2009).
everal researchers have developed different classical as well
s nature inspired meta heuristic approaches for the last few
ecades to approximate high order system with the correspond-
ng low order model (Fortuna, Nunnari, & Gallo, 1992; Jamshidi,
983; Mahmoud & Singh, 1981) in both time and frequency
omains (Biradar, Hote, & Saxena, 2016; Ganji, Mangipudi, &
anyala, 2017; Sikander & Prasad, 2017; Sikander & Thakur,
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468-6018/© 2024 Elsevier Ltd. All rights reserved.
2018). Nowadays, artificial intelligence like deep learning based
ROM using auto-encoders is also gaining attraction in the field of
reduced order modeling (Halder, Fidkowski, & Maki, 2022).

Model order reduction problem in discrete time system has
traditionally been studied using the shift operator and its associ-
ated transfer function description. With the inception of the delta
operator in 1985, the system and control problems of discrete
time systems are being looked into with renewed impetus using
the delta operator formulation. The delta operator is essentially a
finite difference operator, which has been widely used in numer-
ical analysis. The advantages of the delta operator representation
of the discrete time system over the conventional forward shift
operator and its associated z-domain transformation is well doc-
umented in Goodwin and Middleton (1986, 1990, 1992), Neuman
(1993a, 1993b). Mukhapadhyaya, in his work (Mukhopadhyay,
Patra, & Rao, 1992) has shown that the so called delta operator
is a particular case of the generalized δ- operator representa-
tion of the discrete-time systems. Due to superior properties
of the delta operator systems along with its better finite word
length effects (Maione, 2011), delta operator is a good choice
among the researchers in the field of control theory and signal
processing (Dolai, Mondal, & Sarkar, 2022; Mondal & Sarkar,
2016). The problems associated with traditional shift operator

parameterization are thus can be avoided using delta operator
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arameterization and is used in numerous applications (Cortés-
omero, Luviano-Juárez, & Sira-Ramírez, 2013; Gao, Chai, Shuai,
hang, & Cui, 2018; Lamrabet, Tissir, & Haoussi, 2020; Pal, 1996;
uezada-Téllez, Franco-Pérez, & Fernandez-Anaya, 2020; Sarkar
Pal, 2006; Zhao & Zhang, 2017).
An approximate frequency response (AFR) matching is a pow-

rful tool, used in system and control theory. AFR matching
ethod is used in this work to obtain the reduced order model

n delta domain. The frequency response of the high order SISO
ystem is computed in the delta domain at chosen frequency
oints. In this work, the optimal frequency points are fitted using
article Swarm Optimization (PSO) algorithm.
The Particle Swarm Optimization (PSO) algorithm is a popu-

ation based search algorithm formulated upon the simulation of
ocial behavior of birds, bees or school of fishes. Each individual
ithin the swarm represent by a vector in multidimensional
earch space. This vector has also one assigned vector which
etermines next movement of the particle called velocity vector.
his algorithm also determines how to update velocity of particle.
SO was originally designed and introduced by Kennedy and
berhart (1995, 2001) and find its applications in versatile area
f science and technological research (Gad, 2022; Kondukwar
Dewangan, 2022; Roman, Marcin, & Robert, 2021; Yudong,

huihua, & Genlin, 2015).
The following section discusses the significant contributions of

his work. It can be observed from literature that the reduced or-
er modeling (ROM) of the higher order systems have been done
or continuous time systems and discrete time systems using the
lassical meta-heuristic approaches. This paper deals with model
rder reduction of the delta operator parameterized systems. In
his work, the proposed reduced order model is obtained by
ptimal frequency fitting (OFF) in the delta domain using PSO
lgorithm. At very high sampling frequency, the discrete time
igher order systems and corresponding reduced order systems
re showing similar step and frequency response characteristics.
herefore, this method can be called as a unified method of model
rder reduction in delta domain using OFF and PSO algorithm.
his method is new concept in the literature of reduced order
odeling. An example is included to see how the time and

requency responses of the reduced order model are in close
orrespondence to that of the high order model.
The paper is organized as follows: fundamentals of delta oper-

tor are presented in Section 2. Section 3 describes model order
eduction by approximate frequency response (AFR) matching
ethod. In Section 4, Particle Swarm Optimization algorithm is
iscussed. Section 5 deals with optimal frequency fitting ap-
roach using PSO and Section 6 is devoted for result and analysis
hereas conclusion is made in Section 7.

. Fundamentals of delta operator

For the modeling of any continuous time dynamic system, d
dt

operator plays the pivotal role and it is defined as,
d
dt

= lim
h→0

x(t+k) − x(t)
h

(1)

There is another operator which resembles the d
dt operator

unctionally and structurally in the discrete domain known as
elta-operator (δ) which is defined as,

=
q − 1
∆

(2)

where, q is the forward shift operator; the sampling time is
denoted by ∆.
It is an incremental difference operator that works on the

principle of signal differentiator rather than traditional signal
2

Fig. 1. (a) Stability zone: S domain, (b) Stability zone: Z domain, (c) Stability
zone: δ-domain.

shifting operation as can be seen in case of shift operator parame-
terization. This is a shifted and scaled version of the shift operator.
In the frequency domain, the delta operator is represented by γ
and it is linearly related with the frequency domain variable (z)
of discrete shift operator parameterization as given by (3),

γ =
z − 1
∆

(3)

From (3), it can be observed that the stable zone in discrete
delta domain lies in a circle of radius 1/∆ and its center at (−1/∆,
) corresponding to the stability region in z-domain. The stability
egions in continuous time (s), discrete domain (z) and discrete
elta domain (δ) are shown in Fig. 1a, b and c respectively. At

very fast sampling rate (∆ → 0), the stability region of the delta
operator parameterized system converges to the stability region
of continuous time system as can be observed from Fig. 1.

The delta transform of any function g (k∆) is defined as

δ(γ ) = ∆

∞∑
k=0

g(k∆)(1 +∆γ )−k (4)

where, k is the indexing discrete-time parameter. Now if g (k∆) is
the impulse response of the system then Gδ(γ ) is the delta trans-
fer function of the system considering all the initial conditions are
zero. Revisiting (3) and considering the relationship z = es∆, the
requency variable γ in discrete delta domain is represented by
ollowing equation.

=
ejw∆ − 1
∆

= |Rδ| ejθ (5)

Therefore, the complex delta domain transfer function can be
represented by its magnitude and phase using (6).

Gδ(γ ) = |Gδ|ejϕ (6)

where, ω is the frequency in radian/sec of the input sinusoidal
signal, |Rδ| and θ are the magnitude and phase of the transformed
variable γ and |Gδ| and ϕ are magnitude and phase of the transfer
function Gδ(γ ). At fast sampling rate (∆ → 0), γ =

(ejω∆−1)
∆

∼= jω
means the frequency response of the delta operator parameter-
ized system converges to corresponding frequency response of
the continuous-time system (s = jω).

3. Model order reduction using approximate frequency re-
sponse (AFR) matching methods

The approximate frequency response (AFR) matching method
in the δ domain is discussed in this section which will be used
for the reduced order modeling of delta operator parameterized
system. Let G (γ ) be the delta transfer function of the high order
δ
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d
m

ingle input single output (SISO) stable discrete time system and
iven by (7).

δ(γ ) =
GNδ(γ )
GDδ(γ )

= K
1 + b1γ + b2γ 2

+ · · · + bmγm

1 + a1γ + a2γ 2 + · · · + anγ n (7)

where, m < n in consideration of a strictly proper system. It is
assumed that Gδ(γ ) is irreducible i.e. GNδ(γ ) and GDδ(γ ) have no
eros in common. Let GRδ(γ ) be the qth order reduced model of
the form,

GRδ(γ ) =
GRNδ(γ )
GRDδ(γ )

= K
1 + β1γ + β2γ

2
+ · · · + βpγ

p

1 + α1γ + α2γ 2 + · · · + αqγ q (8)

where, q ≪ n, p ≤ q and for a strictly proper delta transfer
unction, p = q − 1. The order of the reduced model is assumed
s q and this necessitates computation of at least 2q − 1 free
arameters of the reduced order model structure as shown by
8). For matching the frequency responses of GRδ(γ ) with Gδ(γ ),
et us consider Eq. (9).

δ(γ )|
γ=

ejω∆−1
∆

= GRδ(γ )|
γ=

ejω∆−1
∆

(9)

Using (5), (6) and (8), the following relationship is obtained.
q−1∑
i=1

βi|Rδ|iejθ i − |Gδ|ejϕ
q∑

i=1

αi |Rδ| ejθ i = |Gδ|ejϕ − 1 (10)

Let us define ψ = ω∆, therefore θ and ϕ become the function
f ψ . Equating the real and the imaginary parts of (10), Eqs. (11)
nd (12) are obtained.
q−1∑
i=1

βiRi(ψ) −

q∑
i=1

αiSi(ψ) ∼= Ti(ψ) (11)

q−1∑
i=1

βiUi(ψ) −

q−1∑
i=1

αiVi(ψ) ∼= Wi(ψ) (12)

here, Ri(ψ) = |Rδ|i cos θ i, Si(ψ) = |Gδ| |Rδ|i cos(θ i + ϕ) ,Ui(ψ) =

Rδ|i sin θ i, Ti = |Gδ| cosϕ − 1, Wi(ψ) = sinϕ
The left-hand side(l.h.s.) expression of (11) and (12) are real

unction of ψ with unknown coefficients βi andαi. Ti(ψ) and Wi(ψ)
re also two real (known) functions ofψ . Hence, the left hand side
f (11) and (12) are designated as ΦR(ψ) and ΦI (ψ) respectively.

Rewriting the Eqs. (11) and (12) for convenience as:

ΦR(ψ) = Ti(ψ) (13)

ΦI (ψ) = Wi(ψ) (14)

In order to force equivalence of two real functions ΦR(ψ)
nd ΦI (ψ) with their approximates Ti(ψ) and Wi(ψ) respectively,
ne may equate approximate number of initial few terms of the
orresponding Taylor series expansions about ψ = 0. Thus, to ac-
complish appropriate matching of the left hand side functions in
(13) and (14) with the corresponding functions on the right hand
side, the initial N derivatives (N ≤ q − 1) of the corresponding
functions are equated at ψ = 0 to formulate (15) and (16).

dk

dψk [ΦR(ψ)]
⏐⏐⏐⏐ψ=0 =

dk

dψk [T (ψ)]
⏐⏐
ψ=0 (15)

dk

dψk [ΦI (ψ)]
⏐⏐⏐⏐ψ=0 =

dk

dψk [Wi(ψ)]
⏐⏐
ψ=0 (16)

for k ∈ [0,N − 1].ΦR(ψ) approximately matches Ti(ψ) if the
following condition is satisfied.

ΦR(ψ)
⏐⏐
ψ=ψk = Ti(ψ)

⏐⏐
ψ=ψk; k ∈ [0,N − 1] (17)

where, ψk are small positive values around ψ = 0. Similarly, (18)
is the condition to be satisfied for matching between Φ (ψ) and
I

3

Wi(ψ)

ΦI (ψ)
⏐⏐
ψ=ψk = Wi(ψ)

⏐⏐
ψ=ψk; k ∈ [0,N − 1] (18)

The relations in (17) and (18) may be written in a matrix form
s

x = b (19)

It is clear from (19) that N values of ψ give 2N number of
inear algebraic equations for the unknown parameters of the
educed model. For (2q − 1) number of unknown parameters, N
s at least equal to (q − 1). In the case when, 2N > (2q − 1), the
arameters of the reduced model may be determined by the least
quare solution of Eq. (19) as,
= (ATA)−1ATb
here,
=

[
β0 β1 β2 . . . α0 α1 α2 . . . . . αq−1

]
=

[
T0 T1 T2 . . . TN W1 W2 . . Wk . . WN

]
4. Particle Swarm Optimization (PSO) algorithm

Particle Swarm Optimization (PSO) is a popular optimization
tool for optimization of complex problems. This is a population
based evolutionary algorithm. In PSO the particles are placed in
search space of some problem function and each evaluates the
objective function at its current location. Then each particle eval-
uates its movement through whole search space by its current
and best locations, with some random value.

The PSO algorithm is simple and easy to implement. The
procedures for implementing PSO (Kennedy & Eberhart, 1995) are
as follows:
Step 1. Assume that, in d-dimensional search space and ith par-
ticle of the swarm can be represented by vector, Xi = xi1, xi2, xi3
........xid.
tep 2. The velocity of the particle is Vi = vi1, vi2, vi3........vid,
here d is the dimension of the search space.
tep 3. For each particle, evaluate the fitness function f (Xi) with
variable.
tep 4. Initialize the best visited position of the particle with
i−best = pi1, pi2, pi3...........pid and compare fitness evaluation
ith Pi−best .

f f (Xi) < f (Pi−best ) then f (Pi−best ) = f (Xi), Pi−best = Xi
tep5. Initialize global best position Pg−best = pg1, pg2, pg3...........
gd. Identify the particle in the neighborhood with the best suc-
ess so far.
f f (Xi) < f (Pg−best ) then f (Pgi−best ) = f (Xi), Pg−best = Xi
tep 6. Position and velocity of the particle are updated by the
ollowing equation:

i(t + 1) = w ∗ Vi(t) + c1 ∗ R1 ∗ (Pi−best − Xi)

+ c2 ∗ R2 ∗ (Pg−best − Xi) (20)

Xi(t + 1) = Xi(t) + Vi(t + 1) (21)

here, c1, c2 are positive constant. R1, R2 are two random vari-
bles with uniformly distribution. w is the inertia weight which
hows the effects of previous velocity vector on the new vector.
n upper bound is placed on velocity in all dimensions and is
enoted by Vmax.
tep 7. Go to step 3 until a criterion is matched, either a suffi-
iently good fitness or maximum no of iteration.

. Optimal frequency fitting (OFF) using PSO algorithm

In this work, the reduced order modeling of higher order
elta operator parameterized systems is proposed using opti-
al frequency fitting approach by PSO algorithm. The frequency
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oints are chosen randomly in search space which is bounded
y upper and lower value [1, 0]. The fitness values for every
requency points are evaluated using PSO. For the calculation of
he fitness values, higher order delta parameterized system and
odel reduced order system are excited with the persistently
xciting type pseudo random binary sequence (PRBS) to obtain
he output. The PRBS input considered with a period of ‘T ’and
it interval equal to a scaled multiple of the sampling interval.
he window size is considered as’ W ’ as the fitness function is
alculated for ‘W ’ time steps of the input sequence. The algorithm
or the proposed model order reduction using OFF method is
escribed below:
tep 1: Initialize the PSO by setting the parameter of PSO (num-
er of dimension, swarm size, maximum iteration, cognitive and
ocial acceleration, initial and final value of iteration, maximum
elocity).
tep 2: Initialize particle current position by selecting (2q −

) arbitrary complex frequency points in the search space. The
earch space is bounded by upper and lower value of swarm.
tep 3: For each particle in the search space, compute its velocity.

Step 4: Find initial fitness value. To compute the fitness value
following steps are followed:
(i) Discretize the higher order continuous time model incorpo-
rating sampler and hold with input and obtain the discrete-time
model in the complex delta (γ ) domain.
(ii) Assume the order of the reduced model and its structure as
in (8).
(iii) Compute the non-zero entries, αi, βi by solving Eqs. (11) and
12).
iv) Check the denominator polynomial of (8), 1+

∑q
i=1 αiγ

q for
stability.
(v) Excite the systems by PRBS sequence and obtain the outputs.
(vi) Compute the performance index (fitness function) as given
by (23)

PI = ER ∗ ERT (22)

where, ER = Yδ − YRδ .
Step 5: Compute the best particle in initial population by com-
paring the fitness value with best visited position so far. If fitness
value is less than local best position value then update local best
value and particle’s position.
Step 6: Compare with global best position with fitness value. If
fitness value is less than global best position then update global
best value and global best position.
Step 7: Update velocity of the particle by (21).
Step 8: Update position of particle by (22).
Step 9: Go to step 4 until best fitness value or maximum no of
iteration is achieved.

6. Result analysis and discussion

To illustrate the method of reduced order modeling in δ do-
main and to observe the behavior of the resultant reduced or-
der model an eighth order continuous-time system is consid-
ered (Sikander & Prasad, 2015) and described by (24). The cor-
responding delta operator parameterized transfer functions for
different sampling time (∆) are described by (25) given in Box I
, (26) and (27).

The above systems are reduced to the corresponding 2nd order
model using OFF and PSO. The algorithm parameters considered
in this work is tabulated in Table 1.

Three delta operator parameterized systems are considered
along with the original continuous time system for getting the
corresponding reduced order model (2nd order) by proposed

method. Different sampling times are considered to obtain the

4

Table 1
PSO algorithm parameters.
Algorithm Parameters Values

PSO

Swarm size 30
Maximum Velocity
Maximum Iteration

100
100

Acceleration constant
(c1)

1.98

Acceleration constant
(c2)

1.98

Initial inertia weight 0.96
Final inertia weight 0.3

Fig. 2. (a) Step response of reduced order system and original system in
continuous time domain (b) Frequency response of reduced order system and
original system in continuous time domain.

Table 2
Statistical assessment of fitness function.
System Best Value Worst Value Average

Value
Standard
Deviation

Gδ1(γ )|∆=0.1 8.5218e−07 9.2317e−06 4.3319e−06 3.3586e−06
Gδ2(γ )|∆=0.01 7.2381e−07 4.2381e−06 2.2381e−06 7.2381e−06
Gδ3(γ )|∆=0.001 2.2453e−07 5.5435e−06 3.2381e−06 2.3424e−06

Table 3
p values for Wilcoxon signed rank test using PSO
algorithm.
System p- value

Gδ1(γ )|∆=0.1 6.1835e−05
Gδ2(γ )|∆=0.01 5.8343e−05
Gδ3(γ )|∆=0.001 5.1843e−05

delta transfer functions. The value of sampling time (∆) is re-
duced up to 0.001 s to unify the continuous time and discrete
time results.

Pentium i7, 2.4 GHz processor with 32.0 GB RAM PC is used
to perform the test of proposed algorithm using MATLAB R2020a
version has bee.PSO is a stochastic metaheuristic method and it
needs multiple run for getting statistical results. In this experi-
mentation, 30 test runs are performed. The statistical results for
the optimization of the fitness function are tabulated in Table 2
for the proposed algorithm. To validate the significance of the ob-
tained results, non-parametric Wilcoxon signed rank test (Rosner,
Glynn, & Lee, 2006) is considered and the p values are enlisted in
Table 3.

The step response and frequency response of the original con-
tinuous time system and its reduced order model in continuous
time domain using the proposed method are illustrated in Fig. 2a
and b respectively.

The 2nd order reduced model of the three delta operator
parameterized systems are tabulated in Table 4 along with the re-
duced order 2nd order model for original continuous tine systems
using the proposed method of reduced order modeling.
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G(s) =
16s7 + 483s6 + 6010s5 + 36380s4 + 122700s3 + 222100s2 + 185800s + 40320

s8 + 36s7 + 546s6 + 4536s5 + 22450s4 + 67280s3 + 118100s2 + 109600s + 40320
(23)

Gδ1(γ )|∆=0.1 =
12.145γ 7

+ 279.4977γ 6
+ 2604.3219 γ 5

+ 12588.137γ 4
+ 34305.7376γ 3

+ 51102.5552γ 2
+ 36086.2484γ + 7253.946

γ 8 + 27.6404γ 7 + 325.3555 γ 6 + 2123.0418γ 5 + 8364.2883γ 4 + 20263.8888γ 3 + 29274.7067γ 2 + 22835.973γ + 7253.946
(24)

Gδ2(γ )|∆=0.01 =
15.5451γ 7

+ 456.8906γ 6
+ 5500.3765 γ 5

+ 32529.0874γ 4
+ 107311.8647γ 3

+ 190381.5754γ 2
+ 156510.524γ + 33706.7324

γ 8 + 35.0012γ 7 + 516.7752 γ 6 + 4185.2051γ 5 + 20223.8615 γ 4 + 59280.0208γ 3 + 101985.3025γ 2 + 92981.8399γ + 33706.7324
(25)

Gδ3(γ )|∆=0.001 =
15.9536γ 7

+ 480.3233γ 6
+ 5956.6639 γ 5

+ 35973.0938γ 4
+ 121058.6417γ 3

+ 218687.8729γ 2
+ 182625.7406γ + 39601.0694

γ 8 + 35.8982γ 7 + 542.9863 γ 6 + 4499.4241γ 5 + 22215.4798 γ 4 + 66429.1900γ 3 + 116371.5382γ 2 + 107804.2872γ + 39601.0694
(26)

Box I.
S

Table 4
Reduced order systems in continuous time domain and discrete-delta domains
with RMSE.
Sampling Time
(∆)

Reduced order System Root Mean Square error

. . . .. R(s) =
15.4468 s+4.9056
s2+6.168 s+4.9056

2.16148e−02

0.1 Rδ1 =
12.0605γ+3.6831

γ 2+5.2206 γ+3.6831
1.36858e−02

0.01 Rδ2 =
16.5152 γ+4.9251

γ 2+6.7967 γ+4.9251
1.1361e−02

0.001 Rδ3 =
15.5883 γ+4.9288

γ 2+6.2543 γ+4.9288
1.6952e−03

Fig. 3. (a) Frequency response of reduced order system Rδ1 in delta domain,
= 0.1 (b) Frequency response of reduced order system Rδ2 in delta domain,
= 0.01 (c) Frequency response of reduced order system Rδ3 in delta domain,
= 0.001.

The frequency response analyses of the original as well as
elta operator parameterized systems are illustrated in Fig. 3a,
, and c respectively for three different sampling times. All the
hree figures depict that the frequency response characteristics
f reduced order models almost same to that of the original delta
perator parameterized systems for low to high frequency range.
Fig. 4a, b and c are used to demonstrate the step responses

f the reduced order models at different sampling instants. The
tep responses of the reduced-order delta operator systems are
losely matching to its respective higher-order delta operator
ased systems as can be seen from Fig. 4a, b and c. It is revealed
rom Fig. 5a and b that the step response and frequency response
n the reduced delta operator based system resembles to that of
5

Fig. 4. (a) Step response of reduced order system Rδ1 in delta domain, ∆ = 0.1
(b) Step response of reduced order system Rδ2 in delta domain, ∆ = 0.01 (c)
tep response of reduced order system Rδ3 in delta domain, ∆ = 0.001.

Fig. 5. (a) Step responses of reduced order systems in continuous time domain
and in delta domain (∆ = 0.0001) (b) Frequency responses of reduced order
systems in continuous time domain and in delta domain (∆ = 0.0001).

the continuous time reduced order model at fast sampling rate
(∆ = 0.001) making the method a unified one for reduced order
modeling in delta domain using the proposed method.

In order to find the accuracy of results, Root mean squared
error (RMSE) is evaluated in each case and tabulated in Table 4.
RMSE is the square root of the mean of the square of all of the
error. RMSE for each case have been calculated using Eq. (27).

RMSE =

√
1
N

N∑
(Pi − Ri)

2 (27)

j=1
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Table 5
Comparison of time and frequency domain parameters for original and reduced
order systems.
System Rise

time(s)
Settling
time (s)

% Peak
over-
shoot

Gain
margin
(dB)

Phase
margin
(degree)

G(s) 0.0616 4.7856 125.1447 inf 109.5950
R(s) 0.0647 4.8637 124.2735 inf 110.2745
Gδ1(γ )|∆=0.1 0.0830 5.1757 108.4863 inf 112.7936
Rδ1 0.0849 5.3789 108.2740 inf 113.0785
Gδ2(γ )|∆=0.01 0.0635 4.8244 123.2712 inf 109.9299
Rδ2 0.0613 5.3857 122.6221 inf 110.1858
Gδ3(γ )|∆=0.001 0.0618 4.7894 124.9553 inf 109.6288
Rδ3 0.0613 4.9857 123.6221 inf 111.1858

Fig. 6. Pole–zero plot of reduced order systems in continuous time domain and
delta domain.

Fig. 7. Pole–zero plot of delta domain system and its reduced order model in
delta domain.

where, N is the number of observations available for analysis, Pi is
he vector of predicted values and Ri is the vector of the observed
alues.
In Table 5, the rise time, settling time, the maximum peak

vershoot gain margin and phase margin of the original higher-
rder system and corresponding reduced order systems in both
ontinuous time an delta domain are enumerated. From the ob-
ained results as provided in Table 5, it has been found that
he time domain and frequency domain parameters are very
lose for original and reduced order systems, thereby preserving
he dynamic properties of original systems in the reduced order
ystems in delta domain as well.
The stability of the reduced order systems in delta domains are

nsured from the pole–zero locations of the reduced order sys-
ems and corresponding pole–zero plots are illustrated in Figs. 6
nd 7.
6

7. Conclusions

This work deals with the reduced order modeling of large
scale SISO delta domain systems. The theoretical and simulation
aspects of the reduced order modeling in the delta domain using
optimal frequency fitting (OFF) approach with PSO algorithm are
demonstrated. The reduced models are realized by optimizing
the fitness values obtained through the optimal frequency fit-
ting method using PSO. The PRBS responses are considered to
study the responses. The step response and frequency response
of the reduced order models in delta domain provides a repli-
cation of the same for original systems. From Table 5, it can
be observed that the control parameters for original systems
and corresponding reduced order models in delta domain are
almost same. At higher sampling frequency the delta transformed
reduced models are stable and nearly match the coefficients of
the original-domain transfer functions. Wilcoxon signed rank test
is performed and from Table 3, it is clearly concluded that the
results obtained using the algorithm are significant for all the
delta domain reduced order models. From Fig. 5, it has been
observed that the step and frequency responses of the reduced
order continuous time model and reduced order delta domain
model at fast sampling time (∆ = 0.0001 s) are matching
closely. This leads to development of a unified method of model
order reduction in delta domain. Therefore the frequency domain
method presented in this paper is a viable alternative to other
methods of model order reduction in the literature. This method
can further be extended to design the reduced order model of
fractional order, system with time delay and MIMO systems in
future work.
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