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A B S T R A C T

Combined heat and power economic dispatch (CHPED) based optimal power flow (OPF) problem has been
studied in this article using a new, practical approach based on chaotic driving training optimization (DTBO)
(CDTBO). In the proposed technique (CDTBO), the chaotic based learning is integrated with DTBO to overcome
the local optimal problem and inferior convergence speed of the existing algorithms. OPF is an important
concern to retain the power system running effectively. In order to meet the demand for reasonably priced
power generation with optimal power flow in transmission lines, the authors combined CHPED and OPF.
Since fuel is changing daily in the current environment, using renewable energy sources to generate electricity
economically is crucial. The renewable energy source like wind energy is integrated with thermal units for
economic power generation with reducing the thermal fuel consumption of CHPED-based OPF system. The
proposed technique implemented on CHPED based IEEE-30 bus system for renewable and without renewable
energy sources with considering different cases. The suggested problem considering with valve point loading of
thermal units, transmission losses and uncertainties of wind speed to address the non-linearity of the renewable-
based CHPED-OPF system. Cost minimization, voltage deviation control, transmission losses minimization and
stability index are the single objectives of the prospective system. Furthermore tested on multi-objective
functions for simultaneously minimization of cost with emission and simultaneously minimization of active
power loss with voltage profile. It is observed that the proposed CDTBO technique helps to reduce the cost by
2% and 12.8% for renewable based system as compared to non-renewable system for multi-objective function.
The robustness of the proposed solution has been verified by implementing the statistical analysis on two
systems with least variation of mean and optimal values of cost with the tolerance of less than 0.0035%. A
comparison has been made with recent well known optimization techniques to address the superiority of the
suggested CDTBO algorithm.
1. Introduction

Heat is released into the environment at all thermal power plants
during the generation of electricity, either by cooling towers, flue gas,
or some other means. The energy efficiency of power generation units
drops to a very low level (between 50% and 60%) due to the byproducts
produced during heating, such as NOX, SOX, SO2, and CO2. As a result,
the atmosphere becomes contaminated. Problems with combined heat
and power economic dispatch (CHPED) are important in power system
research. The number of pollutants discharged into the atmosphere
and the cost of production are reduced by using the waste heat from
the steam. Chillers are used by the heat recovery steam generator in
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CHPED to recover heat lost during cooling and steam production. A co-
generation system that produces both heat and electricity at the same
time is the CHPED. CHPED raises the efficiency of thermal generating
stations to above 75% even though it requires more capital.

Economic power generation was the primary emphasis of the CH-
PED, not transmission line power flow. Optimal power flow (OPF) in
power systems is a well-studied optimization problem. This problem
was first raised in 1962 by Carpentier [1]. The objective of OPF
is to identify a steady state operating point that, at the same time
lowering the cost of generating electricity, meets demand and operating
constraints. Therefore, in order to meet the demand for reasonably
priced power generation with optimal power flow in transmission
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Fig. 1. Schematic model of CHPED based OPF with renewable energy.
lines, CHPED and OPF must be connected. Over the past few decades,
researchers investigating electrical power systems have focused on
developing different optimization methodologies to address the optimal
power flow (OPF) problem. Taking into consideration all of the many
power system restrictions, OPF looks for a practical solution that takes
into account a number of important factors, such as economics, the
environment, dependability, security, and power quality.

In the early phases of OPF issues, researchers were hired with the
sole goal of obtaining the lowest fuel cost—by using thermal genera-
tors. However, a growing number of renewable energy sources must
be integrated into the current power networks over time because of a
number of causes, including the need for a carbon tax, the depletion of
fossil resources, environmental regulations, and growing power usage.
It goes without saying that attempting to employ alternative energy
sources makes the network far more challenging. The extremely non-
convex and nonlinear OPF problem has been tackled in the literature
through the application of several evolutionary approaches. Limita-
tions on network capability, generator capacity, power balance, and
fuel emissions can be met while minimizing the cost of generation,
active power loss, fuel emission, and voltage deviation by modifying
the generators’ schedules, terminal voltages, tap settings, and VAR
compensation.

Many studies on single- and multi-objective functions utilizing var-
ious optimization strategies while satisfying all constraints have been
presented by various researchers during the past two decades. The La-
grangian relaxation (LR) [2], the statistical process control method [1],
linear programming [3], nonlinear programming [4], quadratic pro-
gramming [5], and the interior point [6] were among the various
classical techniques that had been tested on CHPED and OPF. Non-
differentiable and nonlinear functions cannot be handled by classical
methodologies because they are dependent on differential calculus and
numerical techniques.
2

Many authors used various evolutionary-based optimization strate-
gies to achieve the global optimum solution in order to solve the
local optimum problem of nonlinear based challenges. In order to
find the best solution for cost reduction, Beigvand et al. [7] used the
gravitational search algorithm (GSA) on the CHPED while taking valve
point loads and transmission losses into account. To assess its resilience
on the CHPED system, Meng et al. [8] presented crisscross optimiza-
tion with vertical crossover probability. Exchange market algorithm
(EMA) was used by Ghorbani [9] to test its effectiveness in solving
the nonlinear based CHPED problem. Smart searching is a foundational
component of EMA, which aids in optimizing the limitations. For
the purpose of obtaining the best solution for several test studies,
Davoodi et al. [10] tested the modified group search optimizer (MGSO)
on the CHPED issue with the scrounger and ranger operators. Paul
et al. [11] applied whale optimization technique (WOA) on CHPED
problem considering with non-linearity like valve point loading (VL)
and prohibited operating zone (POZ) of thermal units for optimal
solution. In order to generate power economically, Ramachandran [12]
developed a hybrid model and applied it to the CHPED problem to
investigate the effectiveness and robustness of the proposed technique.
Betar et al. [13] suggested hybrid Harris Hawks with significant perfor-
mance for the economic load dispatch (ELD) problem. Gholamghasemi
et al. [14] recommended phasor particle swarm optimization (PPSO)
for economic power generation on ELD based system with considering
different constraints like transmission losses, ramp rate function and
prohibited operating zone to judge the superiority of the proposed
algorithm on real base system. Real coded chemical reaction algorithm
(RCCRA) utilized by Bhattacharya et al. [15] on economic emission
load dispatch (EELD) problem to solve multi-objective functions with
minimizing both cost and emission.

Yuan et al. [16] utilized artificial bee colony algorithm (ABC)
integrated with quantum inspired chaotic based learning (QC) to in-
crease the searching ability for global solution of optimal power flow
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Table 1
A collection of various chaotic maps.

Sl. No. Name Chaotic map

N1 Circle 𝑟𝑘+1 = 𝑟𝑘+𝑏 − (𝑎∕2𝜋)𝑠𝑖𝑛 (2𝜋𝑘)𝑚𝑜𝑑 (2)
N2 Cubic 𝑟𝑗+1 = 𝑎𝑟𝑗

(

1 − 𝑟𝑗 2
)

N3 Chebyshev map 𝑟𝑗+1 = cos
(

𝑘cos−1
(

𝑟𝑘
))

N4 Logistic map 𝑟𝑘+1 = 𝑎𝑟𝑘
(

1 − 𝑟𝑘
)

N5 Gussian map 𝑟𝑘+1 = 𝑟𝑘+1
{

0, 𝑟𝑘 = 0, 1
𝑟𝑘

mod (1) = 1
𝑟𝑘

−
[

1
𝑟𝑘

]

N6 Liebovitch map 𝑟𝑘+1 = 𝑎𝑟𝑘
(

1 − 𝑟𝑘
)

N7 Iterative map rk+1 = Sin
(

a𝜋
rk

)

,𝛼 ∈ (U, 1)

N8 Sine 𝑋𝑖+1 = 𝑎∕4
(

𝑠𝑖𝑛
∏

𝑥
)

N9 Sinusoidal 𝑋𝑖+1 = 𝑎
(

𝑋𝑖
)

2
(

𝑠𝑖𝑛
∏

𝑥𝑖
)

N10 Tent 𝑋𝑖+1 =

{ 𝑋𝑖

0.7
; X𝑖 < 0.7

10
3

(1 −𝑋𝑖) ;X𝑖 ≥ 0.7

(OPF) problem. In order to determine the best location for UPFC for
producing electricity economically while maintaining the restrictions
of the power system of the OPF issue, In order to determine the
best location for UPFC for producing electricity economically while
maintaining the restrictions of the power system of the OPF issue, Dutta
et al. [17] used the chemical reaction optimization approach (CRO).
In order to assess the superiority of the KHA strategy on the OPF
problem, Roy and Paul [18] demonstrated how to use the krill heard
algorithm (KHA). Several IEEE bus systems were used to evaluate the
KHA technique, and comparisons with other optimization techniques
were made. Lee et al. [19] had devised the OPF formulation for a
bipolar DC microgrid. This system optimizes the cost, voltage deviation,
and transmission losses by combining a bipolar DC microgrid with
distributed generators (DGs). On several buses of an integrated feeder-
based distribution generator for OPF with diverse objective functions,
Shahhen et al. [20] performed heap-based optimization. The improved
mayfly algorithm (IMA) was introduced by Bhaskar et al. [21] in
order to determine the best outcome for cost minimization, voltage
deviation, and transmission losses on the IEEE 30 bus system, hence
assessing the efficacy of the employed technique. Fergany and Hasanien
conducted testing of the tree seed method on multiple buses with
various multi-objective functions with optimal flow across transmission
lines [22]. To find out if the applied method is better than the others,
Xiao et al. [23] proposed an optimization strategy based on meta-
models. Different search algorithms (DSAs) were applied by Abaci
and Yamacli [24] on IEEE-9, 30, and 57 bus systems for OPF, with
cost, variable load, and shunt capacitance parameters controlled. To
effectively solve the OPF problem, Bouchekara et al. [25] used im-
proved colliding bodies optimization (ICBO) on 16 different scenarios.
Oppositional based learning was merged with the gravitational search
algorithm (GSA) (OGSA) by Bhowmik and Chakraborty [26] to solve
the local optimal issue and achieve the multi-objective solution for the
IEEE-30 bus system. The krill heard algorithm (KHA), which helps to
simultaneously balance cost and dynamic stability, was introduced by
Mukherjee et al. [27] to tackle the OPF problem while taking transient
stability into consideration. In order to get a global optimal solution
for the OPF problem of various single and multi-objective functions,
Mandal et al. [28] suggested a TLBO optimization technique combined
with quasi oppositional based learning.

Fuel is a resource that is always evolving in the current environ-
ment, thus using renewable energy sources to provide economic power
is crucial. Many researchers combined conventional power generating
units with renewable energy sources to lower the amount of fuel needed
to generate economically viable power. For an efficient and emission-
free operation, Hazra and Roy [29] suggested moth flame optimization
(MFO) on the HTS problem in conjunction with renewable energy.
WOA combined with chaotic based learning (CWOA) was evaluated by
Paul et al. [30] on two test systems of the CHPED issue while taking
wind energy sources into account for the production of economically
3

viable power. In order to minimize the use of thermal power units and
Table 2
Comparison of statistical results of CDTBO.

Optimization Cost ($/h) Computational

techniques Minimum Mean Maximum time (s)

CDTBO1 14 558.1285 14 581.4765 14 595.3976 4.76
CDTBO2 14 562.1257 14 570.2546 14 578.1298 4.25
CDTBO3 14 555.3256 14 564.7863 14 569.0186 3.96
CDTBO4 14 560.7684 14 566.1243 14 577.6986 3.82
CDTBO5 14 553.9658 14 561.1298 14 571.6658 3.94
CDTBO6 14 553.6723 14 560.8954 14 570.5846 3.68
CDTBO7 14 552.9845 14 558.9931 14 565.7462 3.45
CDTBO8 14 563.5645 14 572.1278 14 590.3687 4.18
CDTBO9 14 552.5479 14 558.6823 14 564.2323 3.32
CDTBO10 14 554.8636 14 566.7227 14 578.6622 3.38
DTBO 14 554.4097 14 560.1265 14 575.7283 3.68

limit the usage of renewable energy sources that are also integrated
with the CHPED problem, Paul et al. [31] proposed quasi-oppositional
based learning WOA (QOWOA) on CHPED system in addition to taking
into account the VL and POZ. To further deal with greater non-linearity
caused by the rising number of non-conventional energy sources with
CHPED system, Paul et al. [32] integrate chaotic based learning with
QOWOA (CQOWOA) to get the best results. In order to achieve realistic
optimization control, the gradient tracking optimization technique was
proposed by Zhang et al. [33] to assess the short-term OPF problem
on IEEE 39-bus and 118-bus systems while taking wind power gen-
eration into consideration. To achieve optimal outcomes in terms of
economic operation and mitigating the greenhouse effect, Evangeline
and Rathika [34] introduced the horse herd algorithm (HHA) for
the multi-objective OPF problem. focused on controlling transmission
losses and voltage deviation in order to achieve the optimal power flow
in the transmission line. The system uses wind power generation, which
lowers pollution and fuel consumption. Li et al. [35] integrated non-
conventional energy sources with the proposed solution for the IEEE 30
and 57-bus OPF challenge. In order to lower the uncertainty of wind
speed and sun intensity, Weibull and lognormal PDF are utilized. In
order to address the impact of renewable energy sources on the OPF
problem while accounting for transitory stability limits, Chen 𝑒𝑡𝑎𝑙. [36]
proposed semi-define programming (SDP) for the 39-bus system. To
find the optimal solution for both single- and multi-objective cost and
emission functions, Sulaiman et al. [37] introduced teaching learning
based optimization (TLBO) on the wind-solar based OPF problem.
Using an adaptive differential evolution methodology on a renewable-
based OPF problem, Biswas et al. [38] assessed the efficacy of the
proposed method in comparison to cost-effective power generation. For
the purpose of validating the proposed technique over cost reduction,
Elephant clan optimization (ECO) for renewable-based dynamic OPF
problem on several IEEE buses and 15 bus micro-grid was proposed by
Basu [39].

Ozkaya et al. [40] proposed artificial rabbit optimization (ARO) to
analyze the CHPED problem where adaptive fitness distance balance
has been integrated with ARO (AFDB-ARO) to improve the exploration
capability of the proposed technique. In the proposed system, valve
point loading (VPL), prohibited operating zone (POZ) and transmis-
sion losses have been considered to test the performances of AFDB-
ARO on real based problem. Moreover, Ozkaya et al. in their recent
endeavor [41] utilized symbiotic organism search algorithm based
on dynamic switched crowding for optimal solution of the economic
emission dispatch problem with CHPED.

The literature research demonstrates that the following features of
the current optimization schemes: (i) Different non-linear based prob-
lem effectively solved, (ii) the above population based optimization
techniques are derivative free, (iii) for the majority of the present
techniques, robustness can be proven. Despite the fact that the power
system’s performance has improved thanks to the existing technologies,

these systems have some drawbacks (i) the rate of convergence for the
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Fig. 2. Flowchart of CDTBO optimization technique.
Table 3
Various case-studies investigated in this article.

case Single Multi Considered objectives Constraints Test system
objective objective

1 ✓ Total Cost minimization with valve point effects Equality and non-equality
2 ✓ Emission and carbon tax minimization Equality and non-equality
3 ✓ Simultaneous minimization of Cost with Emission and carbon tax Equality and non-equality
4 ✓ Active power loss minimization Equality and non-equality
5 ✓ Voltage profile minimization Equality and non-equality
6 ✓ Voltage stability minimization Equality and non-equality
7 ✓ Simultaneous minimization of Active power loss and Voltage profile Equality and non-equality

IEEE 30 Bus

8 ✓ Total Cost minimization with valve point effects for thermal, and wind energy Equality and non-equality
9 ✓ Emission and carbon tax minimization Equality and non-equality
10 ✓ Simultaneous minimization of Cost with Emission and carbon tax Equality and non-equality
11 ✓ Active power loss minimization Equality and non-equality
12 ✓ Voltage profile minimization Equality and non-equality
13 ✓ Voltage stability minimization Equality and non-equality
14 ✓ Simultaneous minimization of Active power loss and Voltage profile Equality and non-equality

Wind based IEEE 30 Bus
aforementioned methods is low. Most of the aforementioned algorithms
suffer from early convergence, which lowers their performance and lim-
its their ability to explore, yielding solutions that are not optimal. (ii)
there is chance to trapped into the local optima, (iii) low exploration
and exploitation capability In order to get beyond the aforementioned
shortcomings, the contemporary authors were inspired to use a novel
optimization technique.

The main contributions of the paper are as follows:
4

• An integrated CHPED with OPF scheduling model Fig. 1 consid-
ering renewable energy source is proposed.

• Different single objective functions has been discussed like cost
minimization, emission minimization, transmission loss mini-
mization, voltage profile minimization, voltage stability control
and various multi-objective functions like cost-emission, active
power loss with voltage profile.
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• The suggested optimization technique’s robustness has been as-
sessed by statistical analysis.

The rest of the paper is structured as follows: The details of wind
ower generating are included in Section 2. Section 3 shows how the
uggested system formulates the problem. In Section 4, the various
tages of the suggested optimization technique with flowchart have
een covered. The different test systems with simulation results and
tatistical analysis has been illustrated in the Section 5. Section 6 of
he proposed system reports its conclusion.

. Details of wind power

Owing to its dependence on wind speed, which leads to zero emis-
ions and reduced production costs, connecting wind power to other
ower sources is ideal in order to ensure a reliable supply of electricity,
s wind power cannot meet all of the demand for it. Uncertainty in
ind power affects the dispatch of power to the grid; this is discussed

n more detail below.

.1. Wind power uncertainty functions

Dispatchable energy sources of electricity are those that have the
apacity to produce power as needed. However, the uncertainty of wind
ources brought on by wind speed makes it difficult to integrate the
ind units with the grid. The Weibull PDF is usually selected to depict
ind speed, as (1) demonstrates.

𝑟𝑎𝑛𝑑 (𝑉𝑤𝑖𝑛𝑑 ) =
𝑘
𝑑

(

𝑉𝑤𝑖𝑛𝑑
𝑑

)𝑘−1
× 𝑒−

( 𝑉𝑤𝑖𝑛𝑑
𝑑

)𝑘

(1)

where initial velocity of wind defined by 𝑉𝑤𝑖𝑛𝑑 ; random value signifies
with 𝑟𝑎𝑛; 𝑘 > 0 denotes the shape factor whereas 𝑑 > 0 signifies scale
factor. A representation of the cumulative density function (CDF) is
shown in Eq. (2).

𝑓𝑟𝑎𝑛𝑑 (𝑉𝑤𝑖𝑛𝑑 ) = 1 − 𝑒−
( 𝑉𝑤𝑖𝑛𝑑

𝑑

)𝑘

(2)

everal researchers have assessed a linear model to estimate wind
ower (see (3)) by utilizing wind velocity.

𝑤𝑖𝑛𝑑 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 𝑉𝑤𝑖𝑛𝑑 < 𝑉𝑖𝑛 𝑜𝑟 𝑉𝑤𝑖𝑛𝑑 > 𝑉𝑜𝑢𝑡
𝑃𝑤𝑟𝑎𝑡𝑒𝑑 (𝑉𝑤𝑖𝑛𝑑−𝑉𝑖𝑛)

𝑉𝑟𝑎𝑡𝑒𝑑−𝑉𝑖𝑛
𝑉𝑖𝑛 ≤ 𝑉𝑤𝑖𝑛𝑑 < 𝑉𝑟𝑎𝑡𝑒𝑑

𝑃𝑤𝑟𝑎𝑡𝑒𝑑 𝑉𝑟𝑎𝑡𝑒𝑑 ≤ 𝑉𝑤𝑖𝑛𝑑 < 𝑉𝑜𝑢𝑡

(3)

here 𝑃𝑤𝑖𝑛𝑑 and 𝑃𝑤𝑟𝑎𝑡𝑒𝑑 are signify the wind output power and rated
ower; rated wind velocity denotes with 𝑉𝑟𝑎𝑡𝑒𝑑 ; cut-in and cut-out

velocity of wind represent with 𝑉𝑖𝑛 and 𝑉𝑜𝑢𝑡; representation of PDF of
𝑃𝑤𝑖𝑛𝑑 illustrated in (4).

𝐹𝑃𝑤𝑖𝑛𝑑

(

𝑃𝑤𝑖𝑛𝑑
)

= 𝑘𝑢
𝑑𝑃𝑤𝑟𝑎𝑡𝑒𝑑

⎛

⎜

⎜

⎝

𝑉𝑖𝑛 + 𝑢 𝑃𝑤𝑖𝑛𝑑
𝑃𝑤𝑟𝑎𝑡𝑒𝑑

𝑑

⎞

⎟

⎟

⎠

𝑘−1

× 𝑒
−
⎛

⎜

⎜

⎝

𝑉𝑖𝑛+𝑢
𝑃𝑤𝑖𝑛𝑑
𝑃𝑤𝑟𝑎𝑡𝑒𝑑
𝑑

⎞

⎟

⎟

⎠

𝑘

𝑤ℎ𝑒𝑟𝑒 𝑢 = 𝑉𝑟𝑎𝑡𝑒𝑑 − 𝑉𝑖𝑛 (4)

The two discrete probabilities when 𝑃𝑤𝑖𝑛𝑑 equals 0 or 𝑃𝑤𝑟𝑎𝑡𝑒𝑑 , the
continuous probability is represented as follows:

⎧

⎪

⎨

⎪

⎩

𝑆𝑟𝑎𝑡𝑒𝑑
(

𝑃𝑤𝑖𝑛𝑑 = 0
)

= 𝑆𝑟𝑎𝑡𝑒𝑑
(

𝑉 < 𝑉𝑖𝑛
)

+ 𝑆𝑟𝑎𝑡𝑒𝑑
(

𝑉 > 𝑉𝑜𝑢𝑡
)

= 1 − 𝑒−
( 𝑉𝑖𝑛

𝑑

)𝑘

+ 𝑒−
(

𝑉𝑜𝑢𝑡
𝑑

)𝑘 (5)

𝑆𝑟𝑎𝑡𝑒𝑑 (𝑃𝑤𝑖𝑛𝑑 = 𝑃𝑤𝑟𝑎𝑡𝑒𝑑 ) = 𝑆𝑟𝑎𝑡𝑒𝑑
(

𝑉𝑟𝑎𝑡𝑒𝑑 ≤ 𝑉 < 𝑉𝑜𝑢𝑡
)

= 𝑒−
( 𝑉𝑟𝑎𝑡𝑒𝑑

𝑑

)𝑘

− 𝑒−
(

𝑉𝑜𝑢𝑡
𝑑

)𝑘 (6)
5

DF of 𝑃𝑤𝑖𝑛𝑑 is obtained by integrating Eqs. (5) and (6), which is
llustrated in (7).

𝑃𝑤𝑖𝑛𝑑
(𝑃𝑤𝑖𝑛𝑑 ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0 𝑃𝑤𝑖𝑛𝑑 < 0

𝑘𝑢
𝑑𝑃𝑤𝑟𝑎𝑡𝑒𝑑

(

𝑉𝑖𝑛+𝑢
𝑃𝑤𝑖𝑛𝑑
𝑃𝑤𝑟𝑎𝑡𝑒𝑑
𝑑

)𝑘−1

×𝑒
−
⎛

⎜

⎜

⎝

𝑉𝑖𝑛+𝑢
𝑃𝑤𝑖𝑛𝑑
𝑃𝑤𝑟𝑎𝑡𝑒𝑑
𝑑

⎞

⎟

⎟

⎠

𝑘

0 ≤ 𝑃𝑤𝑖𝑛𝑑 < 𝑃𝑤𝑟𝑎𝑡𝑒𝑑

1 𝑃𝑤𝑖𝑛𝑑 ≥ 𝑃𝑤𝑟𝑎𝑡𝑒𝑑

(7)

2.2. Determination of wind cost

When to schedule wind power generating units into the system
during periods of peak load will depend on how unpredictable the wind
is. The erratic wind speed along the coast creates uncertainty in the
production of power. Weibull’s PDF will be used to examine the antic-
ipated uncertainty costs associated with wind energy. Overestimation
and underestimation serve as definitions for this function (8).

𝑇 𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑤𝑖𝑛𝑑 =
𝑁𝑤𝑖𝑛𝑑
∑

𝑚=1
𝐶𝑜𝑠𝑡𝑤𝑖𝑛𝑑𝑚

(

𝑃𝑤𝑖𝑛𝑑𝑚
)

=
𝑁𝑤𝑖𝑛𝑑
∑

𝑚=1

(

𝐶𝑜𝑠𝑡𝑂𝑤𝑖𝑛𝑑𝑚 + 𝐶𝑜𝑠𝑡𝑈𝑤𝑖𝑛𝑑𝑚
)

(8)

where 𝑇 𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑤𝑖𝑛𝑑 represents the total wind cost and 𝑁𝑤𝑖𝑛𝑑 denotes
the total number of wind units.

2.2.1. Overestimation cost of wind

The cost of overestimating is explained when the generated power
is less than what was planned. This means the load need will not be
satisfied by the wind-generated power. Spinning reserve will provide
the additional power required to meet load demand. From (9), one may
compute the cost of overestimation.
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(9)

2.2.2. Underestimation cost of windcalculation

Expenses associated with underestimating occur when actual wind
energy exceeds predictions. Any extra electrical energy produced by
wind turbines will be stored in batteries since otherwise produced

electricity will be lost. The underestimating cost can be computed using
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Table 4
An outline of the IEEE 30 bus for the CHPED system based on OPF.

Items Quantity Details

Buses 30 [ref]
Branches 41 [ref]

Thermal generators 6 2 power only units (buses 1, 2), 4 CHP
units (buses 5, 8, 11 and 13) and 1
heats only unit

Tap changing transformer 4 Branches:(6–9), (6–10), (4–12) and
(27–28)

Scheduled real power for 5Nos.
Generators; bus voltages of all generator
buses (6Nos.)Control variables 22 transformer tap setting (4 nos),
compensation devices (2 Nos.), 5 heats
unit.

Load demand, Heat demand 283.4 MW, 126.2 MVAr, 175 MWth
Range of load bus voltage 24 [0.95–1.05] p.u.
Compensation devices 2 Buses: 10 and 24

Fig. 3. Feasible region of CHP units (6th of 7-unit system).

the following formula (10):

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐶𝑜𝑠𝑡𝑈𝑤𝑖𝑛𝑑𝑚 = 𝑃𝑓𝑈
𝑤𝑖𝑛𝑑𝑚 ×

(

𝑃𝑤𝑟𝑎𝑡𝑒𝑑 − 𝑃𝑤𝑖𝑛𝑑𝑚
)

[

𝑒−
( 𝑉𝑟𝑎𝑡𝑒𝑑

𝑠

)𝑗

− 𝑒−
(

𝑉𝑜𝑢𝑡
𝑠

)𝑗
]

+
(

𝑃𝑤𝑟𝑎𝑡𝑒𝑑𝑉𝑖𝑛
𝑉𝑟𝑎𝑡𝑒𝑑−𝑉𝑖𝑛

+ 𝑃𝑤𝑖𝑛𝑑𝑚

)

⎡

⎢

⎢

⎢

⎢

⎣

𝑒−
( 𝑣𝑟𝑎𝑡𝑒𝑑

𝑠

)𝑗

− 𝑒
−
⎛

⎜

⎜

⎝

𝑉𝑖𝑛+𝑃𝑤𝑖𝑛𝑑𝑚
𝑣𝑟𝑎𝑡𝑒𝑑−𝑣𝑖𝑛
𝑃𝑤𝑟𝑎𝑡𝑒𝑑

𝑠

⎞

⎟

⎟

⎠

𝑗
⎤

⎥

⎥

⎥

⎥

⎦

+ 𝑃𝑤𝑟𝑎𝑡𝑒𝑑 𝑠
𝑉𝑟𝑎𝑡𝑒𝑑−𝑉𝑖𝑛

⎡

⎢

⎢

⎢

⎣

𝜁

⎧

⎪

⎨

⎪

⎩

1 + 1
𝑗 ,

(

𝑉𝑖𝑛+𝑃𝑤𝑖𝑛𝑑𝑚
𝑉𝑟𝑎𝑡𝑒𝑑−𝑉𝑖𝑛
𝑃𝑤𝑟𝑎𝑡𝑒𝑑

𝑠

)𝑗⎫
⎪

⎬

⎪

⎭

− 𝜁
{

1 + 1
𝑗 ,
(

𝑉𝑟𝑎𝑡𝑒𝑑
𝑠

)𝑗
}

⎤

⎥

⎥

⎥

⎦

(10)

In the above equations overestimation and underestimation cost of 𝑚th
wind unit signified with 𝐶𝑜𝑠𝑡𝑂𝑤𝑖𝑛𝑑𝑚 and 𝐶𝑜𝑠𝑡𝑈𝑤𝑖𝑛𝑑𝑚; rated output power
and rated velocity denoted by 𝑃𝑤𝑟𝑎𝑡𝑒𝑑 and 𝑉𝑟𝑎𝑡𝑒𝑑 ; 𝑉𝑖𝑛 and 𝑉𝑜𝑢𝑡 are cut-in
and cut-out velocity of wind; 𝑃𝑓𝑈

𝑤𝑖𝑛𝑑𝑚 is underestimation and 𝑃𝑓𝑂
𝑤𝑖𝑛𝑑𝑚

is overestimation cost co-efficient respectively.
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Fig. 4. Feasible region of CHP units (5th of 7-unit system).

3. Problem formulation

The CHPED-based OPF problem formulation in the IEEE-30 bus
system is a crucial optimization strategy for monitoring the function-
ing of the power system. Less thermal unit usage for optimal power
generation while meeting all generation and load balanced equation
requirements is the problem formulation for CHPED scheduling. For
cost-effective power generation with lower emissions, the CHPED-based
OPF system’s load-balanced problem formulation incorporates renew-
able energy sources as well. The followings illustrate the analytic
version of the cost equation, the power balancing equation with and
without renewable energy sources, and the equality and inequality
restrictions.

3.1. Objective function

3.1.1. Case 1: CHPED based OPF system
The suggested CHPED-based OPF system’s primary goal is shown by

(11):

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐶𝑜𝑠𝑡 =
𝑁𝑝𝑜𝑢
∑

𝑖=1
𝐶𝑜𝑠𝑡𝑝𝑜𝑢𝑖

(

𝑃𝑝𝑜𝑢𝑖
)

+
𝑁𝑐ℎ𝑝
∑

𝑖=1
𝐶𝑜𝑠𝑡𝑐ℎ𝑝𝑖

(

𝑃𝑐ℎ𝑝𝑖,𝐻𝑐ℎ𝑝𝑖
)

+
𝑁ℎ𝑜𝑢
∑

𝑖=1
𝐶𝑜𝑠𝑡ℎ𝑜𝑢𝑖

(

𝐻ℎ𝑜𝑢𝑖
)

(11)

where fuel cost of the power generator is manifested by 𝐶𝑜𝑠𝑡𝑝𝑜𝑢𝑖
(

𝑃𝑝𝑜𝑢𝑖
)

;
co-generation and heat unit generation costs showed up as 𝐶𝑜𝑠𝑡𝑐𝑖
(

𝑃𝑐ℎ𝑝𝑖, 𝐻𝑐ℎ𝑝𝑖
)

and 𝐶𝑜𝑠𝑡ℎ𝑜𝑢𝑖
(

𝐻ℎ𝑜𝑢𝑖
)

; 𝑃𝑝𝑜𝑢𝑖 and 𝐻ℎ𝑜𝑢𝑖 signified the power
and heat of 𝑖th unit; number of power, co-generation and heat only
units manifested by 𝑁𝑝𝑜𝑢, 𝑁𝑐ℎ𝑝, 𝑁ℎ𝑜𝑢.

The following formula represents the thermal cost function and
expresses it as a quadratic cost function.

𝐶𝑜𝑠𝑡𝑝𝑜𝑢𝑖
(

𝑃𝑝𝑜𝑢𝑖
)

= 𝛼𝑝𝑜𝑢𝑖
(

𝑃𝑝𝑜𝑢𝑖
)2 + 𝛽𝑝𝑜𝑢𝑖𝑃𝑝𝑜𝑢𝑖 + 𝛾𝑝𝑜𝑢𝑖 (12)

where 𝛼𝑝𝑜𝑢𝑖, 𝛽𝑝𝑜𝑢𝑖 and 𝛾𝑝𝑜𝑢𝑖 express the cost coefficients of the 𝑖th thermal
unit.

The cost function equation analyzed and researched in (12) has been
modified by accounting for the valve point loading in (13).

𝐶
(

𝑃
)

= 𝛼
(

𝑃
)2 + 𝛽 𝑃 + 𝛾
𝑝𝑜𝑢𝑖 𝑝𝑜𝑢𝑖 𝑝𝑜𝑢𝑖 𝑝𝑜𝑢𝑖 𝑝𝑜𝑢𝑖 𝑝𝑜𝑢𝑖 𝑝𝑜𝑢𝑖



Renewable Energy Focus 49 (2024) 100573C. Paul et al.

E
s
t
a

Table 5
Simulation results and control parameters of different cases for CHPED based OPF using DTBO.

Control Min. Max. Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
parameters

PTG1 (MW) 50 200 191.57 65.22 184.21 53.08 183.25 84.09 66.79
PTG2 (MW) 20 80 51.85 68.89 53.55 79.23 24.38 78.38 79.32
PTG5 (MW) 15 50 15.04 49.28 15.09 49.6 29.09 49.38 49.43
PTG8 (MW) 10 35 11.64 34.72 14.13 34.97 19.14 34.83 34.45
PTG11 (MW) 10 30 11.48 29.95 14.21 29.93 26.32 28.68 25.6
PTG13 (MW) 12 40 12 38.71 12.79 39.86 12.28 12.54 32.41
V1 (p.u.) 0.95 1.1 1.0987 1.0656 1.056 1.0392 0.998 1.0998 0.9971
V2 (p.u.) 0.95 1.1 1.0854 1.0569 1.0446 1.0379 0.9791 1.0903 1.0035
V5 (p.u.) 0.95 1.1 1.0574 1.0326 1.0111 1.0181 1.0145 1.0948 1.0134
V8 (p.u.) 0.95 1.1 1.064 1.0431 1.0212 1.0247 1.0131 1.0995 1.021
V11 (p.u.) 0.95 1.1 1.0999 1.0898 1.0583 1.0982 1.0922 1.0986 1.0348
V13 (p.u.) 0.95 1.1 1.0998 1.0984 1.0913 1.0996 1.0731 1.0964 1.0313
T11 (p.u.) 0.9 1.1 1.0277 0.9853 0.9579 0.9618 1.0024 0.901 0.9635
T12 (p.u.) 0.9 1.1 0.9283 0.9122 0.9737 0.9012 0.9693 0.9055 0.9451
T15 (p.u.) 0.9 1.1 1.0223 0.9907 1.0691 0.9633 1.0402 0.9044 0.9791
T36 (p.u.) 0.9 1.1 0.9709 0.9616 0.9162 0.9315 0.9472 0.9041 0.9423
QC10 (MVAr) 0 0.05 0.0498 0.0496 0.0308 0.049 0.0337 0.0488 0.041
QC24 (MVAr) 0 0.05 0.0499 0.0486 0.0374 0.0499 0.0489 0.0481 0.044
H5 (MWth) 10 35 34.7409 26.9466 34.004 15.5914 34.9802 10.2603 31.7985
H8 (MWth) 10 35 34.9596 11.6917 29.9034 31.013 26.5076 25.0408 21.4362
H11 (MWth) 10 35 34.8046 16.6686 30.7644 12.3085 34.5312 20.1664 22.0741
H13 (MWth) 20 35 34.9983 34.3144 34.0443 33.6069 33.6609 31.4813 31.0348
H31 (MWth) 0 2695.2 35.4967 85.3788 46.2839 82.4802 45.3202 88.0512 68.6565

Thermal cost ($/h) 14 554.4097 18 496.6161 14 774.2142 18 571.3435 15 866.5299 17 513.8138 18 023.2259
Emission (t/h) 0.4132 0.2059 0.3885 0.2071 0.3797 0.2264 0.2131
Carbon tax ($/h) 8.264 4.118 7.77 4.142 7.594 4.528 4.262
Ploss (MW) 10.18 3.37 10.58 3.27 11.06 4.5 4.61
VD (p.u.) 1.247 1.108 0.5545 1.1323 0.1644 2.6615 0.1679
L-index 0.1333 0.1361 0.1363 0.1342 0.146 0.1152 0.1454
Table 6
Simulation results and control parameters of different cases for CHPED based OPF using CDTBO.

Control Min. Max. Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
parameters

PTG1 (MW) 50 200 191.51 64.9 183.6 55.86 127.91 85.41 58.28
PTG2 (MW) 20 80 52 68.03 54.28 76.42 77.4 77.86 79.33
PTG5 (MW) 15 50 15.23 49.88 15.12 49.68 48.46 48.49 49.99
PTG8 (MW) 10 35 11.35 34.27 11.54 34.83 15 34.99 34.29
PTG11 (MW) 10 30 11.49 30 13.09 29.95 12.52 28.78 29.79
PTG13 (MW) 12 40 12.02 39.53 16.61 39.82 12.02 12.32 36.45
V1 (p.u.) 0.95 1.1 1.098 1.0904 1.0495 1.0693 0.9765 1.0983 0.9826
V2 (p.u.) 0.95 1.1 1.0854 1.0844 1.0234 1.0647 1.026 1.0985 0.9837
V5 (p.u.) 0.95 1.1 1.0553 1.0664 1.0017 1.0439 1.0138 1.0951 0.9985
V8 (p.u.) 0.95 1.1 1.0646 1.0746 1.0058 1.052 1.0126 1.0984 1.0242
V11 (p.u.) 0.95 1.1 1.0987 1.0919 1.0847 1.0996 1.0456 1.097 1.0783
V13 (p.u.) 0.95 1.1 1.0975 1.0955 1.0522 1.0992 1.0533 1.0999 1.0588
T11 (p.u.) 0.9 1.1 1.0528 1.0521 1.0524 1.0021 1.0129 0.908 1.0631
T12 (p.u.) 0.9 1.1 0.9045 0.9054 0.9281 0.9022 0.9052 0.9015 0.9016
T15 (p.u.) 0.9 1.1 1.0203 1.0154 1.0449 0.9787 1.0119 0.9034 1.0203
T36 (p.u.) 0.9 1.1 0.9724 0.9763 0.9923 0.9483 0.9492 0.9032 0.9475
QC10 (MVAr) 0 0.05 0.0497 0.0486 0.0359 0.05 0.0393 0.0476 0.0453
QC24 (MVAr) 0 0.05 0.05 0.046 0.0427 0.0493 0.05 0.0488 0.05
H5 (MWth) 10 35 34.9757 19.1045 35.5515 22.0812 14.005 33.7118 34.9708
H8 (MWth) 10 35 34.7559 24.4885 34.6399 28.5276 25.4611 21.5057 31.5227
H11 (MWth) 10 35 34.4638 31.4853 34.8829 12.1995 32.0431 11.6057 27.0947
H13 (MWth) 20 35 34.6095 26.5912 34.8584 26.294 29.0664 34.3624 30.2508
H31 (MWth) 0 2695.2 36.1951 73.3305 35.0674 85.8977 74.4245 73.8144 51.161

Thermal cost ($/h) 14 552.5479 18 475.776 14 765.0941 18 574.8846 16 091.571 17 412.8286 18 304.9366
Emission (t/h) 0.413 0.2053 0.3862 0.2063 0.2752 0.2271 0.2088
Carbon tax ($/h) 8.26 4.106 7.724 4.126 5.504 4.542 4.176
Ploss (MW) 10.2 3.21 10.84 3.16 9.91 4.45 4.73
VD (p.u.) 1.2195 1.3002 0.3805 1.3554 0.1542 2.6902 0.1665
L-index 0.1336 0.1331 0.1544 0.1318 0.1462 0.1149 0.1454
+
|

|

|

|

𝛿𝑝𝑜𝑢𝑖 𝑆𝑖𝑛
{

𝜀𝑝𝑜𝑢𝑖 ×
(

𝑃min
𝑝𝑜𝑢𝑖 − 𝑃𝑝𝑜𝑢𝑖

)}

|

|

|

|

(13)

q. (13) becomes more non-linear and non-differentiable due to sinu-
oidal terms from the quadratic equation and sinusoidal terms from
he valve point loading. The 𝑖th unit’s valve point effects coefficients
7

re denoted by 𝛿𝑝𝑜𝑢𝑖 and 𝜀𝑝𝑜𝑢𝑖; The cost function of heat-only units and
co-generation units is defined by the equations in (14) and (15).
{

𝐶𝑜𝑠𝑡𝑐ℎ𝑝𝑖
(

𝑃𝑐ℎ𝑝𝑖,𝐻𝑐ℎ𝑝𝑖
)

= 𝛼𝑐ℎ𝑝𝑖
(

𝑃𝑐ℎ𝑝𝑖
)2 + 𝛽𝑐ℎ𝑝𝑖𝑃𝑐ℎ𝑝𝑖 + 𝛾𝑐ℎ𝑝𝑖

+𝛿𝑐ℎ𝑝𝑖
(

𝐻𝑐ℎ𝑝𝑖
)2 + 𝜀𝑐ℎ𝑝𝑖𝐻𝑐ℎ𝑝𝑖 + 𝜅𝑐ℎ𝑝𝑖𝐻𝑐ℎ𝑝𝑖𝑃𝑐ℎ𝑝𝑖

(14)

( ) ( )2
𝐶𝑜𝑠𝑡ℎ𝑜𝑢𝑖 𝐻ℎ𝑜𝑢𝑖 = 𝛼ℎ𝑜𝑢𝑖 𝐻ℎ𝑜𝑢𝑖 + 𝛽ℎ𝑜𝑢𝑖𝐻ℎ𝑜𝑢𝑖 + 𝛾ℎ𝑜𝑢𝑖 (15)
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Table 7
Statistical analysis of test system 1.

Algorithm Statistical Cost Emission Power Voltage Voltage
analysis ($/h) (t/h) loss (MW) profile (pu) stability (pu)

Min 14 554.4097 0.2059 3.27 0.1644 0.1152
Mean 14 560.1265 0.2066 3.34 0.1651 0.1158DTBO
Max 14 575.7283 0.2072 3.55 0.1672 0.1178

Min 14 552.5479 0.2053 3.16 0.1542 0.1149
Mean 14 558.6823 0.2058 3.21 0.1549 0.1151CDTBO
Max 14 564.2323 0.2065 3.33 0.1562 0.1162
Fig. 5. Different comparison graphs of CHPED based OPF system.
Fig. 6. Different comparison graphs of with and without renewable sources.
8
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Fig. 7. Comparison of convergence graph of different objective functions.
Table 8
An outline of the IEEE 30 bus setup for wind-powered CHPED-OPF.

Items Quantity Details

Buses 30 [ref]
Branches 41 [ref]

Thermal generators
(TG1,TG2,TG3,TG4,TG5)

3 2 power only units (buses 1, 2), 4 CHP
units (buses 5, 8, 11 and 13) and 1
heats only unit

Wind generators (WG1) 1 Buses:2

Tap changing transformer 4 Branches:(6–9), (6–10), (4–12) and
(27–28)

Scheduled active power of 5Nos.
Generators:TG2,TG3,TG4,TG5,WG1,;Control variables 11 every generator bus’s voltages (6Nos.)
transformer tap setting and
compensation devices

Load demand, Heat
demand

283.4 MW, 126.2 MVAr,175 MWth

Range of load bus voltage 24 [0.95–1.05] p.u.
Compensation devices 2 Buses: 10 and 24

In above expression, 𝐶𝑜𝑠𝑡𝑐ℎ𝑝𝑖
(

𝑃𝑐ℎ𝑝𝑖,𝐻𝑐ℎ𝑝𝑖
)

and 𝐶𝑜𝑠𝑡ℎ𝑜𝑢𝑖
(

𝐻ℎ𝑜𝑢𝑖
)

define
the cost equation of the 𝑖th co-generation unit and heat only unit,
respectively.

3.1.2. Case 2: CHPED based OPF with wind
The cost function of wind based CHPED problem is presented by

(16).

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐶𝑜𝑠𝑡 =
𝑁𝑝𝑜𝑢
∑

𝑖=1
𝐶𝑜𝑠𝑡𝑝𝑜𝑢𝑖

(

𝑃𝑝𝑜𝑢𝑖
)

+
𝑁𝑐ℎ𝑝
∑

𝑖=1
𝐶𝑜𝑠𝑡𝑐ℎ𝑝𝑖

(

𝑃𝑐ℎ𝑝𝑖,𝐻𝑐ℎ𝑝𝑖
)

+
𝑁ℎ𝑜𝑢
∑

𝑖=1
𝐶𝑜𝑠𝑡ℎ𝑜𝑢𝑖

(

𝐻ℎ𝑜𝑢𝑖
)

+
𝑁𝑤𝑖𝑛𝑑
∑

𝑖=1
𝐶𝑜𝑠𝑡𝑤𝑖𝑛𝑑𝑖

(

𝑃𝑤𝑖𝑛𝑑𝑖
)

(16)
9

In the above equation, 𝐶𝑜𝑠𝑡𝑤𝑖𝑛𝑑𝑖
(

𝑃𝑤𝑖𝑛𝑑𝑖
)

denotes the wind genera-
tion cost; number of wind units represented by 𝑁𝑤𝑖𝑛𝑑 respectively.

3.1.3. Emission minimization
The objective of the second single objective function is to minimize

emissions without considering cost minimization. The thermal plant
emission (𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑝𝑜𝑢) is represented mathematically in Eq. (17).

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑝𝑜𝑢 =
𝑇
∑

𝑡=1

𝑁𝑝𝑜𝑢
∑

𝑖=1

[

𝑏𝑖0 + 𝑏𝑖1𝑃
𝑡
𝑝𝑜𝑢𝑖 + 𝑏𝑖2(𝑃 𝑡

𝑝𝑜𝑢𝑖)
2

+𝑏𝑖3 exp(𝑏𝑖4𝑃 𝑡
𝑝𝑜𝑢𝑖)

]

(17)

In (17), 𝑏𝑖0, 𝑏𝑖1, 𝑏𝑖2, 𝑏𝑖3 and 𝑏𝑖4 denote emission coefficients whereas
𝑃 𝑡
𝑝𝑜𝑢𝑖 is the thermal power output.

3.1.4. Active power loss
Transmission lines experience active power loss due to inherent

resistance. (18) shows the active power loss that has to be kept to a
minimum:

𝑃𝐿 =
𝑁𝐿
∑

𝑛=1
𝐺𝑛(𝑝𝑞)

(

𝑉 2
𝑝 + 𝑉 2

𝑞 − 2𝑉𝑝𝑉𝑞 cos𝜑𝑝𝑞

)

(18)

𝐺𝑛(𝑝𝑞): transfer conductance of 𝑛th line connected between buses 𝑝 and
𝑞. 𝑁𝐿: total number of transmission line. 𝜙𝑝𝑞 : voltage angle between
buses 𝑝 and 𝑞.

3.1.5. Voltage deviation
Voltage variation at load buses must be kept to a minimum in order

to maintain a suitable voltage profile at the load buses; this is indicated
by (19):

𝑉 𝐷 =
𝑁𝐵
∑

|

|

𝑉𝑙 − 1|
|

(19)

𝑙=1
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Table 9
Simulation results and control parameters of different cases for CHPED based OPF with renewable using DTBO.

Control Min. Max. Case 8 Case 9 Case 10 Case 11 Case 12 Case 13 Case 14
parameters

PTG1 (MW) 50 200 169.27 62.22 169.7 59.16 101.66 103.37 65.49
PWG2 (MW) 0 75 72.62 72.16 73.41 74.96 74.45 69.94 70.1
PTG5 (MW) 15 50 15.3 47.88 15.04 48.49 49.28 42.4 49.49
PTG8 (MW) 10 35 11.47 34.69 11.65 34.85 24.16 32.3 34.81
PTG11 (MW) 10 30 12.16 29.94 11.53 30 27.4 28.87 29.57
PTG13 (MW) 12 40 12.08 39.8 12.23 39.13 12.43 12.03 38.15
V1 (p.u.) 0.95 1.1 1.0938 1.084 1.0596 1.0896 1.0054 1.0871 0.9985
V2 (p.u.) 0.95 1.1 1.0733 1.0768 1.0397 1.0854 1.0027 1.0999 1.0036
V5 (p.u.) 0.95 1.1 1.0423 1.0578 1.0035 1.067 1.02 1.0989 1.0094
V8 (p.u.) 0.95 1.1 1.0541 1.0617 1.0112 1.0732 1.0144 1.0969 1.0183
V11 (p.u.) 0.95 1.1 1.0926 1.0881 1.0937 1.0963 1.0198 1.0933 1.0462
V13 (p.u.) 0.95 1.1 1.0968 1.0989 1.0981 1.0952 1.0397 1.0998 1.0312
T11 (p.u.) 0.9 1.1 0.9862 1.0086 0.9923 1.0122 0.9929 0.9038 0.9656
T12 (p.u.) 0.9 1.1 0.9304 0.9192 0.9135 0.9541 0.9022 0.9048 0.961
T15 (p.u.) 0.9 1.1 1.0088 1.0073 1.0046 1.0115 0.9822 0.9028 0.9702
T36 (p.u.) 0.9 1.1 0.9467 0.9612 0.9441 0.981 0.9444 0.9031 0.9441
QC10 (MVAr) 0 0.05 0.047 0.0498 0.0476 0.0497 0.0478 0.0411 0.0475
QC24 (MVAr) 0 0.05 0.05 0.0485 0.0483 0.0495 0.0494 0.0474 0.0499
H5 (MWth) 10 35 34.5514 11.804 34.1251 32.3734 11.9037 29.3479 15.5953
H8 (MWth) 10 35 34.7341 27.4446 34.9951 11.306 12.9738 10.8335 22.9548
H11 (MWth) 10 35 34.6469 13.3893 34.7639 14.64 24.0739 13.3333 27.4824
H13 (MWth) 20 35 34.9519 22.1064 34.1294 21.9904 29.7466 29.3231 30.3763
H31 (MWth) 0 2695.2 36.1157 100.2557 36.9865 94.6902 96.302 92.1622 78.5912

Thermal cost ($/h) 14 488.8256 18 464.4101 14 471.7058 18 439.7017 16 989.6891 17 030.7502 18 338.5572
Emission (t/h) 0.3385 0.1894 0.3397 0.1886 0.221 0.2222 0.1906
Carbon tax ($/h) 6.77 3.788 6.794 3.772 4.42 4.444 3.812
Ploss (MW) 9.5 3.28 10.16 3.19 5.98 5.51 4.2
VD (p.u.) 1.2745 1.308 0.6885 1.289 0.1494 2.6469 0.1682
L-index 0.1315 0.1325 0.1397 0.1339 0.1462 0.1153 0.1459
Table 10
Simulation results and control parameters of different cases for CHPED based OPF with renewable using CDTBO.

Control Min. Max. Case 8 Case 9 Case 10 Case 11 Case 12 Case 13 Case 14
parameters

PTG1 (MW) 50 200 167.82 59.59 168.3 58.09 96.93 87.51 61.98
PWG2 (MW) 0 75 74.71 73.85 74.13 74.39 72.54 74.33 74.1
PTG5 (MW) 15 50 15.08 49.61 15.18 49.62 49.76 48.85 48.89
PTG8 (MW) 10 35 11.77 33.63 11.4 34.6 28.33 34.86 34.01
PTG11 (MW) 10 30 11.26 29.97 11.66 29.93 29.28 29.72 29.5
PTG13 (MW) 12 40 12.11 39.92 12.05 39.85 12.43 12.61 39.24
V1 (p.u.) 0.95 1.1 1.097 1.0942 1.0993 1.0971 1.0011 1.0989 0.9929
V2 (p.u.) 0.95 1.1 1.0849 1.0884 1.0878 1.0945 1.0016 1.0995 0.9965
V5 (p.u.) 0.95 1.1 1.0486 1.0676 1.057 1.0743 1.0166 1.0992 1.0173
V8 (p.u.) 0.95 1.1 1.0613 1.0721 1.0635 1.0832 1.0235 1.0998 1.0099
V11 (p.u.) 0.95 1.1 1.097 1.1 1.0918 1.0996 0.9829 1.0984 1.0529
V13 (p.u.) 0.95 1.1 1.0996 1.0989 1.0982 1.0993 1.0448 1.0997 1.0552
T11 (p.u.) 0.9 1.1 1.0383 0.992 1.0362 1.044 0.9623 0.9057 0.9771
T12 (p.u.) 0.9 1.1 0.9013 0.9754 0.9051 0.9016 0.9037 0.9024 0.942
T15 (p.u.) 0.9 1.1 1.012 1.0129 1.0193 0.9999 0.9869 0.9014 1.0145
T36 (p.u.) 0.9 1.1 0.9646 0.9853 0.9705 0.9731 0.9448 0.9016 0.9424
QC10 (MVAr) 0 0.05 0.0488 0.0494 0.0498 0.0499 0.0469 0.0498 0.046
QC24 (MVAr) 0 0.05 0.0498 0.0481 0.0488 0.0494 0.0476 0.0478 0.0489
H5 (MWth) 10 35 34.914 22.2784 34.9677 15.691 22.336 17.6832 16.2992
H8 (MWth) 10 35 34.6553 28.1458 34.7792 17.4928 14.0736 11.6333 23.9166
H11 (MWth) 10 35 34.9839 13.1031 34.9659 29.1142 12.2997 32.6136 13.3693
H13 (MWth) 20 35 34.884 33.8426 34.9655 24.442 26.3268 30.0584 34.159
H31 (MWth) 0 2695.2 35.5628 77.6301 35.3217 88.2599 99.9639 83.0115 87.2558

Thermal cost ($/h) 14 459.2598 18 379.6367 14 462.0813 18 463.134 17 256.6276 17 395.1858 18 369.8968
Emission (t/h) 0.3355 0.1886 0.3365 0.1882 0.2162 0.2088 0.1895
Carbon tax ($/h) 6.71 3.772 6.73 3.764 4.324 4.176 3.79
Ploss (MW) 9.36 3.17 9.32 3.08 5.87 4.48 4.32
VD (p.u.) 1.276 1.3139 1.2502 1.5747 0.1487 2.7396 0.1642
L-index 0.1327 0.1343 0.1333 0.13 0.1458 0.1144 0.1461
3.1.6. L-index
It is essential to keep each bus’s bus voltage constant and suit-

able throughout normal operation. In this work, voltage stability is
improved by minimizing the voltage stability indicator L-index. The
10

indicator values, with minor adjustments, range from 0 to 1. Here is
a quick rundown of what the L-index of a power system means. In a
multi-node system, the following can be used to explain the voltage
and current between the load and generator buses (20).
[

𝐼𝑙′
]

=
[

𝑦𝑙′𝑙′ 𝑦𝑙′𝑔′
] [

𝑉𝑙′
]

(20)

𝐼𝑔′ 𝑦𝑔′𝑙′ 𝑦𝑔′𝑔′ 𝑉𝑔′
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Table 11
Statistical analysis of test system 2.

Algorithm Statistical Cost Emission Power loss Voltage Voltage
analysis ($/h) (t/h) (MW) profile (pu) stability (pu)

Min 14 488.8256 0.1894 3.19 0.1494 0.1153
Mean 14 495.2315 0.1902 3.26 0.1504 0.1162DTBO
Max 14 508.7845 0.1915 3.38 0.1521 0.1179

Min 14 459.2598 0.1886 3.08 0.1487 0.1144
Mean 14 464.0213 0.1891 3.1 0.1494 0.1147CDTBO
Max 14 469.6412 0.1899 3.25 0.1512 0.1152
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Table 12
Comparison of different optimal single objective results for test system 1 and test system
2 using CDTBO.

CDTBO Cost Emission Power loss Voltage Voltage
($/h) (t/h) (MW) profile (pu) stability (pu)

With renewable 14 459.26 0.1886 3.08 0.1487 0.1144
Without renewable 14 552.55 0.2053 3.16 0.1542 0.1149

By matrix inversion, the above equation may be rearranged as
ollows (21):

𝑉𝑙′
𝐼𝑔′

]

=
[

𝑍𝑙′𝑙′ 𝐹𝑙′𝑔′

𝐾𝑔′𝑙′ 𝑌𝑔′𝑔′

] [

𝐼𝑙′
𝑉𝑔′

]

(21)

The sub-matrix 𝐹𝑙′𝑔′ may be expressed as under (22):

𝐹𝑙′𝑔′ = −
[

𝑦11
]−1 [𝑦𝑙′𝑔′

]

(22)

The voltage stability index of the 𝐾th bus may be expressed by (23).

𝐿𝑘 = |1 −
𝑁𝑔
∑

𝑗=1
𝐹𝑘𝑗

𝑉𝑗
𝑉𝑘

|𝑘 = 1, 2,… ..., 𝑁𝑙 (23)

.1.7. Multi-objective function
Functions that were formerly single-objective are minimized sep-

rately. On the other hand, to evaluate the recommended method’s
fficacy in a multi-objective setting, active power losses and voltage
ariation are minimized concurrently following the first simultaneous
inimization of generating cost and emission. In order to equalize the
riority level of the generation cost with emission and power losses
ith voltage deviation, a penalty factor (𝜖) has been used to handle

he multi-objective function. The mathematical representation of the
ulti-objective function (𝐹 ) is formulated in (24) and (25).

= (𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝐶𝑜𝑠𝑡) + 𝜖 (𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛) (24)

= (𝑃𝐿) + 𝜖 (𝑉 𝐷) (25)

.2. Constraints

.2.1. Equality constraints
The following illustration shows the limitations of both CHPED-

ased OPF and CHPED-based OPF with wind.

.2.1.1. Power balance constraints of for without renewable. The follow-
ng are the power balancing restrictions for the OPF system based on
HPED:
𝑝𝑜𝑢
∑

𝑖=1
𝑃𝑝𝑜𝑢𝑖 +

𝑁𝑐ℎ𝑝
∑

𝑖=1
𝑃𝑐ℎ𝑝𝑖 = 𝑃𝐷 + 𝑃𝐿 (26)

𝐿 =
𝑁𝑝𝑜𝑢
∑

𝑖=1

𝑁𝑝𝑜𝑢
∑

𝑗=1
𝑃𝑝𝑜𝑢𝑖𝐵𝑖𝑗𝑃𝑝𝑜𝑢𝑗 +

𝑁𝑝𝑜𝑢
∑

𝑖=1

𝑁𝑐ℎ𝑝
∑

𝑗=1
𝑃𝑝𝑜𝑢𝑖𝐵𝑖𝑗𝑃𝑐ℎ𝑝𝑗+

𝑁𝑐ℎ𝑝
∑

𝑖=1

𝑁𝑐ℎ𝑝
∑

𝑗=1
𝑃𝑐ℎ𝑝𝑖𝐵𝑖𝑗𝑃𝑐ℎ𝑝𝑗

(27)
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𝑉

𝑐ℎ𝑝
∑

𝑖=1
𝐻𝑖+

𝑁ℎ
∑

𝑖=1
𝐻𝑐ℎ𝑝𝑖 = 𝐻𝐷 (28)

q. (26) representation of power balance; power losses in the transmis-
ion line shown in Eq. (27); Eq. (28) represents heat balance. thermal
emand defined by 𝐻𝐷 and 𝐵𝑖𝑚, 𝐵𝑖𝑗 , 𝐵𝑗𝑟 are power loss coefficients.

.2.1.2. Power balance constraints for with renewable system. The wind
ower balance equation for CHPED-based OPF is defined by (29):

𝑝𝑜𝑢
∑

𝑖=1
𝑃𝑝𝑜𝑢𝑖 +

𝑁𝑐ℎ𝑝
∑

𝑖=1
𝑃𝑐ℎ𝑝𝑖 +

𝑁𝑤𝑖𝑛𝑑
∑

𝑖=1
𝑃𝑤𝑖𝑛𝑑𝑖 = 𝑃𝐷 + 𝑃𝐿 (29)

he power balance Eq. (26) is extended to a new solution as represented
n (29), where wind power is incorporated with CHPED.

Power flow equation is shown in Eq. (30):
𝑁𝑠
∑

𝑐=1

(

𝑃𝐺𝑐 − 𝑃𝐿𝑐
)

=
𝑁𝑠
∑

𝑐=1

𝑁𝑠
∑

𝑑=1

|

|

𝑉𝑐 || ||𝑉𝑑 || ||𝑌𝑐𝑑 || cos
(

𝜑𝑐𝑑 − 𝛽𝑐𝑑
)

𝑁𝑠
∑

𝑐=1

(

𝑄𝐺𝑐 −𝑄𝐿𝑐
)

= −
𝑁𝑠
∑

𝑐=1

𝑁𝑠
∑

𝑑=1

|

|

𝑉𝑐 || ||𝑉𝑑 || ||𝑌𝑐𝑑 || sin
(

𝜑𝑐𝑑 − 𝛽𝑐𝑑
)

(30)

n the 𝑐th bus, the active and reactive power demand are denoted
y 𝑃𝐿𝑐 and 𝑄𝐿𝑐 ; the active and reactive power of generation and
emand are denoted by 𝑃𝐺𝑐 and 𝑄𝐺𝑐 , respectively; The transmission
ine admittance between the 𝑐th and the 𝑑th bus is 𝑌𝑐𝑑 ; the number of
uses is 𝑁𝑠; the admittance angle between the 𝑐th and the 𝑑th bus is
𝑐𝑑 .

.2.2. Constraint of inequality

.2.2.1. Constraints of capacity. For stable operation, the heat and
ower limitation range for power alone units, co-generation units, and
eat only units is provided in (31)–(35). The co-generation and power
nit voltages are shown in (36)–(37). (38)–(40) provide the constraints
f transformer tap changers, load buses, and transmission lines. :
min
𝑝𝑜𝑢𝑖 ≤ 𝑃𝑝𝑜𝑢𝑖 ≤ 𝑃max

𝑝𝑜𝑢𝑖 𝑤ℎ𝑒𝑟𝑒, 𝑖 = 1, 2, 3,… , 𝑁𝑝𝑜𝑢 (31)

min
𝑐ℎ𝑝𝑖

(

𝐻𝑐ℎ𝑝𝑖
)

≤ 𝑃𝑐ℎ𝑝𝑖 ≤ 𝑃max
𝑐ℎ𝑝𝑖

(

𝐻𝑐ℎ𝑝𝑖
)

𝑤ℎ𝑒𝑟𝑒, 𝑖 = 1, 2, 3,… , 𝑁𝑐ℎ𝑝 (32)

min
𝑤𝑖𝑛𝑑𝑖 ≤ 𝑃𝑤𝑖𝑛𝑑𝑖 ≤ 𝑃max

𝑤𝑖𝑛𝑑𝑖 𝑤ℎ𝑒𝑟𝑒, 𝑖 = 1, 2, 3,… , 𝑁𝑤𝑖𝑛𝑑 (33)

min
𝑐ℎ𝑝𝑖

(

𝑃𝑐ℎ𝑝𝑖
)

≤ 𝐻𝑐ℎ𝑝𝑖 ≤ 𝐻max
𝑐𝑖

(

𝑃𝑐ℎ𝑝𝑖
)

𝑤ℎ𝑒𝑟𝑒, 𝑖 = 1, 2, 3,… , 𝑁𝑐ℎ𝑝 (34)

min
ℎ𝑜𝑢𝑖 ≤ 𝐻ℎ𝑜𝑢𝑖 ≤ 𝐻max

ℎ𝑜𝑢𝑖 𝑤ℎ𝑒𝑟𝑒, 𝑖 = 1, 2, 3,… , 𝑁ℎ𝑜𝑢 (35)

min
𝑝𝑜𝑢𝑖 ≤ 𝑉𝑝𝑜𝑢𝑖 ≤ 𝑉 max

𝑝𝑜𝑢𝑖 𝑤ℎ𝑒𝑟𝑒, 𝑖 = 1, 2, 3,… , 𝑁𝑝𝑜𝑢 (36)

min ≤ 𝑉 ≤ 𝑉 max 𝑤ℎ𝑒𝑟𝑒, 𝑖 = 1, 2, 3,… , 𝑁 (37)
𝑐ℎ𝑝𝑖 𝑐ℎ𝑝𝑖 𝑐ℎ𝑝𝑖 𝑐ℎ𝑝
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Table 13
Comparison optimal results of multi-objective functions for test system 1 and test system 2 using CDTBO.

Optimization Multi-objective functions With renewable Without renewable

Cost Emission Cost EmissionCost and Emission 14 462.08 ($/h) 0.3365 (t/h) 14 765.09($/h) 0.3862 (t/h)

Power loss Voltage profile Power loss Voltage profileCDTBO
Active power loss and Voltage profile 4.32 (MW) 0.1642 (p.u) 4.73 (MW) 0.1665 (p.u)
b
o
f

𝑍

Table 14
Comparison of different optimal single objective results for test system2 using different
algorithm.

Algorithm Cost Emission Power Voltage Voltage
($/h) (t/h) loss (MW) profile (p.u) stability (p.u)

CDTBO 14 459.26 0.1886 3.08 0.1487 0.1144
AFDB-ARO [40] 14 676.56 0.1954 3.54 0.1589 0.1207
dFDB-SFS [42] 14 623.78 0.1923 3.44 0.1556 0.1204
FDB-AGSK [43] 14 589.98 0.1907 3.32 0.1549 0.1198
FDB-TLABC [44] 14 577.45 0.1902 3.31 0.1535 0.1189
FDB-AEO [45] 14 534.09 0.1899 3.26 0.1512 0.1181
FDB-LFD [46] 14 523.78 0.1898 3.24 0.1509 0.1176
FDB-AGDE [47] 14 502.98 0.1895 3.21 0.1502 0.1166
LRFDB-COA [48] 14 526.89 0.1911 3.41 0.1513 0.1187
FDB-SFS [49] 14 543.98 0.1912 3.47 0.1533 0.1191
FDB-CHOA [50] 14 489.32 0.1891 3.19 0.1499 0.1167

(ii) Load bus constraints:
min
𝐿𝑏 ≤ 𝑉𝐿𝑏 ≤ 𝑉 max

𝐿𝑏 𝑏 ∈ 𝑁𝐵𝐿 (38)

(iii) Transmission line constraints:

𝑆𝐿𝑏 ≤ 𝑆max
𝐿𝑏 𝑏 ∈ 𝑁𝐿𝑇 (39)

(iv) Transformer tap constraints:

𝑇min
𝑏 ≤ 𝑇𝑏 ≤ 𝑇max

𝑏 𝑏 ∈ 𝑁𝑇 (40)

Minimum and maximum power limits of 𝑖th power only unit and
th co-generation unit are presented by 𝑃min

𝑝𝑜𝑢𝑖, 𝑃max
𝑝𝑜𝑢𝑖 , 𝑃min

𝑐ℎ𝑝𝑖
(

𝐻𝑐ℎ𝑝𝑖
)

and
max
𝑐ℎ𝑝𝑖

(

𝐻𝑐ℎ𝑝𝑖
)

; 𝑃min
𝑤𝑖𝑛𝑑𝑖 is the minimum power generation of 𝑖th wind 𝑃max

𝑤𝑖𝑛𝑑𝑖
s presented maximum power generation of 𝑖th wind, 𝐻min

𝑐ℎ𝑝𝑖 and 𝐻min
ℎ𝑜𝑢𝑖

re the minimum heat limit of the 𝑖th co-generation and heat unit; 𝐻max
𝑐ℎ𝑝𝑖

nd 𝐻max
ℎ𝑜𝑢𝑖 are depicted the maximum heat limit of the 𝑖th co-generation

eat unit.
where 𝑉 min

𝐺𝑏 , 𝑉 max
𝐺𝑏 indicate respectively lower and upper voltage lim-

ts, for the 𝑏th generator bus; 𝑃min
𝐺𝑏 , 𝑃max

𝐺𝑏 are the lower and upper bounds
f active power generation, respectively, of the 𝑏th bus; 𝑄min

𝐺𝑏 , 𝑄
max
𝐺𝑏 are

espective minimum and maximum reactive power generation margins
f the 𝑏th bus; 𝑉 min

𝐿𝑏 , 𝑉 max
𝐿𝑏 are the smallest and highest voltage edges,

espectively, of the 𝑏th load bus, 𝑆𝐿𝑏
min, 𝑆max

𝐿𝑏 are the least apparent
ower flow and extreme apparent power flow limit, respectively, of the
thbranch; 𝑇min

𝑏 , 𝑇max
𝑏 are the bottom and extreme tap setting limits,

espectively, of the 𝑏th regulating transformer; respectively.

. Algorithm for optimization

.1. Driving training optimization (DTBO)

Dehghani et al. introduces DTBO [51]. The DTBO program is de-
igned to resemble the driving teacher training program used by driving
enters. The DTBO mathematical framework consists of three phases:
1) student practice; (2) student patterning from instructor skills; and
3) driving instructor training. In order to be trained and get the
bility to drive, a beginner’s intelligence is required during the driving
raining procedure. A learner driver at a driving school has access to
ultiple instructors for instruction. Through practice and adhering to

he instructor’s instructions, a student improves his driving skills. The
oundation of mathematical modeling of DTBO is these learner-teacher
12

nteractions and self-practice for improving driving skills. A population
ased meta-heuristic technique is called DTBO. Here is a representation
f the DTBO population matrix (41), where each row member stands
or a possible solution to the given problem:
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Z is the DTBO population, 𝑍𝑝. is the 𝑝th member of the population
𝑖.𝑒. 𝑝th candidate solution of the problem, 𝑧𝑝𝑞 is the 𝑞th variable
of the 𝑝th solution of the problem, 𝑁 is population size, 𝑚 denotes
no of problem variables. At the beginning of DTBO implementation,
the starting position of DTBO members (𝑖.𝑒. candidate solutions) is
initialized randomly as given below (42):

𝑧𝑝𝑞 = 𝑧min
𝑝𝑞 + 𝑟 ∗

(

𝑧max
𝑝𝑞 − 𝑧min

𝑝𝑞

)

𝑓𝑜𝑟 𝑝 = 1 𝑡𝑜𝑁 ς 𝑞 = 1 𝑡𝑜 𝑚 (42)

where 𝑧max
𝑝𝑞 , 𝑧min

𝑝𝑞 are the upper and lower limit, respectively, of the
𝑞th variable of the considered problem; 𝑟 is a unbiased random value
within 0 and 1. For every individual candidate solution, the value of the
objective function is computed and it is represented as follows (43):
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The objective function’s computed values serve as the primary
criterion for evaluating the merits of the solutions under consideration.
Best member is determined by selecting the candidate solution that
yields the highest objective function value. The best member is updated
as the iteration moves forward. The three phases that comprise the
updating of a candidate solution in DTBO are as follows:

Step 1: Driving teacher training (Exploration) The best members of
DTBO are selected as a driving instructors, while the remaining
members are classified as trainee drivers. Choosing the right
instructors and developing their skills gives us the ability to
look globally to find the best location for DTBO. The 𝐿 number
(45) of DTBO members is selected as instructors in each iter-
ation based on a comparison of the objective function values.

These instructors are represented as the driving matrix DI (44)
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Table 15
Statistical comparison (5 trials) among various algorithms for IEEE 30 bus system-2 for case-8 (Friedman test).

Sample CDTBO DTBO AFDB-ARO
[40]

dFDB-SFS FDB-AGSK
[43]

FDB-TLABC
[44]

FDB-AEO
[45]

FDB-LFD
[46]

FDB-AGDE
[47]

LRFDB-COA
[48]

FDB-SFS
[49]

FDB-CHOA
[50]

1 14 459.26 14 488.8256 14 676.56 14 623.78 14 589.98 14 577.45 14 534.09 14 523.78 14 502.98 14 526.89 14 543.98 14 489.32
2 14 465.345 14 496.234 14 680.67 14 633.562 14 590.324 14 579.672 14 537.982 14 528.891 14 511.403 14 539.453 14 544.459 14 490.564
3 14 476.345 14 489.324 14 686.98 14 625.908 14 594.234 14 582.783 14 544.234 14 532.562 14 523.647 14 529.676 14 550.673 14 494.654
4 14 471.435 14 499.209 14 677.87 14 635.911 14 599.452 14 592.782 14 548.381 14 539.564 14 509.562 14 531.453 14 548.982 14 502.003
5 14 462.234 14 495.756 14 685.821 14 624.426 14 601.452 14 580.002 14 550.038 14 525.395 14 507.329 14 532.067 14 544.521 14 494.871
as follows:
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(44)

𝐷𝐼𝑝 is 𝑝th driving instructor. 𝐷𝐼𝑝𝑞 is 𝑞th variable of 𝑝th instruc-
tor.

𝐿 =
⌊

0.1 ×𝑁 ×
(1 − 𝑠

𝑆

)⌋

(45)

𝑠 denotes current iteration and 𝑆 is maximum iteration. In
this step, the modified position of DTBO population member
is obtained as given below (46):

𝑧𝑠𝑡1𝑝𝑞 =

{{

𝑧𝑝𝑞 + 𝑟.
(

𝐷𝐼𝑘𝑝𝑞 − 𝐼.𝑧𝑝𝑞
)

, 𝐹𝐷𝐼𝑘𝑝 < 𝐹𝑝

𝑧𝑝𝑞 + 𝑟.
(

𝑧𝑝𝑞 −𝐷𝐼𝑘𝑝𝑞
)

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(46)

Using Eq. (47), previous position is replaced by new position
while it improves the objective function value.

𝑍𝑝 =

{{

𝑍𝑠𝑡1
𝑝 , 𝐹 𝑠𝑡1

𝑝 < 𝐹𝑝

𝑍𝑝, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(47)

𝑍𝑠𝑡1
𝑝 is newly computed 𝑝th candidate solution at step 1 of

DTBO, 𝑧𝑠𝑡1𝑝𝑞 is its 𝑞th problem variable, 𝐹 𝑠𝑡1
𝑝 is its objective

function value, 𝐼 is a random number in the set 1,2, 𝑟 is
random value within 0 and 1. In 𝐷𝐼𝑘𝑝𝑞 , 𝑘 is randomly selected
from the set 1, 2,… ., 𝐿 𝑖.𝑒. 𝑘th driving instructor and 𝐹𝐷𝐼𝑘𝑝
is its objective function value, 𝑝 indicates 𝑝th member of the
population which is being trained by 𝑘th instructor.

Step 2: Student driver’s teacher skill patterning (Exploration) In the
second step, student drivers mimic the instructor’s actions and
abilities to enhance the DTBO solution. Members of DTBO
travel to various regions of the search space through this pro-
cess. It amplifies the exploratory power of DTBO. A modified
position is established through a linear combination between
the teachers and DTBO members; this combination is described
mathematically by Eq. (48). If the value of the objective func-
tion is better than the previous position, the new position is
substituted using Eq. (49).

𝑧𝑠𝑡2𝑝𝑞 = 𝜉.𝑧𝑝𝑞 + (1 − 𝜉) .𝐷𝐼𝑘𝑝𝑞 (48)

𝑍𝑝 =

{{

𝑍𝑠𝑡2
𝑝 , 𝐹 𝑠𝑡2

𝑝 < 𝐹𝑝

𝑍𝑝, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(49)

𝑍𝑠𝑡2
𝑝 is the modified 𝑝th candidate solution on second stage

of DTBO, 𝑧𝑠𝑡2𝑝𝑞 is its 𝑞th variable, 𝐹 𝑠𝑡2
𝑝 is corresponding value

of objective function. 𝜉 is called patterning index described
by Eq. (50):

𝜉 = 0.01 + 0.9
(

1 − 𝑠 ) (50)
13

𝑆

Step 3: Personal practice (Exploitation) Based on individual practice,
the novice drivers’ driving abilities are improved in this level.
It is comparable by using DTBO’s local search power. Every
learner looks for a position that is better than their current one.
Eq. (51) is used to generate new placements in close proximity
to the existing position. The prior position is replaced with
Eq. (52) if the new position increases the objective function
value more than the previous one did.

𝑧𝑠𝑡3𝑝,𝑞 = 𝑧𝑝𝑞 + (1 − 2𝑟) .𝑅.
(

1 − 𝑠
𝑆

)

.𝑧𝑝𝑞 (51)

𝑍𝑝 =

{{

𝑍𝑠𝑡3
𝑝 , 𝐹 𝑠𝑡3

𝑝 < 𝐹𝑝

𝑍𝑝, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(52)

𝑍𝑠𝑡3
𝑝 is the updated 𝑝th candidate solution at third step of

DTBO, 𝑧𝑠𝑡3𝑝,𝑞 is its 𝑞th variable, corresponding objective function
value is 𝐹 𝑠𝑡3

𝑝 , 𝑟 is a random value between 0 and 1, 𝑅 is
0.05, 𝑠 is current iteration and 𝑆 is the maximum iteration.
One DTBO iteration is finished when all population members
are updated through steps 1–3. Following that, the following
iteration begins with a newly updated population, and so on
[through Eqs. (44) to (52)] until the last iteration is finished.
The problem’s best candidate solution is noted as the solution
at the conclusion of the last iteration.

4.2. Chaotic based learning (CBL)

Most of the evolutionary algorithms learn from the population’s
random initialization and continuous search for the optimal solution.
But, when it comes to find the global optimal solution, which also
affects the rate of convergence, DTBO still cannot compete with other
techniques. To mitigate this effect, chaos behavior and the DTBO are
combined to generate the CDTBO. Chaos’s unpredictable and non-
repeating characteristics make overall searches speedier, which can be
essential for quickening the convergence of a meta-heuristic algorithm.

In the CDTBO approach, various chaotic maps are merged with
DTBO to adjust the parameters of DTBO. Ten chaotic maps with varying
behaviors make up the chaotic set combination. The starting value
for the ideal solution is chosen to be 0.7 in the range of 0 to 1.
Table 1 discusses the various chaotic maps, and Table 2 shows the
statistical analysis of the CDTBO technique for various chaotic maps.
By employing these chaotic maps, the local optimal problem has been
solved and a global optimal solution is provided.

4.3. Solving OPF-CHPED issue by CDTBO

In order to improve the optimizing efficiency, DTBO and CBL are
combined in this article (referred to as CDTBO). The CDTBO algorithm’s
flow chart is shown in Fig. 2, and the steps it takes to apply to OPF are
described below :

Step 1: Create the initial population 𝑍 at random. 𝑍 stands for the
independent variables of the OPF issue, which include tap
settings for regulating transformers, the active powers of all
generators (slack bus excluded) & load voltages . 𝑍 shouldn’t
go against the restrictions on inequality & equality.
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Step 2: The chaotic map is used to initialize the random value. The
chaotic number is modified with the aid of the chaotic map
equation.

Step 3: Carry out load flow by Newton–Raphson (NR) procedure [52]
& compute full dependent variables like load voltages, slack
bus active power etc from 𝑍.

Step 4: Determine the magnitudes of objective function for 𝑍.
Step 5: Assemble the population 𝑍 from finest to worst according to

magnitude of the objective function.
Step 6: Create 𝑁 number of best possible fit members from 𝑍.
Step 7: Start DTBO
Step 8: Training by the driving instructor (Exploration)
Step 9: Comparing the objective function’s value, acquire the driving

instructor matrix DI.
tep 10: Select a driving instructor randomly from DI matrix.
tep 11: By Eq. (46), get the new position for 𝑝th DTBO member.
tep 12: Use the NR procedure to confirm whether the limitations are

within the allowed bounds.
tep 13: By Eq. (47), the position of 𝑝th DTBO member is enhanced.

Patterning of the instructor skills of the student driver (Explo-
ration)

tep 14: Through Eq. (50), find the patterning index.
tep 15: Compute a new position for 𝑝th DTBO member by Eq. (48).
tep 16: Check if the constraints are within the limits or not by NR

process.
tep 17: Use Eq. (49), to update the position of 𝑝th DTBO member.
tep 18: Personal practice (Exploitation)
tep 19: Compute the updated position of 𝑝th DTBO member with

Eq. (51).
tep 20: Verify using the NR process whether the constraints are within

the allowed bounds
tep 21: By Eq. (52), to revise the position of 𝑝th DTBO member.
tep 22: Following the creation of new populations using DTBO, feasi-

ble solutions based on CBL are produced, and the fitness value
is assessed

tep 23: From the DTBO and CBL based solutions, the required number
of workable solutions is chosen.

tep 24: For the subsequent iteration, proceed to step 5 until the
halting criterion is met.

tep 25: Output: The best candidate solution achieved by CDTBO.

. Simulation results

In the current work, CHPED is integrated with the IEEE 30 bus
ystem for optimal power flow in the transmission line with the best
ossible objective function solution. The CHPED-OPF problem of the
ower system is now being investigated through simulation using two
est systems. The CDTBO algorithms are used to find optimal answers
n the considered test systems, and the test results show how effective
nd beneficial the algorithm is. In order to solve the CHPED-OPF
roblem, the performances of CDTBO and DTBO are contrasted. It
emonstrates CDTBO’s superiority. The simulations are done in MAT-
AB 2014. The PC used to run MATLAB is powered by a more recent
ore i5 CPU with internal memory 8 GB of RAM & 2.5 GHz. The
imulation results and calculation times for test systems 1 & 2 of the
roposed algorithm are shown in this section. The practical and realistic
ange within which the power and heat production of the different
o-generation units falls is also explained. At population size 50, the
DTBO algorithm produces the best outcomes in the lowest amount
f time. For every population and case, there are 100 iterations. Fur-
hermore, CDTBO has been applied in test systems that take renewable
ources into account as well as those that do not. Comparison is made
etween the simulation results of CDTBO and DTBO for test systems
ith renewable energy sources. The fourteen different cases involving

ingle and multi-objective functions that are looked at in this research
re listed in Table 3. According to the simulation results, utilizing
enewable energy sources reduces generation costs when compared to
14

PF-CHPED systems that rely on non-renewable energy. c
5.0.1. Test system-1
Having 30 buses, test system 1 is made up of a heat, four CHP, & two

power units. 41 branches are there through that 30 buses are linked.
Bus no 5, 8, 11 & 13 are being fitted with CHP units and two power
units are linked to bus no 1 & 2. There is 283.4 MW of load demand in
total, the reactive power & heat demand are 126.2 MVar & 175 MWth.
Six reactive powers, six total generator bus voltages, four tap-varying
transformers, & five heat-only units are considered under the control
variables. On 24 load buses, the voltage is found within 0.95 & 1.05 p.u.
An outline of IEEE 30 bus for OPF-CHPED structure is given in Table 4.
Co-generation units’ competence to generate both power & heat located
in viable operating area are displayed at Figs. 3 and 4. There have
been seven cases for single and multi-objective functions tested on the
suggested test system 1. The functions having single objective contain
minimizing overall cost, emissions, transmission loss, voltage profile &
L-index. The functions with multi-objectives enclose minimizing cost
with emission and active power loss with voltage profile concurrently.
Applying DTBO the computed optimal cost is 14554.41 $/h, emission
0.2059 (t/h), carbon tax is 4.118 ($/h), transmission losses is 3.27 MW,
voltage deviation is 0.1644 p.u and L-index is 0.1152 while the multi-
objective functions all together minimized active power and voltage
deviation are 4.61 (MW) and 0.1679 p.u. After that CDTBO method
as been tested the obtained optimal cost is 14552.55 $/h, emission
.2053 (t/h), carbon tax is 4.11 ($/h), transmission losses is 3.16 MW,
oltage deviation is 0.1542 p.u and L-index is 0.1149 whereas for
ulti-objective function simultaneously minimized active power and

oltage deviation are 4.73 (MW) and 0.1665 p.u. The results has been
isplayed in Tables 5 and 6 which warranted the usefulness of CDTBO
ore than DTBO to attain the optimal result in every respect. Seven

ases of the OPF-CHPED setup are appraised with DTBO & CDTBO, &
ssessment were performed to estimate the dominance of the CDTBO
echnique over DTBO. The diverse comparison of CHPED-OPF setup for
ost, emission, power losses, voltage deviation are displayed in Fig. 5.
he convergence plot of the considered CDTBO & DTBO optimization
ethod are presented in Fig. 7. The optimal solution by CDTBO of

everal objectives has been arrived within smaller iterations as opposed
o DTBO. The present study ascertained the rapidness of computa-
ional duration of CDTBO for combining the chaotic based learning
ith DTBO tool. The judgment of statistical scrutiny subsequent to
00 iterations with minimum amount, maximum amount and average
mount of utilized DTBO & CDTBO are provided in Table 7. The
isparity of maximum value, minimum value & average value is very
ittle while CDTBO is used in contrast to DTBO. It provides the evidence
f robustness of recommended CDTBO.

.0.2. Test system-2
Furthermore, to obtain the efficient resolution over cost minimiza-

ion & emission reduction with optimal flow of power in transmission
ine, renewable energies are included with planned CHPED based OPF
tructure. The arrangement turn into more composite due to existence
f uncertainties of wind pace. Total 25 wind turbine has been used in
ntegrated wind generating unit. Different wind parameters is displayed
n Appendix Table A.3. In CHPED system two-power only units, four-
ogeneration units & a heat only unit are connected. On this suggested
enewable based CHPED structure, a power only unit is substituted by
ind unit. In IEEE-30 bus system, the wind generator is connected to
us-2. The entire load demand is 283.4 MW while reactive power &
eat demand are 126.2 MVar & 175 MWth. An outline of IEEE 30
us setup for OPF-CHPED (with wind power) is given at Table 8. The
imulation outcomes of DTBO & CDTBO and finest setting of control
ariables are displayed on Tables 9 and 10. This suggested renewable-
ased CHPED-OPF system has been subjected to an analogous analysis
sing the DTBO and CDTBO to evaluate the quality of the recom-
ended optimization tool for single & multi objective functions. With
TBO the derived optimal cost is 14488.83 $/h, emission 0.1894 (t/h),

arbon tax is 3.788 ($/h), transmission losses is 3.19 MW, voltage
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Table A.1
Cost and emission coefficients of thermal units for IEEE 30-bus network.

Generator Bus a b c d e 𝛼 𝛽 𝛾 𝜔 𝜇

TG1 (POU) 1 0 2 0.00375 18 0.037 4.091 −5.554 6.49 0.0002 2.857
TG2 (POU) 2 0 1.75 0.0175 16 0.038 2.543 −6.047 5.638 0.0005 3.333
TG5 (CHP) 5 0 1 0.0625 14 0.04 4.258 −5.094 4.586 0.000001 8
TG8 (CHP) 8 0 3.25 0.00834 12 0.045 5.326 −3.55 3.38 0.002 2
TG11 (CHP) 11 0 3 0.025 13 0.042 4.258 −5.094 4.586 0.000001 8
TG13 (CHP) 13 0 3 0.00834 13.5 0.041 6.131 −5.555 5.151 0.00001 6.667
Table A.2
Generation limits and cost co-efficient of HOU.

UNIT Bus Hmin (MWTh) Hmax (MWTh) 𝛼 𝛽 𝛾

HOU 31 0 2695.2 0.038 2.0109 950

deviation is 0.1494 p.u and L-index is 0.1153 whereas for multi-
objective function simultaneously minimized active power and voltage
deviation are 4.2 (MW) and 0.1682 p.u. After the CDTBO scheme has
been experimented the acquired optimal cost is 14459.26 $/h, emission
0.1886 (t/h), carbon tax is 3.77 ($/h), transmission losses is 3.08 MW,
voltage deviation is 0.1487 p.u & decreased L-index is 0.1144 while
for multi-objective function concurrently minimized active power and
voltage deviation are 4.32 (MW) and 0.1642 p.u. The statistical scrutiny
has been conducted over DTBO & CDTBO for OPF-CHPED system
(with renewable power) & provided in Table 11 which establishes
the robustness of the CDTBO procedure. The different assessment of
CHPED-OPF system for cost, emission, power losses, voltage deviation
are displayed in Fig. 6. The convergence natures of diverse objective
functions are exposed in Fig. 7, where the obtained results in all the
cases using CDTBO converges smoothly to the optimum value which
is much earlier than the DTBO optimization technique. In addition,
it is detected that once incorporating renewable power sources with
CHPED-OPF system optimal answer has obtained on single and multi-
objective functions are displayed in Tables 12 and 13. Authors have
solved the CHPED problem using AFDB-ARO [40], dFDB-SFS [42],
FDB-AGSK [43], FDB-TLABC [44], FDB-AEO [45], FDB-LFD [46], FDB-
AGDE [47], LRFDB-COA [48], FDB-SFS [49] and FDB-CHOA [50] and
a comparison has been made with the proposed CDTBO and DTBO
which has been displayed in Table 14. Proposed method has also been
compared using the Friedman test method, illustrated in Table 15.
Comparative study judge the superiority of the CDTBO technique.
Hence it also proved that proposed CDTBO has better dealing capability
with non-linear functions.

6. Conclusions and future scopes

The prime objective of this presentation is to demonstrate the
scheduling of CHPED based OPF with non-conventional energy sources
and depicted the effectiveness of the CDTBO optimization technique.
The following list includes the proposed work’s most successful contri-
butions:

• A new integrated CHPED based OPF system has been illustrated
where 7 units CHPED system is integrated with IEEE-30 bus
system for optimal power flow in the transmission line with
economic operation.

• Further a renewable energy is integrated with CHPED based OPF
system to reduce the utility of thermal units for economic power
generation and diminished the emission to save the environment
from greenhouse effect.

• The adopted model provides the optimal solution over different
objective functions with economic operation of cost, emission
minimization, transmission losses minimization, carbon tax min-
imization, voltage deviation minimization and minimizing the
voltage stability indicator L-index. These are the evidence of
more efficacy, effectiveness and reliability from the traditional
15

scheduling model.
• In order to balance the exploration and exploitation phases, the
various control parameters of the DTBO and CDTBO have been
effectively used, which has concluded in the determination of a
completely adequate global solution.

• The outcomes of various case studies demonstrate that the sug-
gested CDTBO can reduced generating costs, emissions, transmis-
sion losses, voltage deviation, and L-index of the conventional
scheduling model.

• In comparison to the DTBO method, CDTBO appears to produce
better results.

Future Scopes:

• In future, FACTS devices may be incorporated in the CHPED
based OPF problem to improve voltage stability and voltage
deviation of power system.

• Utilization of renewable energy sources is a crucial concern with
improvising fossil fuel.

• In future, hydro-thermal scheduling may be implemented in CH-
PED base OPF with different types of renewable sources for
economic power generation of power system under pollution free
environment.
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Table A.3
Wind parameters.

Specifications wind power unit

Wind farm No. of. turbines Rated power Pwr (MW) Weibull PDF parameters Cost coefficient ($/MWh)

Reserve, KRw Penalty, KPw

WG5(bus 2) 25 75 𝜉 = 9, 𝜅 = 2 3 1.5
Data availability

Data will be made available on request.

Appendix

See Tables A.1–A.3.
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