

Secure Cryptography Using Chaotic Algorithm

Uday Kumar Banerjee (Dr. B.C. Roy Engineering College, Durgapur, India), Anup Kumar Das (Dr. B.C. Roy Engineering College, Durgapur, India), Rajdeep Ray (Dr. B.C. Roy Engineering College, Durgapur, India), and Chandan Koner (Dr. B.C. Roy Engineering College, Durgapur, India)

Source Title: Novel Research and Development Approaches in Heterogeneous Systems and Algorithms

Copyright: © 2023 | Pages: 26

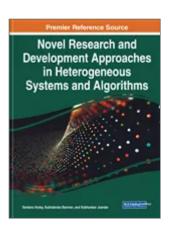

DOI: 10.4018/978-1-6684-7524-9.ch011

Table of Contents

Forewordxv
Preface xv
Acknowledgmentx
Chapter 1
Comparative Study of Some Nature-Inspired Meta-Heuristics for Task Scheduling in a
Computational Grid System
Krishna Gopal Dhal, Midnapore College, India
Sanjoy Das, University of Kalyani, India
Chapter 2
Wavelet Energy-Based Adaptive Retinex Algorithm for Low Light Mobile Video Enhancement 10
Vishalakshi G. R., Dayananda Sagar College of Engineering, India
Gopala Krishna, SJB Institute of Technology, India Hanumantha Raju, BMS Institute of Technology and Management, India
Панитанна Каји, БМЗ Institute ој Тестогоду ина Манадетет, India
Chapter 3
Identification and Segmentation of Medical Images by Using Marker-Controlled Watershed
Transformation Algorithm, XAI, and ML
Tahamina Yesmin, Haldia Institute of Management, India
Pinaki Pratim Acharjya, Haldia Institute of Technology, India
Chapter 4
Cataract Classification and Gradation From Retinal Fundus Image Using Ensemble Learning
Algorithm59
Moumita Sahoo, Haldia Institute of Technology, India
Somak Karan, Haldia Institute of Technology, India
Soumya Roy, Haldia Institute of Technology, India
Chapter 5
Study of the Image Segmentation Process Using the Optimized U-Net Model for Drone-Captured
Images

Gunjan Mukherjee, Brainware University, India	
Arpitam Chatterjee, Jadavpur University, India	
Bipan Tudu, Jadavpur University, India	
Sourav Paul, Ramakrishna Mission Vidyamandira, India & Swami Vivekananda Research Centre, India	
Chapter 6	
Distributed Technologies and Consensus Algorithms for Blockchain	100
Cynthia Jayapal, Kumaraguru College of Technology, India	
Clement Sudhahar, Karunya Institute of Technology and Sciences (Deemed), India	
Chapter 7	
A Novel Steganography Approach Using S-CycleGAN With an Improvement of Loss Function <i>Minakshi Sarkar, Haldia Institute of Technology, India</i>	123
Indrajit Banerjee, Indian Institute of Engineering Science and Technology, Shibpur, India Tarun Kumar Ghosh, Haldia Institute of Technology, India	
Anirban Samanta, Haldia Institute of Technology, India	
Anirban Sarkar, Guru Nanak Institute of technology, India	
Chapter 8	
AI-Based DBMS Controlled Speech Recognition Model for Some Common Computing	
Commands	143
Mrinmoy Sen, Haldia Institute of Technology, India	
Sunanda Jana, Haldia Institute of Technology, India	
Swarnajit Bhattacharya, Haldia Institute of Technology, India	
Gitika Maity, Dr. Meghnad Saha Institute of Technology, India	
Chapter 9	
MEDA-Based Biochips: Proposed New Structural Testing Techniques for Fault Detection	155
Priyatosh Jana, Haldia Institute of Technology, India	
Pranab Roy, Institute of Engineering and Technology, J. K. Laxmipat University, Jaipur, India	
Sarit Chakraborty, Government College of Engineering and Leather Technology, India	
Tanmoy Biswas, Shyamaprasad College, India	
Soumen Ghosh, Haldia Institute of Technology, India	
Chapter 10	
A Radical Image Steganography Method Predicated on Intensity and Edge Detection	173
Abhijit Sarkar, Haldia Institute of Technology, India	
Sabyasachi Samanta, Haldia Institute of Technology, India	
Chapter 11	
Secure Cryptography Using Chaotic Algorithm	191
Uday Kumar Banerjee, Dr. B.C. Roy Engineering College, Durgapur, India	
Anup Kumar Das, Dr. B.C. Roy Engineering College, Durgapur, India	
Rajdeep Ray, Dr. B.C. Roy Engineering College, Durgapur, India	

Chapter 12	
An Image Steganography Approach Using Arnold Transformation	217
Solanki Pattanayak, Haldia Institute of Management, India	
Sabyasachi Samanta, Haldia Institute of Technology, India	
Dipankar Dey, Global Institute of Science and Technology, India	
Abhijit Sarkar, Haldia Institute of Technology, India	
Souvik Bhattacharyya, University Institute of Technology, Burdwan, India	
Chapter 13	
Machine Learning-Based Algorithms Towards Crop Recommendation Systems	236
Soumya Roy, Haldia Institute of Technology, India	
Yuvika Vatsa, Haldia Institute of Technology, India	
Moumita Sahoo, Haldia Institute of Technology, India	
Somak Karan, Haldia Institute of Technology, India	
Chapter 14	
House Rent Prediction Using Ensemble-Based Regression With Real-Time Data	258
Kuntal Mukherjee, Haldia Institute of Technology, India	
Syed Saif Ahmed, Haldia Institute of Technology, India	
Mohammad Aasif, Haldia Institute of Technology, India	
Sumana Kundu, Dr. B.C. Roy Engineering College, India	
Soumen Ghosh, Haldia Institute of Technology, India	
Chapter 15	
A Survey on Energy-Efficient Routing in Wireless Sensor Networks Using Machine Learning	
Algorithms	272
Prasenjit Dey, Coochbehar Government Engineering College, India	
Arnab Gain, Coochbehar Government Engineering College, India	
Compilation of References	292
<u>F</u>	
About the Contributors	314
Index	321

Secure Cryptography Using Chaotic Algorithm

Uday Kumar Banerjee, Anup Kumar Das, Rajdeep Ray, Chandan Koner

Source Title: Novel Research and Development Approaches in Heterogeneous Systems and Algorithms (/book/novel-research-development-approaches-heterogeneous/308298)

Copyright: © 2023 Pages: 26

DOI: 10.4018/978-1-6684-7524-9.ch011

OnDemand:
(Individual Chapters)

() ♠ Available

Current Special Offers

Abstract

A chaotic cryptographic method and bit shuffle methodology for image encryption and decoding have both been suggested. In order to evaluate the encryption's effectiveness and determine whether it met the desired standard, a number of performance analysis tools were also used. These included the number of pixel change rate (NPCR), the unified average changing intensity (UACI), the entropy analysis, which is a component of an encryption scheme that shows how random the image is, and the correlation coefficient. These results reveal the safety of the suggested cryptographic technique.

Chapter Preview

Тор

Introduction

Secure Cryptography: An Overview

Security is not only a word; it is a very important aspect in today's world especially for communication and data or information transmission. As the increase of online transmission not for only simple information but for economic data, the protection of this information becomes very crucial. To do so security techniques like cryptography becomes more and more important as well before. Information security has emerged as the most fascinating and interesting technological sector in the modern world in the information age as a result of widespread computerization and their interaction via networks. Confidentiality, authentication, integrity, non-repudiation, access control, and availability are the guiding principles of every security mechanism. A crucial component of secure communications is cryptography, which was designed with the intention of providing secret communication since it shields information transmission from the impact of adversaries. The concept of security and its characteristics have come to the forefront due to the overabundance of digital content and the ossification of internet technology. For instance, telemedicine provides interactive healthcare in far-off places while transmitting patient health information and imaging data over an insecure connection. Second, the satellite image provides time-specific data that is useful for a variety of purposes, including environmental protection, meteorology, defence and remote sensing. The government, private detectives and criminal organizations may now closely monitor people and public behavior online thanks to the development of surveillance technology. The security of picture data during transmission and storage is a key factor in determining the quality of the service in the aforementioned applications. The word, cryptography came from ancient Greek which contains two words: "kryptos" means "hidden" or "vault" and "graphy" means "writing" or "study". Cryptography is the study of secure communication between the sender and the receiver and it allo

The history of cryptography is really old. At the time of ancient Egyptian civilization around 2000 B.C. the hieroglyphic language makes complex by using cryptography picture and only the elite community knew the meaning then. At the time of Julius Caesar at 100 B.C. to 44 B.C. the modern-day cipher concept was found. Julius Caesar did not want that the message should read by the messenger or anyone so he changes the original letter by its next third letter and make a coded form of message which can only be understood by those who knew the decoding process. The modern day's techniques come along lot of paths and it becomes a strong mechanism to protect information. Nowadays the different mathematical concepts with the help of different rule base calculation are used which are called cryptographic algorithm. By applying these algorithms different text, image, audio, video or other type of files can be encoded such a way that the original meaning of this file is hidden in a masking and cannot be understood easily.

The conversion of plain text to a cipher text is called encryption process. The reverse process to convert the cipher text to original message is called decryption process. The persons who deal with cryptography are called cryptographers. The algorithms are used mainly for cryptographic key generation, to protect the email documents, digital signing, verification to protect data authenticity and privacy, secure web browsing through internet and confidential communications such as debit and credit card transactions.

The modern cryptography has four objectives, confidentiality, integrity, non-repudiation and authenticity. Confidentiality means only the intended recipient will understand the meaning of the information, no one else. The integrity means any alteration or eavesdropping cannot be possible without knowing the sender and receiver. In non-repudiation features the receiver or sender can't deny the involvement for information creation or transmission in future. When sender and the receiver of the transmitted information can confirm each and every ones identity as well as the origin and destination of the information, the deciphering can be done.

The four different subcategories of cryptography are Modern cryptography, Chaos based cryptography, DNA based cryptography and quantum cryptography. There are mainly two types of cryptographic techniques used, single key or symmetric key encryption and public key or asymmetric key encryption. In single key encryption system, the same key is used to encrypt the data as well as decrypt it. This is also called private key encryption. The Advanced Encryption System (AES), Data Encryption System (DES) are different types of symmetric key encryption. There are two keys used in public key encryption, one key is used to encrypt the data and another key is used to decrypt it. RSA (Rivest–Shamir–Adleman), Elliptic Curve Digital Signature Algorithm (ECDSA), Digital Signature Algorithm (DSA), Diffie-Hellman key exchange are some algorithms of public key infrastructure. Due to their exceptional speed and low complexity, symmetric encryption methods are typically used to encrypt private data. In contrast, asymmetric encryption imposes a heavy computational cost, tends to be much slower, and is frequently employed for digital signature and key distribution. Traditional cryptography, on the other hand, is not suited for quick encryption of a huge volume of data (for instance, colour photos and video) in real time. Traditional picture encryption schemes are more difficult to accomplish when realised by software due to the significant correlation between image pixels. As a result, there is still more effort to be done in the creation of novel encryption techniques.

Complete Chapter List

Search this Book: Full text search terms

Reset

Table of Contents

View Full PDF (/pdf.aspx? tid=320116&ptid=308298&ctid=15&t=Table of Contents&isxn=9781668475249)

View Full PDF (/pdf.aspx? tid=320117&ptid=308298&ctid=15&t=Detailed Table of Contents&isxn=9781668475249)

Foreword

Debasis Giri

View Full PDF (/pdf.aspx?

tid=320118&ptid=308298&ctid=15&t=Foreword&isxn=9781668475249)

Preface

Santanu Koley, Subhabrata Barman, Subhankar Joardar

View Full PDF (/pdf.aspx? tid=320119&ptid=308298&ctid=15&t=Preface&isxn=9781668475249)

Acknowledgment

View Full PDF (/pdf.aspx? tid=320120&ptid=308298&ctid=15&t=Acknowledgment&isxn=9781668475249)

Chapter 1

Comparative Study of Some Nature-Inspired Meta-Heuristics for Task Scheduling in a Computational Grid System (/chapter/comparative-study-of-some-nature-inspired-meta-heuristics-for-task-scheduling-in-a-computational-grid-system/320121) (pages 1-15)

Tarun Kumar Ghosh, Krishna Gopal Dhal, Sanjoy Das

Preview Chapter

\$37.50

(/viewtitlesample.aspx? Add to Cart id=320121&ptid=308298&t=Comparative

Study of Some

Nature-Inspired

Meta-Heuristics

for Task

Scheduling in a Computational

Grid

System&isxn=9781668475249)

Chapter 2

Wavelet Energy-Based Adaptive Retinex Algorithm for Low Light Mobile Video Enhancement (/chapter/wavelet-energy-based-adaptive-retinex-algorithm-for-low-light-mobile-video-enhancement/320122) (pages 16-39)

Vishalakshi G. R., Gopala Krishna, Hanumantha Raju

Preview Chapter

\$37.50

(/viewtitlesample.aspx? Add to Cart id=320122&ptid=308298&t=Wavelet

Energy-Based Adaptive Retinex Algorithm for Low Light Mobile Video

Enhancement&isxn=9781668475249)

Chapter 3

Identification and Segmentation of Medical Images by Using Marker-Controlled Watershed Transformation Algorithm, XAI, and ML (/chapter/identification-and-segmentation-of-medical-images-by-using-marker-controlled-watershed-transformation-algorithm-xai-and-ml/320123) (pages 40-58)

Tahamina Yesmin, Pinaki Pratim Acharjya

Preview Chapter

\$37.50

(/viewtitlesample.aspx? Add to Cart id=320123&ptid=308298&t=Identification

and

Segmentation of

Medical Images

by Using Marker-

Controlled

Watershed

Transformation Algorithm, XAI,

and

ML&isxn=9781668475249)

Chapter 4

Cataract Classification and Gradation From Retinal Fundus Image Using Ensemble Learning Algorithm (/chapter/cataract-classification-and-gradation-from-retinal-fundus-image-using-ensemble-learning-algorithm/320124) (pages 59-80)

Moumita Sahoo, Somak Karan, Soumya Roy

Preview Chapter

\$37.50

(/viewtitlesample.aspx? Add to Cart id=320124&ptid=308298&t=Cataract

Classification and

Gradation From

Retinal Fundus

Image Using

Ensemble

Learning

Algorithm&isxn=9781668475249)

Chapter 5

Study of the Image Segmentation Process Using the Optimized U-Net Model for Drone-Captured Images (/chapter/study-of-the-image-segmentation-process-using-the-optimized-u-net-model-for-drone-captured-images/320125) (pages 81-99)

Gunjan Mukherjee, Arpitam Chatterjee, Bipan Tudu, Sourav Paul

Preview Chapter

\$37.50

(/viewtitlesample.aspx? Add to Cart id=320125&ptid=308298&t=Study

of the Image

Segmentation

Process Using

the Optimized U-

Net Model for

Drone-Captured

Images&isxn=9781668475249)

Chapter 6

Distributed Technologies and Consensus Algorithms for Blockchain (/chapter/distributed-technologies-and-consensus-algorithms-for-blockchain/320126) (pages 100-122)

Cynthia Jayapal, Clement Sudhahar

Preview Chapter

\$37.50

(/viewtitlesample.aspx? Add to Cart id=320126&ptid=308298&t=Distributed Technologies and

Consensus

Algorithms for

Blockchain&isxn=9781668475249)

Chapter 7

A Novel Steganography Approach Using S-CycleGAN With an Improvement of Loss Function (/chapter/a-novelsteganography-approach-using-s-cyclegan-with-an-improvement-of-loss-function/320127) (pages 123-142)

Minakshi Sarkar, Indrajit Banerjee, Tarun Kumar Ghosh, Anirban Samanta, Anirban Sarkar

Preview Chapter

\$37.50

(/viewtitlesample.aspx? _ dd to Cart id=320127&ptid=308298&t=A

Novel

Steganography Approach Using

S-CycleGAN With an Improvement of

Loss

Function&isxn=9781668475249)

Chapter 8

Al-Based DBMS Controlled Speech Recognition Model for Some Common Computing Commands (/chapter/ai-baseddbms-controlled-speech-recognition-model-for-some-common-computing-commands/320128) (pages 143-154)

Mrinmoy Sen, Sunanda Jana, Swarnajit Bhattacharya, Gitika Maity

Preview Chapter

\$37.50 (/viewtitlesample.aspx? id=320128&ptid=308298&t=Alf-

Based DBMS Controlled

Speech Recognition Model for Some Common Computing

Commands&isxn=9781668475249)

Chapter 9

MEDA-Based Biochips: Proposed New Structural Testing Techniques for Fault Detection (/chapter/meda-basedbiochips/320129) (pages 155-172)

Priyatosh Jana, Pranab Roy, Sarit Chakraborty, Tanmoy Biswas, Soumen Ghosh

Preview Chapter

\$37.50

(/viewtitlesample.aspx? Add to id=320129&ptid=308298&t=MEDA-Based Biochips:

Proposed New Structural Testing Techniques for Fault

Detection&isxn=9781668475249)

Chapter 10

A Radical Image Steganography Method Predicated on Intensity and Edge Detection (/chapter/a-radical-imagesteganography-method-predicated-on-intensity-and-edge-detection/320130) (pages 173-190)

Abhijit Sarkar, Sabyasachi Samanta

Preview Chapter

\$37.50

(/viewtitlesample.aspx? _ id=320130&ptid=308298&t=A

Radical Image Steganography Method Predicated on Intensity and Edge

Detection&isxn=9781668475249)

Chapter 11

Secure Cryptography Using Chaotic Algorithm (/chapter/secure-cryptography-using-chaotic-algorithm/320131) (pages 191-216)

Uday Kumar Banerjee, Anup Kumar Das, Rajdeep Ray, Chandan Koner

Preview Chapter

\$37.50

(/viewtitlesample.aspx? Add to Cart id=320131&ptid=308298&t=Secure Cryptography

Using Chaotic

Algorithm&isxn=9781668475249)

Chapter 12

An Image Steganography Approach Using Arnold Transformation (/chapter/an-image-steganography-approach-usingarnold-transformation/320132) (pages 217-235)

Solanki Pattanayak, Sabyasachi Samanta, Dipankar Dey, Abhijit Sarkar, Souvik Bhattacharyya

Preview Chapter

\$37.50

(/viewtitlesample.aspx? id=320132&ptid=308298&t=An **Image**

Steganography Approach Using Arnold

Transformation&isxn=9781668475249)

Chapter 13

Machine Learning-Based Algorithms Towards Crop Recommendation Systems (/chapter/machine-learning-basedalgorithms-towards-crop-recommendation-systems/320133) (pages 236-257)

Soumya Roy, Yuvika Vatsa, Moumita Sahoo, Somak Karan

Preview Chapter

\$37.50

(/viewtitlesample.aspx? $_{\mbox{Add to Cart}}$ id=320133&ptid=308298&t=Machine Learning-Based Algorithms

Towards Crop Recommendation

Systems&isxn=9781668475249)

Chapter 14

House Rent Prediction Using Ensemble-Based Regression With Real-Time Data (/chapter/house-rent-prediction-using-ensemble-based-regression-with-real-time-data/320134) (pages 258-271)

Kuntal Mukherjee, Syed Saif Ahmed, Mohammad Aasif, Sumana Kundu, Soumen Ghosh

Preview Chapter

\$37.50

(/viewtitlesample.aspx? Add to Carl id=320134&ptid=308298&t=House

Rent Prediction

Using Ensemble-

Based Regression With

Real-Time Data&isxn=9781668475249)

Chapter 15

A Survey on Energy-Efficient Routing in Wireless Sensor Networks Using Machine Learning Algorithms (/chapter/a-survey-on-energy-efficient-routing-in-wireless-sensor-networks-using-machine-learning-algorithms/320135) (pages 272-291)

Prasenjit Dey, Arnab Gain

Preview Chapter

\$37.50

(/viewtitlesample.aspx? Add to Cart id=320135&ptid=308298&t=A

Survey on

Energy-Efficient

Routing in

Niralasa Canaa

Wireless Sensor Networks Using

Machine

Learning

Algorithms&isxn=9781668475249)

About the Contributors

View Full PDF (/pdf.aspx? tid=320137&ptid=308298&ctid=17&t=About the Contributors&isxn=9781668475249)

Index

View Full PDF (/pdf.aspx? tid=320138&ptid=308298&ctid=17&t=Index&isxn=9781668475249)

Learn More

About IGI Global (/about/) | Partnerships (/about/partnerships/) | COPE Membership (/about/memberships/cope/) | Contact Us (/contact/) | Job Opportunities (/about/staff/job-opportunities/) | FAQ (/faq/) | Management Team (/about/staff/)

Resources For

Librarians (/librarians/) | Authors/Editors (/publish/) | Distributors (/distributors/) | Instructors (/course-adoption/) | Translators (/about/rights-permissions/translation-rights/)

Media Center

of WFCF

Webinars (/symposium/) | Blogs (/newsroom/) | Catalogs (/catalogs/) | Newsletters (/newsletters/)

Policies

Privacy Policy (/about/rights-permissions/privacy-policy/) | Cookie & Tracking Notice (/cookies-agreement/) | Fair Use Policy (/about/rights-permissions/content-reuse/) | Accessibility (/accessibility/) | Ethics and Malpractice (/about/rights-permissions/ethics-malpractice/) | Rights & Permissions (/about/rights-permissions/)

(http://www.facebook.com/pages/IGI-Global/138206739534176?ref=sgm)

Proud Supporter (http://www.world-forgotten-children.org)

(http://twitter.com/igiglobal)

(https://www.linkedin.com/company/igiglobal)

(https://publicationethics.org/category/publisher/igi-global)

Copyright © 1988-2023, IGI Global - All Rights Reserved