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Abstract—Hardware Trojans (HT) are minuscule circuits em-
bedded by an adversary for malicious purposes. Such circuits
posses stealthy nature and can cause disruption upon activation.
To detect the presence of such circuits, appropriate test vectors
need to be applied. In this regard, the genetic algorithm (GA)
seems to be the most promising technique due to its exploration
capability. However, like most of the existing techniques, GA also
suffers from exploring the huge search space. In this article a
GA based methodology is proposed incorporating the information
about potential inputs into it. Experimental results analysis signi-
fies that the identification of the relevant inputs for GA provides
an optimal solution. The significance of proposed methodology
is endorsed by applying the proposed GA technique on different
ISCAS ’85 benchmark circuits. A noteworthy improvement on
run time is observed while simultaneously providing improved
test set quality than the state-of-the art technique.

Index Terms—Hardware Trojan, Genetic Algorithm, SCOAP
measurements, Primary Inputs

I. INTRODUCTION

A hardware Trojan (HT) is a small piece of malicious
hardware camouflaged inside a standard circuit. Such circuits
are activated by a scarce input combination, and provide
harmful alterations to the actual operation. Due to the high cost
and short manufacturing time, most integrated circuits (IC)
design houses do not have their own fabrication facility, hence
the manufacturing of ICs is entirely dependent on offshore
fabrication facilities [1]. These constraints of an IC design
require frequent usage of hardware intellectual property (IP)
cores and third-party CAD tools [2]. Since the fabrication
process is not under the surveillance of the IP owner, it
allows the attacker to perform malicious modifications. An
HT can alter the original functionality of an IC in a critical
fashion, which can cause destruction of the circuit or leakage
of sensitive information [3]. Therefore, it is crucial to detect
HTs (if it exists) to maintain the root of trust of an IC [4].

A primary HT consists of two major components - Trigger
and Payload. The Trigger activates the HT circuit and the Pay-
load causes malfunctioning within the circuit when triggered
[5]. An adversary tries to embed the HT in such a way that the
traditional manufacturing tests can not activate it. For these
reasons, triggers are generally connected to those nets (rare

gates) which do not switch their values in regular operation.
One such example of an HT is provided in Figure1.

Fig. 1. Two examples showing the insertion of Hardware Trojans in a circuit
netlist—(i) HT in a combinational circuit design; (ii) HT in a sequential circuit
design. HTs are inserted in specific places of a circuit design that are hard to
detect and get triggered only by specific input sequences.

Since defining the characteristics of an HT is difficult,
different approaches of Hardware Trojan detection have been
introduced so far. These techniques can be broadly classified
into two categories: 1. side-channel analysis and 2. simulation-
based validation (logic testing). [6] [7].

Side-channel analysis (SCA) based methods, in spite of
being performed by sophisticated devices, suffer from back-
ground noise. Hence, such techniques are often unreliable. On
the other hand, logic testing is primarily based on the idea of
generating and applying test vectors in a circuit to activate the
HT and confirm its presence. However, finding such vectors
is extremely difficult due to the huge search space as well
as the unknown location of the HT circuits. In this regard,
genetic algorithm (GA) appears to be a promising candidate
for efficient test generation. However, traditional GA based
HT detection techniques also suffer from inordinately large
run times. To overcome this, the search space of GA needs
to be reduced. We propose to improve the performance of
genetic algorithm for test generation. The following are the
key features of the proposed approach:

• We measure the influence of every primary input over
each rare net for search space reduction.

• A genetic algorithm based test generation is proposed
which uses a modified crossover using the best primary
inputs.

• Efficacy of the proposed method is measured using eight
different ISCAS ’85 benchmark circuits.978-1-6654-9291-1/22/$31.00 ©2022 IEEE
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• Performance is compared with traditional logic test tech-
niques which validates the proposed method.

An overview of the paper is as follows. Section II introduces
the concepts used in this work. The related works are discussed
in Section III. Our proposed algorithm and the results are pro-
vided in Section IV and V respectively. Section VI concludes
the paper.

II. BASICS

A. Genetic Algorithm

Genetic Algorithm is a bio-inspired evolutionary algorithm
based on the theory of natural selection (i.e., ”survival of the
fittest”) for optimising a search problem. An initial population
is defined which is the genetic representation of solution
domain. From the initial population, a set of new and more
adaptable solutions is generated by evaluating the solution
domain based on a fitness function. The several operators
like selection, crossover and mutation help in shortening the
solution domain to reach an optimal solution for the given
problem definition after multiple generations. [8]. The built-in
parallelism of a GA allows it to explore a search space quickly.
[9], making it an ideal candidate for test generation problems,
as discussed in Section IV(D). The basic working principle of
GA is depicted in Figure 2.

Fig. 2. A flow diagram illustrating the various steps in a Genetic Algorithm.
It has been further explained in Section IV.

B. SCOAP Measurements

The Sandia Controllability/ Observability Analysis Program
(SCOAP), established by Goldstein in 1980, is one of the most
well-known testability analysis techniques [10]. The difficulty
of changing a specific logic signal to a 0 or a 1 for a digital
circuit is known as controllability. [3]. The rules shown in
Table I are used to measure the combinational controllability.

The initial inputs (both for Logic 0 and 1) to a circuit are
considered to be most easily controllable and therefore set to

TABLE I
RULES FOR CONTROLLABILITY CALCULATION

Condition Output Controllability
If a Logic gate output is produced by setting

only one input to a controlling value then Min(input Controllabilities)+1

If a Logic gate output is produced by setting
any input to a non controlling value then Sum(input Controllabilities)+1

1 and the rest are calculated as per the formulae presented in
Table I. SCOAP calculation for a full adder circuit is shown
in Figure 3.

Fig. 3. Controllabilities for individual gates in a Full Adder circuit

III. BACKGROUND

MERO [2] involves creating a set of minimal test patterns
(minimizing test time and expense) while improving the
coverage of the Trojan detection. Internal nodes with low
probability conditions are identified and repeatedly triggered
by a set of vectors such that they reach their rare logic value
at least N times, where N be a user-defined parameter. It
boosts the likelihood of activating a Trojan compared to purely
random patterns by raising the toggling rate of random-pattern
resistant nodes. The test patterns generated by MERO can
be substantially enhanced by combining a Genetic Algorithm
with Boolean Satisfiability [9]. The payload of potential HT
samples is successfully propagated in an output that is observ-
able. A heuristic scan partition with activity-driven test pattern
generation can be used to find Trojans via dynamic power
analysis [11]. As a result, the noise detected is significantly
reduced. The design is partitioned into regions controlled by
scan-chains and test vectors are generated to magnify the
activity in the target regions and any anomaly is recorded for
Trojan detection. TRIAGE, a standard Genetic Algorithm with
transitional probability in the fitness operator can be used to
generate efficient test vectors for gate-level netlists [12]. The
search for efficient test vectors from a huge existing search
space translates the problem into a heuristic search operation.
With GA being a commonly used optimisation algorithm
for conducting such heuristic search operations, it was the
main inspiration behind our proposed algorithm which further
improves the GA performance.

IV. PROPOSED METHODOLOGY

In this section, we describe the proposed methodology. We
have used the multiplication of the SCOAP measurements
introduced as the fitness function. Moreover, to optimize the
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performance of the GA, we find the primary inputs responsible
for a transition over rare nets. The detailed approach is
described next.

A. Circuit Representation

The circuit instances are selected from ISCAS ’85 [13]
benchmark circuits. Each circuit is represented as a directed
graph DG = {V,E} where V and E are the set of vertices
and edges(Algorithm 1, line 19). We describe each logic gate
as a vertex and each wire (or net) as an edge.

B. Rare Net Selection

It is well known that HTs are inserted in elusive places in the
circuit which are often referred as rare gates (or nets). During
standard functioning, rare nets do not have many transitions.
To identify these nets, we simulate the circuit using a small
number (e.g, 1000) of random test vectors, and select those
nets whose rare values are satisfied for less than or equal to a
certain threshold value. We represent the set of rare gates as
RG(Algorithm 1, line 19).

C. Effective Input Selection (select input)

We take the circuit netlist in the form of a directed graph (as
discussed in Section IV (A)) and examine whether a path exists
between the input lines(I) and the rare gates(RG) using the
Breadth First Search(BFS) algorithm. For all i ∈ I and g ∈
RG, the function call BFS(DG,i,g) returns 1 if a path exists
between i and g(Algorithm 1, line 23) [14]. Furthermore,
all the input lines for the rare gates are combined, and the
duplicate input lines are removed to obtain select input(SI)
for the triggering condition of the rare gates in the circuit.

An Illustrative Example : We use the smallest benchmark
circuit from ISCAS 85 (c17) to demonstrate the idea of
select input in Figure 4. Assume the red-coloured NAND gate
(gate No. 16) to be a rare gate. The RED-colored nets are the
connections from the primary input. Therefore, input B1, B2,
and B3 are the effective input lines (select input) whereas B0
and B4 are considered as don’t care (X) bits as they do not
affect the triggering of the NAND gate (gate No. 16). The GA
is now performed based on input bit B1, B2, B3 instead of
the entire input set.

Fig. 4. An example of c17 from ISCAS’85 benchmark circuit, representing
our idea of select input. B1, B2, B3 is the select input and the GA is
performed using the select input instead of the entire input set to reduce
the computation overhead.

Algorithm 1 SelectInput
1: procedure BFS(DG, i, g)
2: Q← Queue
3: visited← i
4: Q.enqueue(i)
5: while Q do
6: v ← Dequeue(Q)
7: for each u ∈ DG.adj(v) do
8: if not visited then
9: visited← u

10: Q.enqueue(u)
11: if u equals g then
12: return 1
13: end if
14: end if
15: end for
16: end while
17: return 0
18: end procedure
19: procedure SELECT(DG = {V,E}, RG, I)
20: select inputs← null
21: for each gate g ∈ RG do
22: for each input i ∈ I do
23: if BFS(DG, i, g) then
24: select input← i
25: end if
26: end for
27: end for
28: return select input
29: end procedure

Algorithm 2 GeneticAlgorithm
1: procedure GA(circuitnetlist, RG, SI, I)
2: n← length(SI)
3: k ← length(I)
4: Initialise the GA with a random population, P of 1000

vectors; each vector having size n.
5: for i = 1 to 100 do
6: Compute the fitness of every individual of P by

simulating the netlist with a pseudovector of size k with
n bits and (k − n) don’t care bits.

7: Sort P in descending order of fitness values.
8: Selection of parents from the ithgeneration ran-

domly - one from top 10% and the other from bottom
90%.

9: Two-point crossover to produce children.
10: Mutation according to mutation rate.
11: Compute fitness for children (i+ 1)thgeneration.
12: FP ← fittest individuals of the generation
13: end for
14: return FP
15: end procedure
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D. Proposed Genetic Algorithm

We describe the parameters of our proposed GA based
technique here. The pseudocode for the same is provided in
Algorithm 2.

1) Initial Population: The initial population is assigned a
set of 1000 test vectors that are randomly generated.

2) Fitness Function: The quality of a solution in a GA is
determined by its fitness value. As already stated, we have
calculated the SCOAP values using the Tesability Measure-
ment Tool [15] and have incorporated it in the fitness function.
SCOAP measurements have been extensively used in recent
times against HT detection. The authors in [16] proposed a
new modified SCOAP value to represent signal probability
(termed as difference-amplified controllability, providing an
alternative to signal probability calculations with some excep-
tions [17].). In this measurement, the signal probability of a
net is represented as (CC0

√
CC0/CC1, CC1

√
CC1/CC0).

Since the multiplication of both signal probabilities is equal to
transition probability [18], we multiply both values and denote
it as MCO which is actually the product of the combinational
controllability values.

∴ MCO = CC0
√

CC0/CC1× CC1
√
CC1/CC0

= CC0× CC1 (1)

The fitness value of an input vector is calculated by simu-
lating the vector on the circuit and taking the sum of MCO
values of the rare nets covered by it (ri).

fitness =
∑

MCOri (2)

For any circuit with a k-bit input and an n-bit select input,
the simulation is carried out using input vectors with an n-
bit sub-sequence and (k-n) don’t care(’0’s or ’1’s) bits. In our
case, we considered the n-bit sub-sequence with (k-n) bits ’1’s
(Algorithm 2, line 6).

Fig. 5. The diagram illustrates the method used to perform a two-point
crossover in our proposed algorithm.

3) Selection: The selection is based on the fitness of
vectors. Every vector gets assigned a fitness value, and the
entire population is arranged based on the decreasing order of
fitness. One vector is selected randomly from the top 10% of
the population(elite) and another from the bottom 90% of the
population and sent for a two-point crossover.

4) Crossover: We have used a two point crossover operator
with a probability of 0.8 on two vectors for our proposed
algorithm (Figure 5) to develop the next generation. At first
n effective bits (select inputs) out of total k bits are chosen
from two parent vectors, leaving remaining (k − n) input bit
positions as don’t care. Next, two crossover points are chosen
randomly, and crossover is performed only on the selected
n bit positions. Finally, the modified n bits along with the
remaining (k − n) form the child vectors.

5) Mutation: Mutation (Figure 6) is essential for the con-
vergence of the GA since it explores the search space locally
and attempts to avoid a local minima. In our proposed ap-
proach, we maintain a mutation probability of 0.1, i.e., the
vector (effective n bits only) undergoing mutation will have
10 percent of bits selected randomly and flipped.

Fig. 6. The diagram illustrates the mutation operator in our proposed
algorithm.

The time complexity of our proposed algorithm would
be O(npg) where n(size of select input) being the size of
chromosome, p being the population size and g being the
number of generations.

V. EXPERIMENTAL RESULTS

A. Setup

We have implemented all the algorithms in Python 3 on an
Intel Core i5 CPU running @2.40 GHz.The well established
MERO algorithm [2] was implemented for comparison along
side the standard GA. We used the ISCAS’85 gate-level
benchmark circuits for all of our experiments [19].

B. Results

TABLE II
RELEVANT INPUTS OBSERVED IN DIFFERENT ISCAS 85 BENCHMARK

CIRCUITS

Circuit Instance Threshold = 0.1 Threshold = 0.2
Total no of
Inputs(k)

Reduced no of
Inputs(n)

Total no of
Input(k)

Reduced no of
Input(n)

c432 36 30 36 30
c880 60 27 60 46
c1355 NA NA 41 41
c2670 233 12 233 18
c3540 50 38 50 38
c5315 178 4 178 7
c6288 32 32 32 32
c7522 207 16 207 16

We observed that a small number of inputs are relevant
while controlling the values at rare nets. The reduced number
of inputs are reported in Table II. It is well known that random
test vectors are not capable of providing good coverage against
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HT circuits. To cover such possible HT circuits, it is necessary
to cover these rare nets. We used a relatively small threshold
of 0.2 and 0.1 for rare net selection in our experiment.

1) Coverage Performance: One of the biggest challenges
faced by GA based techniques is the enormous run time.
To compare the performance of the proposed modified GA,
we also implemented the standard GA with the same fitness
function. The comparative results about rare net coverage are
shown in Table III, IV, VI, VII (The coverage value reported
here is the average rare net covered by a single test vector). It
can be seen that, in almost all the cases, the proposed algorithm
provides a better coverage when compared to both MERO and
standard GA. Additionally, we have shown how our proposed
algorithm outperformed the standard GA in V by improving
trigger coverage.

TABLE III
COMPARISON BETWEEN MERO AND OUR PROPOSED ALGORITHM

(RARENESS THRESHOLD = 0.1)

Circuit
Instance

Rare gate coverage Time(in s)
MERO Proposed Algorithm MERO Proposed Algorithm

c432 0.79 2 43.30 93.15
c880 2.54 4 154.31 168.51

c1355 NA NA NA NA
c2670 2.71 4 2463.17 557.18
c3540 9.97 22 1892.88 571.85
c5315 1 1 7104.79 896.34
c6288 35.96 33 3899.52 1202.07
c7552 3.69 6 66457.07 991.11

TABLE IV
COMPARISON BETWEEN MERO AND OUR PROPOSED ALGORITHM

(RARENESS THRESHOLD = 0.2)

Circuit
Instance

Rare gate coverage Time(in s)
MERO Proposed Algorithm MERO Proposed Algorithm

c432 1.65 3 44.31 88.46
c880 14.67 24 155.10 177.43

c1355 7.89 8 232.97 258.29
c2670 3.48 7 2532.48 452.98
c3540 28.8 34 1667.00 596.30
c5315 1.93 2 5948.34 694.12
c6288 201.62 186.07 3283.55 1114.73
c7552 3.69 6 66457.07 991.11

2) Improvement in execution time: Any circuit with k
no of inputs would have a possible 2k input combinations.
Therefore, instead of searching the entire space, our proposed
method optimizes the GA to run using a smaller search space,
and the observed improvement in run time is significant over
a standard GA. To perform a fair comparison, we performed
the standard GA and our proposed algorithm using the same

TABLE V
AVERAGE TRIGGER COVERAGE IMPROVEMENT OF PROPOSED

ALGORITHM OVER A CONVENTIONAL GA

Circuit Instance # Triggers Coverage
(Standard GA)

Coverage
(Proposed GA)

c880 3 0.97 3
c2670 6 5.97 6
c3540 300 202.48 172
c7552 15 14.73 15

fitness function. An initial population of 1000 vectors was gen-
erated and both GA were allowed to run for 100 generations.
The results are reported in Table VI and VII. For both the
threshold values, we observed upto ≈ 50 percent improvement
in run time.

TABLE VI
IMPROVEMENT OF PROPOSED ALGORITHM OVER A CONVENTIONAL

GA (RARENESS THRESHOLD = 0.1)

Circuit Instance % improvement in
Rare gate coverage

% improvement in
Execution Time

c432 0.00 5.38
c880 1.27 17.17
c1355 NA NA
c2670 0.25 31.31
c3540 1.80 48.05
c5315 0.00 36.85
c6288 1.13 10.20
c7552 1.01 32.65

TABLE VII
IMPROVEMENT OF PROPOSED ALGORITHM OVER A CONVENTIONAL

GA (RARENESS THRESHOLD = 0.2)

Circuit Instance % improvement in
Rare gate coverage

% improvement in
Execution Time

c432 0 26.08
c880 16.85 1.71
c1355 0.13 15.22
c2670 1.45 46.03
c3540 4.49 44.49
c5315 0.00 51.50
c6288 5.09 22.03
c7552 1.01 32.65

Fig. 7. Comparison of average fitness of the entire population of test vectors
between our proposed algorithm and a conventional GA in the c880 netlist
of ISCAS ’85 benchmarks.

3) Average fitness of test vectors: One of the main ad-
vantage of using a smaller subspace during crossover is that
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Fig. 8. Comparison of average fitness of the entire population of test vectors
between our proposed algorithm and a conventional GA in the c2670 netlist
of ISCAS ’85 benchmarks.

it helps to converge the final result at a much faster rate.
Moreover, the average fitness function observed during the GA
operation is also much improved. As shown in Figures 7 and
8, the average fitness of test vectors generated by the proposed
algorithm is much better that of the test vectors generated by
the conventional GA. In a large circuit, where this run time
will be even larger, a faster convergence can allow the tester to
set a balance between test generation time and test set quality.

VI. CONCLUSION

In this work, we have proposed a genetic algorithm (GA)
based technique for test generation against hardware Trojans.
Well known HT detection methods such as MERO and the
standard GA suffers in terms of execution time and are
considered to be unsuitable for larger designs. Our proposed
algorithm reduces the search space by finding relevant inputs
first and uses this information to optimize the performance
of GA. Experimental results show that the proposed GA
produces equal or better rare net coverage as standard GA
while simultaneously requiring a smaller run time. Compared
to MERO, we found a drastic improvement (≈ 18 times) in
run time, making it viable for larger designs. In future, our
proposed technique can be expanded to sequential designs
while also providing improved fitness function for hard-to-
trigger rare combinations.
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