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Summary

With the evolution of technology, many modern applications like habitat mon-

itoring, environmental monitoring, disaster prediction and management, and

telehealth care have been proposed on wireless sensor networks (WSNs) with

Internet of Things (IoT) integration. However, the performance of these net-

works is restricted because of the various constraints imposed due to the par-

ticipating sensor nodes, such as nonreplaceable limited power units,

constrained computation, and limited storage. Power limitation is the most

severe among these restrictions. Hence, the researchers have sought schemes

enabling energy-efficient network operations as the most crucial issue. A meta-

heuristic clustering scheme is proposed here to address this problem, which

employs the differential evolution (DE) technique as a tool. The proposed

scheme achieves improved network performance via the formulation of load-

balanced clusters, resulting in a more scalable and adaptable network. The

proposed scheme considers multiple parameters such as nodes' energy level,

degree, proximity, and population for suitable network partitioning. Through

various simulation results and experimentation, it establishes its efficacy over

state-of-the-art schemes in respect of load-balanced cluster formation,

improved network lifetime, network resource utilization, and network

throughput. The proposed scheme ensures up to 57.69%, 33.16%, and 57.74%

gains in network lifetime, energy utilization, and data packet delivery under

varying network configurations. Besides providing the quantitative analysis, a

detailed statistical analysis has also been performed that describes the accept-

ability of the proposed scheme under different network configurations.
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1 | INTRODUCTION

The wireless sensor network (WSN) is defined as a set of sensors connected wirelessly to one another to pursue
application-specific operations. The deployed sensors read the surroundings, process the measurement, and communi-
cate that to some central base station (BS). Moreover, the sensors are equipped with tiny power units that come up with
a limited amount of energy. Once a node is depleted of its energy, it becomes unable to contribute to the network opera-
tions. Thus, if not appropriately handled, early death of the sensors might cause the early network death.1,2

Since the very inception of IoT, WSN has always been an integral part of it.3 WSN serves as a backbone network in
a wide variety of IoT-enabled monitoring and sensing systems as depicted in Figure 1. Be it a centralized or
decentralized model of IoT, the increasing demand for the IoT infrastructure has enforced the dense deployment of
WSN wherein some sensors are equipped with additional features to enable the data exchange over the Internet via a
centralized BS. Such network is termed IoT-based heterogeneous WSN (HWSN).

Among all the possible network operations, transmission consumes most of the nodes' power, and hence, the devel-
opment of energy-efficient schemes pertaining to the transmissions and routing, especially at the physical and network
layer, has attracted the researchers a lot for the success of IoT-based HWSN.

In this regard, clustering has been recognized as the most significant tool which enables energy-efficient operations
leading to the improved network lifetime. As in previous studies,4–8 clustering refers to the process of grouping the
nodes with some common attributes like nodes' proximity, nodes' remaining energy levels, and node-to-sink distance.
In a clustered network, the network is partitioned into a finite number of clusters. The nodes in such network architec-
ture are categorized as cluster heads (CHs) and cluster members. There would be precisely one CH to serve the mem-
bers in every cluster. The primary responsibility of a cluster member is to read the surroundings and transfer the
measurements to the respective CH. The CH in turn collect the data from all such members assigned to it and transmit
it to the BS after performing data aggregation. From the above discussion, it is pretty obvious that the CHs perform
more energy-intensive tasks than that by the member nodes. Since the CHs are selected from the same set of sensors,
the additional responsibilities being executed by the CHs may drain the battery very quickly. This may lead to the early
network death. To counter this critical challenge, many works such as previous studies9–11 have reported the introduc-
tion of energy-enriched control nodes, termed gateways or relay nodes to act as CH. These control nodes usually have
higher energy levels in comparison to the normal nodes and hence, are more suitable for energy-intensive network
operations. This introduction of specialized nodes with higher energy makes the network a two-level heterogeneous
network. However, the deployed nodes of such IoT-based HWSN are battery operated, which necessitates intelligent
usage of the available resources to ensure long and steady network operation over time.

Here, the specially deployed control nodes, acting as the CHs, get associated with the normal nodes to form a finite
number of clusters in the network. In this cluster formation process, an appropriate scheme for the assignment of nor-
mal nodes to energy-enriched control nodes (or gateways) must be formulated very carefully. As a matter of fact, if not
handled adequately, the randomly distributed sensor nodes may result in poor clusters like some clusters might become

FIGURE 1 IoT-based two-tier heterogeneous wireless sensor network
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overcrowded and some might have a lesser number of nodes. This, in turn, forces the deployed control nodes to suffer
from highly varying energy consumption as some may be overloaded, and some might be assigned with a few members
only. Such an uneven distribution of nodes among the clusters may get the deployed control nodes suffering from
highly varying energy consumption. Some may be overloaded, and some be assigned with a few only. Thus, in addition
to energy consumption by the normal and control nodes, the assignment of the normal sensors to the control nodes or
equivalently to the CHs matters substantially huge for the development of energy-efficient clustering solutions in the
IoT-based HWSN.

As indicated above, clustering problem requires consideration of multiple parameters, it can also be thought of as a
multivariate optimization problem. For solving this class of problems, problem-independent metaheuristic techniques
have proved their significance to an appreciable extent. A huge number of metaheuristic algorithms, namely, genetic
algorithm (GA), particle swarm optimization (PSO), genetic programming (GP), teaching–learning-based optimization
(TLBO), differential evolution (DE), evolutionary programming (EP), and evolution strategies (ES), are already being
used for the above-mentioned purpose of clustering in IoT-based HWSN.

The main motivation for this proposed work is to develop a load balancing bio-inspired DE-based clustering tech-
nique to enhance network longevity. DE-based strategies have proved their worth over their peers such as GA and
PSO12 and have attained huge popularity in this regard due to their simplicity, robustness, and faster rate of
convergence.

1.1 | Major contributions and organization of the paper

The proposed scheme contributes majorly in

• Formulating a fitness function that enables
� clusters with even load distribution.
� minimized communication cost among the nodes of a cluster.
� maximum resource utilization.

• Developing an improved intermediate phase to support the construction of the load-balanced clusters.
• Developing a DE-based clustering scheme that employs the formulated fitness function and the intermediate phase

to improve the network performance.
• Analyzing the performance of the proposed scheme to establish its efficacy over existing state-of-the-art schemes in

respect of
� quality of clusters under varying network configurations.
� statistically justified results.
� various network performance criteria like energy consumption, network lifetime, and throughput.

The remaining paper is arranged in a way that the existing works have been listed in Section 2. Section 3 briefs the
general scheme of DE. In addition, Section 3 also discusses the other models and assumptions used. The proposed
scheme is explained along with all its constituting phases in Section 4. Section 5 analyzes the simulation results to prove
the proposed scheme's supremacy over its existing peers. At last, Section 6 summarizes the entire work while stating
the future scope.

2 | LITERATURE REVIEW

Due to their significant impact in efficiently solving a complex problem, metaheuristic schemes like GA, DE, EP, ES,
PSO, TLBO, and ant colony optimization (ACO) are being used in almost every field of engineering. These schemes
have also proved their significance in the domain of IoT-based WSNs, and hence, numerous contributions based on
these techniques can be easily found in the literature like in previous studies.13–19

This section lists some of the significant contributions developed to serve the intended purpose of featuring opti-
mized clusters to enable energy-efficient network operations as follows:

Bari et al9 offered a clustering solution for the two-tier HWSN based on the GA. As stated in Section 1, the two-tier
HWSN refers to a network that deploys two types of sensor nodes—traditional normal sensors and energy-enriched
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control nodes or gateways. In their proposed scheme, the authors adopted the method of roulette-wheel selection to
select the individuals from the population. The roulette-wheel selection method ensures that the individuals with
higher fitness values are selected. Here, the fitness function considers only a single parameter, network lifetime, in its
formulation. For the production of new offspring, k-point crossover or uniform crossover is implemented randomly.
Moreover, the scheme applies the mutation to improve an individual's fitness further. The scheme performs well over
the traditional multihop schemes; however, provisioning only the network lifetime for the definition of its fitness func-
tion limits the scheme's performance.

In one of the works,11 a DE-based clustering algorithm (DECA) for a two-tier WSN was proposed. In the proposed
scheme, the network comprises two types of nodes—one with higher energy nodes and another with normal energy
levels. The authors attempted balanced cluster formation via an appropriate fitness function in their proposed scheme.
The proposed fitness function considers the gateway nodes' lifetime and distance from their respective gateways. A local
improvement phase was also introduced that reassigned a node from the overloaded gateway to a control node with a
comparatively low load. However, neither the fitness function nor the local improvement phase took the cluster size of
cluster length into account.

Osamy et al19 proposed an intelligent data collection technique for IoT-enabled HWSN in smart environments.
Osamy et al19 emphasize on achieving energy-efficient network operation to enhance the overall network lifetime by
figuring out the energy-aware disjoint dominating sets acting as data collector nodes in each round of the network oper-
ation. For this, the authors employ a swarm intelligence-based scheme under the aforesaid title. The network operation
comprises two phases—the collector nodes selection phase and data gathering path formation and collection phase.
Osamy et al19 also apply the idea of sleep–awake scheduling to improve the network lifetime further.

Li et al20 proposed a metaheuristic routing scheme, DE-LEACH. DE-LEACH is a DE version of LEACH for environ-
mental monitoring WSN. Li et al20 take the parameters such as residual energy and spatial distribution of nodes into
account for network partitioning into a finite number of clusters. The network operation consists of four phases—initial
cluster partitioning, nodes' status collection through the use of auxiliary CHs within their respective clusters, DE-based
optimized CHs determination, and optimized cluster formation.

Li et al20 prove its supremacy over the LEACH,21 and LEACH-C22 through various simulation results.
In another work,23 the author proposed a hybrid metaheuristic technique that calls the DE and simulated annealing

(SA) together to improve the network lifetime in WSN. DE provides the locally optimized solution, which can be fur-
ther improved as a global optimum solution via SA. The scheme proposes four phases of network operation as in any
conventional DE-based scheme—population initialization, mutation, crossover, and greedy selection. Instead of using
the traditional random population-initialization approach, it calls the “opposite point method” as in Brest et al24 for the
population vectors' initialization. Moreover, Potthuri et al23 propose run-time selection of applicable mutation scheme
based on a threshold value (0.5 here) from two available options—DE=rand=1 and DE=target� to�best=1. The scheme
randomly generates a number, say ζ� ð0,1Þ. If it is less than the chosen threshold value, the former one is applied oth-
erwise, the latter one. For the formulation of the fitness function, Potthuri et al23 take the ratio of a node's energy to its
cluster's energy. A Gaussian distribution-based blending rate is used for the crossover purpose.

Potthuri et al23 prove its supremacy over the customary DE-based scheme with respect to the network throughput,
energy consumption, and network lifetime.

In Randhawa and Jain,25 a swarm intelligence-based multiobjective metaheuristic technique termed multiobjective
load balancing clustering (MLBC) is proposed. The scheme employs multiobjective PSO (MOPSO) to address two major
problems: network reliability and energy efficiency in WSN. The scheme provisions energy-efficient network operations
by appropriately taking the average residual energy of the CHs into account. Randhawa and Jain25 minimize the com-
munication cost among the nodes in their respective clusters and achieve network reliability. MLBC considers just a
single parameter in its objective function definition—CHs' average residual energy. Moreover, MLBC shuffles the role
of the next-hop nodes and CHs in each iteration to ensure even load distribution among the sensor nodes.

Gupta and Saha26 proposed a novel scheme that utilizes a mixture of two popular metaheuristic schemes—DE and
artificial bee colony (ABC). The authors considered three decision parameters—average energy of CHs, average
intracluster distance, and the transmission delay in defining the scheme's fitness function. One of the main objectives
of their proposed scheme, ABC with DE (ABC-DE) is the even distribution of network load among the CHs. Gupta and
Saha26 also provision run-time repositioning of the mobile sinks to achieve energy efficiency further.

Iwendi et al27 proposed a scheme that addresses energy optimization in an IoT-enabled WSN. Iwendi et al27 use a
hybrid approach in which it calls for the SA and whale optimization algorithm (WOA) methods to locate the best possi-
ble CH candidates for each clusters. The corresponding fitness function in Iwendi et al27 considers a set of parameters
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like nodes's remaining energy, node-to-BS distance, temperature, load, and delay to select the fittest node for the role of
CH. The fitness function in Iwendi et al27 appoints the sensors with the maximum remaining energy and minimum
load, delay, node-to-BS distance, and temperature as the CHs in each round of network operation.

In another work,28 the authors proposed a quorum system based on artificial intelligence (AI) to facilitate the
energy-efficient network operations in WSN. In their proposed AI-based system, the authors have attempted fastening
the process of neighbor discovery while lowering the latency in the network. Moreover, the weighted load balancing
feature adopted in the scheme, Ponnan et al28 minimize the energy consumption and thus, enhances the network life-
time. The authors have proven the outperformance of Ponnan et al28 over its peers in respect of network lifetime, cover-
age, energy efficiency, and latency through an extensive set of experimentations.

Sackey et al29 proposed a brain storm optimization (BSO)-inspired metaheuristic energy-efficient clustering tech-
nique entitled energy-efficient clustering-BSO (EEC-BSO). The scheme is based on the swarm intelligence and applies
the human brainstorming process to locate the most appropriate solutions in the search space. Sackey et al29 focus on
devising energy-efficient clusters. It has been provisioned that the nodes not participating in the information exchange
would be sent to sleep mode to minimize the energy consumption. Moreover, the fitness function in Sackey et al29 con-
siders three major parameters for network partitioning: residual energy, packet data rate, and coverage. Using various
simulations, Sackey et al29 confirm its outperformance over schemes like LEACH, LEACH-C, LEACH-BSO, and
energy-efficient clustering schema (EECS) with respect to reduced energy consumption, improved coverage, and
improved data packet rate.

A DE-based energy-efficient clustering method for WSN is proposed in Ghahramani and Laakdashti.30 The pro-
posed scheme targeted the DECA for further improvement. In their proposed scheme, the authors updated the muta-
tion function to consider the target vector along with the best vector and two other randomly chosen population
vectors. The proposed scheme's fitness function considers nodes' energy along with the gateways' energy as the main
decision parameters. However, Scheme-[30] (here, Scheme-[30] refers to the scheme implemented in Ghahramani and
Laakdashti30) does not consider the cluster population in deciding the clusters like its predecessor DECA.

For the energy-efficient network operations, formation of load-balanced clusters in the network is a key that has
been the least addressed in above-mentioned works. The present work emphasizes on the development of energy-
efficient clusters for a two-level IoT-based HWSN such that it ensures:

• load-balanced cluster formation.
• reduced intracluster communication among the nodes and their respective CH to save the node's energy.
• maximum resource utilization.
• consistent performance under varying network configuration.

3 | PRELIMINARIES

3.1 | DE—A brief description

The DE scheme is a stochastic problem-independent metaheuristic technique that facilitates an optimized solution from
the available search space.31,32 It starts with a randomized set of initial population vectors, termed target vectors. Each
target vector goes through the mutation process followed by a crossover phase. The target vector undergoing the muta-
tion phase is called the donor or the mutant vector. After going through the crossover phase, the donor vector becomes
a trial vector. The new offspring comprises vectors that come out as the result of greedy selection in terms of fitness
values between the target vector and trial vector pairs.

More illustratively, each pair of target vector and the respective trial vector is checked against the value of the fitness
function defined in the scheme, and whosoever has the higher fitness value finds a place in the offspring of the next
generation. It is to be noted here that the donor/mutant vectors are never considered for the new offspring.

Since the inception of DE, many variants have been introduced. These variants are represented by a notation similar
to that being used for queueing system, like DE=x=y=z. Here, DE refers to DE, x refers to the type of vectors being
mutated (like random vectors or best vectors or the target vector), y refers to the number of difference vectors being
used for mutation purpose, and finally, z refers to the crossover technique being followed. The popular crossover tech-
niques are the binomial crossover and the exponential crossover.
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A few of the popular DE schemes are DE=rand=1=exp,DE=rand=2=exp,DE=rand=1=bin,DE=best=1=exp,DE=best=
2=bin, DE=target� to�best=1=bin, and so on. In this work, what has been followed is DE=best=1=bin.

This work adopts DE=best=1=bin.

3.2 | Models and assumptions

In this section, the various assumptions along with the adopted network and energy-consumption models are
described.

3.2.1 | Network model

As in Xiang et al33 and Ramteke et al,34 the operational WSN in the IoT-based HWSN is adopted here as a digraph,
G¼ðV ,LÞ, where V refers to the set of various sensor nodes deployed for monitoring and control purpose and L refers
to the set of directed links. Here, V comprises two types of nodes—normal nodes and control nodes. The control nodes
are equipped with higher energy compared to the normal nodes' energy, and hence, yielding two-level heterogeneous
networks. The normal nodes are deployed for environment sensing, and control nodes are appointed for communicat-
ing the field data to the BS. L denotes the set of all the communication links between the normal nodes to control nodes
and control nodes to the BS.

The detailed assumptions about the network in the proposed scheme can be listed as follows:

• The sensor nodes in the IoT-based HWSN are distributed randomly across the field, and once deployed, nodes cannot
change their respective locations.

• Each participating nodes in the deployed network is assigned with a universal identification number (UIN).
• Two-tier network architecture deploys two types of nodes with different initial energy. The control nodes equipped

with higher initial energy act as CHs, and those with comparatively low initial energy are solely responsible for envi-
ronment sensing and monitoring. Moreover, all the energy-intensive tasks are to be performed by the energy-
enriched control nodes.

• Both kind of nodes are equipped with the power control features.
• The BS is static and situated in the middle of the sensing field.
• The sensor nodes are periodically sensing the environment in order to generate the data. In brief, the continuous data

flow model is adopted for the working of the nodes.

3.2.2 | Energy-consumption model

As in many of the schemes like previous studies,11,26,30,34–39 the proposed scheme uses the First-Order Radio Model for
the computation of all energy expanses in the network.

4 | PROPOSED SCHEME—A DE-BASED IMPROVED CLUSTERING
ALGORITHM (DEICA)

DEICA employs the centralized BS for suitable cluster formation as in DECA and Scheme-[30]. Once the clusters are
formed, further network operations are taken care of by the network nodes themselves.

At the beginning of the scheme, network setup occurs first. The network setup process comprises two different
phases- the bootstrapping and clustering phases. In the bootstrapping phase, the normal nodes start broadcasting their
UINs to be sensed by the control nodes in their communication range. The control nodes then send the collected infor-
mation to the centralized BS for balanced cluster formation. In the clustering phase, clusters are formulated by follow-
ing the DE strategy detailed below. The resulting clusters are then improved through a local improvement phase
(Section 4.5) ensuring further load balancing in the network. Once the clusters are formed, each control node is
informed of its responsibility and respective member nodes. The normal nodes are then briefed on their respective
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clusters and TDMA schedules by the respective CHs. After that, the network operations are divided into rounds
wherein the data exchange is provisioned.

Moreover, the detail schema of the proposed scheme is described in the Figure 2 and has been explained in the sub-
sequent subsections. The proposed scheme also incorporates a local improvement phase like in DECA but with an
updated policy to ensure more balanced clusters.

4.1 | Initialization

The initialization scheme is inherited from Kuila and Jana11 wherein each population vector indicates the complete
assignment of network nodes to every control node. For example,

Λ
!

i,T ¼ ½λ1,i,T , λ2,i,T , λ3,i,T , …, λN ,i,T �, ð1Þ

where Λ
!
i,T is the ith target vector in the population of Tth generation; {λ1,i,T , λ2,i,T , λ3,i,T , …, λN ,i,T } � ð0,1Þ are chosen

randomly, where λj,i,T refers to sthj node assigned to one of control nodes, say m, as follows:

l¼ ceilingðυj,i,T ∗ jCommCHðsjÞjÞ: ð2Þ

Here, CommCHðsjÞ refers to the set of all the control nodes found in the communication range of the node, sj. And

CHm ¼ indexðCommCHðsjÞ,lÞ: ð3Þ

Once this initialization phase is complete, the fitness value of each target vectors are recorded before going ahead
with the mutation phase.

The fitness function is described in the next subsection.

4.2 | Fitness function

The prime objective of this work is to devise a fitness function that assures network longevity via the load-balanced
clusters. Since the network lifetime is defined as the death of the first control node/gateway, it is important to bring it
under consideration in the definition of fitness function, along with other parameters like distance of the nodes from
their respective control nodes, cluster energy, node degrees, and size of the clusters. It can be intuitively observed that a
quality cluster requires its member nodes to be at a minimum distance from the control node and to be characterized

FIGURE 2 DEICA—flowchart
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with a higher node degree to reduce intracluster communication costs. Similarly, for a balanced network partitioning in
a finite number of clusters, the number of member nodes per cluster must be almost the same inducing clusters with
approximately the same level of energy too. Thus, the fitness function must incorporate the standard deviation of the
control nodes' lifetime, the standard deviation of average cluster distance, the standard deviation of average cluster size,
the standard deviation of average cluster energy, cluster energy, and node degree in its formulation.

The fitness function (ϕf ) characterizing all the aforementioned required considerations can be derived as follows:

4.2.1 | Standard deviation of the lifetime of control nodes

For the balanced network partitioning, it is considered that all the cluster-inducing control nodes should have similar
lifetimes where the lifetime of a control node (LCN ) can be defined as follows:

LCNi ¼
ResidualEnergyCNi

EnergyConsumptionCNi

, ð4Þ

where ResidualEnergyCNi
and EnergyConsumptionCNi refer to the remaining energy and energy consumption by the ith

control node. The control node consumes its energy in performing numerous network operations, such as receiving
data packets from the member normal nodes, aggregating them, and forwarding the aggregated data to the BS repeat-
edly in successive network rounds. More illustratively,

EnergyConsumptionCNi ¼ClusterSizei ∗ ðERX þEDAÞþETXðCNi,BSÞ, ð5Þ

where ClusterSizei is the size of the ith cluster; ERX and EDA are the energy consumed in receiving and aggregating a
data packet; and ETXðCNi,BSÞ is the energy consumed by the ith control node (acting as CH) in transmitting the data
packet to the BS. Now, for the balanced lifetime of the control nodes, their standard deviation from the average lifetime
should be the minimum, that is, if

μLif eCN ¼
1
k
:
Xk
i¼1

Lif eCN , ð6Þ

where k is the number of CHs and μLif eCN is the mean lifetime of the control nodes.
Then,

σLif eCN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k

Xk
i¼1

ðμLif eCN �Lif eCNiÞ2
vuut , ð7Þ

where σLif eCN is the standard deviation of the lifetime of the CHs.
And it can be intuited easily that

ϕf /
1

σLif eCN
: ð8Þ

4.2.2 | Standard deviation of the average cluster distance

Since the member normal nodes are only to communicate with their respective control nodes throughout their life, it is
quite obvious that lesser the distance between the member and control node, lesser the energy consumption. The same
can be mapped to fitness function (ϕf ) in such a way that if AvgDistCNi be the average distance of a node from the con-
trol node in the ith cluster and μAvgDistCN be the mean of the average cluster distances for all the clusters formed
defined below:
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μAvgDistCN ¼
1
k

Xk
i¼1

AvgDistCNi : ð9Þ

Then,

σAvgDistCN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k

Xk
i¼1

ðμAvgDistCN �AvgDistCNiÞ2
vuut , ð10Þ

where σAvgDistCN is the standard deviation of the average cluster distance.
And accordingly,

ϕf /
1

σAvgDistCN
: ð11Þ

4.2.3 | Standard deviation of the average cluster size

For partitioning the network into equally loaded clusters, consideration of this metric can be a key. If IdealCS is the
suggested number of nodes per cluster defined as N=k where N being the number of normal nodes and k is the number
of control nodes deployed, then standard deviation of the average cluster size can be defined as follows:

σIdealCS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k

Xk
i¼1

ðIdealCS�ClusterSizeCNiÞ2
vuut , ð12Þ

where ClusterSizeCNi is the size of the cluster associated with ith control node.
And

ϕf /
1

σIdealCS
: ð13Þ

4.2.4 | Standard deviation of the average cluster energy

To further ensure the load-balanced clusters, standard deviation of the average cluster energy (σAvgCE) for every clusters
can also be considered as a key parameter. It can be intuitively concluded that load-balanced clusters refer to the clus-
ters with approximately same level of energy; thus, indicating clusters with lower standard deviation of the average
cluster energy. More illustratively,

σAvgCE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k

Xk
i¼1

ðμCE�CEiÞ2
vuut , ð14Þ

where μCE is the mean cluster energy for the entire network partitioning and CEi is the cluster energy for the ith
cluster.

Moreover,

ϕf /
1

σAvgCE
: ð15Þ

4.2.5 | Cumulative average cluster energy

Cumulative average cluster energy (CAvgCE) refers to the summation of average cluster energies for each of the clusters.
Average cluster energy (AvgCEi) for the ith cluster can be defined as follows:
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AvgCEi ¼
Pm

j¼1ðResidualEnergyjiþResidualEnergyCNi
Þ

ðmþ1Þ , ð16Þ

where m is the cluster length.
And

CAvgCE ¼
Xk
i¼1

AvgCEi: ð17Þ

For the better fitness function, CAvgCE needs to be maximized as it ensures nodes are adequately distributed over the
clusters formed. Hereby,

ϕf /CAvgCE: ð18Þ

4.2.6 | Cumulative average node degree per cluster

The degree of a node (deg) refers to the number of normal nodes which are in close proximity of the node say in the
sensing range of the node. To restrict a node from being a member of a more distant control node, it is expected to
group the nodes which are in close proximity. Thereby, for a better fitness function, cumulative average node degree
(CAvgND) per cluster must be maximized.

CAvgND ¼
Xk
i¼1

1
m

Xm
j¼1

degij

 !
: ð19Þ

And accordingly,

ϕf /CAvgND, ð20Þ

From Equations (8), (11), (13), (15), (18), and (20),

ϕf /
CAvgCE ∗CAvgND

σLif eCN ∗σAvgDistCN ∗σIdealCS ∗σAvgCE
: ð21Þ

Or

ϕf ¼
K ∗CAvgCE ∗CAvgND

σLif eCN ∗σAvgDistCN ∗σIdealCS ∗σAvgCE
, ð22Þ

where K is the proportionality constant, and without loss of generality, it can be set to 1. And hence,

ϕf ¼
CAvgCE ∗CAvgND

σLif eCN ∗σAvgDistCN ∗σIdealCS ∗σAvgCE
, ð23Þ

or equivalently, from Equations (7), (10), (12), (14), (17), and (19),

ϕf¼
k2 ∗

Pk
i¼1

Pm
j¼1ðResidualEnergyjiþResidualEnergyCNi

Þ
þðmþ1Þ ∗

1
m

Xm

j¼1
degij

� �


i¼1ðμLif eCN �Lif eCNiÞ2 ∗
Pk

i¼1ðμAvgDistCN �AvgDistCNiÞ2 ∗
Pk

i¼1ðIdealCS�ClusterSizeCNiÞ2
q

∗
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

i¼1ðμCE�CEiÞ2
q :

ð24Þ
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Every population vector is to be evaluated against this fitness function: the higher the value, the better the suitability of
the candidate vector.

4.3 | Mutation

In the proposed scheme, DE=best=1 has been opted as the mutation strategy. More illustratively, the mutation strategy
can be well interpreted by the following expression:

Ψ
!

i,T ¼ Λ
!

best,T þFðΛ!r1,T � Λ
!

r2,TÞ, ð25Þ

where Λ
!
best,T and Λ

!
r1,T ,Λ

!
r2,T denote the best vector and the two randomly chosen vectors from Tth generation such that

i, r1, and r2 are the three integers � ½1,P� (P being the population size) and i≠ r1 ≠ r2. F refers to the scaling factor that
can assume any value between ð0,2Þ.

4.4 | Crossover

After getting through the mutation phase, each vector passes through the crossover or recombination phase which has
been chosen here a binomial one as follows:

ωj ¼ ψ j if ζ≤Crossr OR j¼ρ,
λj if ζ>Crossr AND j≠ ρ,

n
ð26Þ

where Crossr is the crossover rate, ρ is a randomly chosen index from the set f1,2,3,…,jdecision variablejg, ζ� ð0,1Þ is
chosen randomly, and ωj,ψ j, and λj refer to the jth variable in trial vector, donor vector, and target vector, respectively.
Once the crossover is over, the best of the target vector and corresponding trial vector is chosen on the basis of their fit-
ness value to be a part of the population vector for the next generation.

4.5 | Local improvement phase

Similar to Kuila and Jana,11 DEICA also provisions local improvement phase. However, instead of executing it at the
end of every iteration, DEICA calls it to improve the quality of the finally obtained generation only. In other words,
DEICA improves the last set of offspring through this phase.

In this phase, the ideal cluster size can be computed by dividing the total number of nodes by the number of
control nodes deployed. Then, the above-formed DE-based clusters are checked for their respective sizes. If the size
of the cluster is found greater than the ideal one, the excess nodes are distributed randomly over the nearby suitable
clusters. Here, the suitability of the clusters for the nodes reallocation is determined based on two considerations—
the size of the destination cluster must be less than the ideal size, and the destination control node must be at the
least possible distance among all control nodes. The process is applied over each resultant cluster formed
successively.

4.6 | Data transmission phase

In this phase, the member nodes transmit the data to their respective control node acting as CHs. Afterward, the control
nodes aggregate the data packets collected and then forward to the BS. The process continues over the rounds till the
nodes and controls nodes have sufficient residual energy.

Moreover, the proposed scheme is also summarized into the following algorithm.
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4.7 | Algorithm—DEICA
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5 | PERFORMANCE ANALYSIS

This section describes and analyzes the various results obtained by performing an extensive set of experimentations to
support the claim for DEICA's supremacy over the existing schemes.

5.1 | Experimental environment

The experiments have been conducted under varying network configurations like with different node deployments in
the field, say 100, 200, 300, 400, and 500. In addition to the normal nodes mentioned above, four different clustering
scenarios have been explored by deploying 15, 20, 25, and 30 control nodes (gateways). The BS is situated at the center
of the 200�200m2 sensing field precisely at (100m, 100m).

CHAURASIYA ET AL. 13 of 25



Figure 3 describes an exemplary simulation interface for the network operation with two different deployment
instances, networks with 15 control nodes and 30 control nodes. The nodes labeled with “G” represent the control
nodes (or gateways), and that labeled with “BS” refers to the base station. Every other node is representing the normal
nodes in the two-tier IoT-based HWSN.

All the experiments and analyses have been performed in MATLAB.
Through the various experimentations, we have demonstrated the following:

1. The efficacy of the proposed scheme, DEICA in formulating the load-balanced clusters with respect to the ones
obtained from DECA and Scheme-[30] (detailed in Section 5.3.1).

2. The supremacy of DEICA with respect to the various network performance measurement criteria like network
energy consumption, network lifetime, and packet delivery at the BS over the existing schemes- DECA and Scheme-
[30] (detailed in Section 5.3.2).

FIGURE 3 Simulation interface for network operation. (a) Network with 15 control nodes. (b) Network with 30 control nodes

TABLE 1 Simulation parameters

Parameter Parameter's Value

Area of sensing field 200�200m2

Location of the base station (100 m, 100 m)

Node deployment strategy Random

Number of normal nodes f100,200,300,400g
Number of deployed control nodes (gateways) f15,20,25,30g
Normal node's initial energy 2 J

Control node's initial energy 10 J

Data packet size 4000 bits

Packet header size 200 bits

Energy consumption in data aggregation ðεdaÞ 5 nJ/bits/signal

Energy consumption in the transceivers' circuitry ðEelecÞ 50 nJ/bit

Free space amplification factor ðεf sÞ 10 pJ/bit/m2

Amplification factor-multipath fading model ðεmpÞ 0.0013 pJ/bit/m4

Mutation factor (F) 0.5

Crossover rate (Crossr) 0.7
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5.2 | Simulation parameters

The set of simulation parameters adopted for the performance comparison of the proposed scheme, DEICA with DECA
and Scheme-[30] is described in Table 1.

5.3 | Results and discussion

5.3.1 | Formation of load-balanced clusters

This first set of experiments compares the performance of DEICA with that of DECA, Scheme-[30], TDE1, and TDE2.
In this comparison, TDE1 and TDE2 represent the traditional differential versions of DECA and the proposed scheme,

FIGURE 4 Cluster formation with 15 control nodes

FIGURE 5 Cluster formation with 20 control nodes
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DEICA without local improvement phase. The performance comparison based on the quality of formed clusters has
been recorded in Figures 4–7. Here, the quality of clusters is measured in terms of their count such that clusters with
approximately equal count of normal nodes are considered to be a more quality clusters or load-balanced clusters.

Figures 4–7 depict that the clusters produced as per the proposed scheme ensure comparatively more balanced clus-
ters with respect to DECA, Scheme-[30], TDE1, and TDE2. Here, x axis and y axis in the figures refer to the number of
control nodes and member normal nodes enrolled in the respective clusters. Performance of the aforesaid schemes have
been recorded in the varying network configurations like with different number of normal nodes and control nodes.
For example, DEICA100,Scheme-½30�100,DECA100,TDE1100, and TDE2100 with 15 control nodes refer to the schemes—
DEICA, Scheme-[30], DECA, TDE1, and TDE2 with 100 normal nodes. The similar interpretations can be developed
with regard to other notations used in Figures 4–7.

These figures clearly demonstrate the fact that the proposed scheme distributes the nodes more evenly over the
formed clusters when compared to other schemes. The observed variation in cluster sizes (that is the differences in the

FIGURE 6 Cluster formation with 25 control nodes

FIGURE 7 Cluster formation with 30 control nodes
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number of member nodes in clusters) in DEICA is lower than in DECA, Scheme-[30], TDE1, and TDE2 under every
network scenarios.

Moreover, the effect of local improvement phase is also apparent from Figures 4–7. It can be easily observed that
when TDE2 was executed solely in the network, the variations in the cluster sizes are comparatively higher than those
obtained via DEICA.

Statistical analysis
To further strengthen the claim in favor of DEICA, a statistical analysis is presented in Figure 8. It shows the respective
performance of the schemes in terms of standard deviation towards the formulation of load-balanced clusters. Here,
standard deviation of the average cluster size refers to how the resultant clusters deviate from the ideal distribution of
nodes. Ideal distribution of nodes requires each cluster to contain equal number of normal nodes. The supremacy of
the proposed scheme is evident from Figure 8 as DEICA produces clusters with the least standard deviation with
respect to others in every possible network configuration. The least standard deviations of the average cluster size
clearly indicate that the clusters obtained in DEICA are more balanced in terms of member count and cluster energy.
The quantitative values in favor of the aforesaid claim can be observed from Table 2.

Moreover, Table 2 also indicates the success of the proposed scheme in terms of load-balanced cluster formation
over the state-of-the-art schemes via confidence interval which justifies the probability of node deployment within spec-
ified range of values. For this purpose, the confidence intervals with 95% and 99% confidence intervals are computed,
respectively, for four different clustering scenarios with 15, 20, 25, and 30 control nodes with variable node counts-
100, 200, 300, 400, and 500. Node counts can be easily computed by dividing the number of nodes by number of control
nodes deployed. For example, in the first clustering scenario with 15 control nodes with 100, 200, 300, 400, and
500 nodes, each cluster should contain 6.67, 13.33, 20, 26.67, and 33.33 nodes, respectively, in their ideal cases.

Table 2 confirms the supremacy of the proposed scheme, DEICA, over its peers under varying network configura-
tion. Like, when 100 normal sensors are deployed with 15 control nodes (gateways), DEICA ensures its clusters to con-
tain [6.40, 6.93] and [6.32, 7.01] normal nodes with 95% and 99% confidence levels, respectively, with respect to ideal
6.67 normal nodes per cluster. On the other hand, Scheme-[30] ensures [5.95, 7.39] and [5.73, 7.61] normal nodes per
cluster and DECA ensures [6.06, 7.28] and [5.86, 7.48] normal nodes per cluster with 95% and 99% confidence levels,
respectively, under the same network configuration. Similarly, the consistency of the proposed scheme, DEICA, can be
observed over its peers in terms of load-balanced cluster formation in Table 2.

FIGURE 8 Standard deviations in cluster formation
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5.3.2 | Network performance

In this next set of experiments, performance of the proposed scheme, DEICA has been compared with that of Scheme-
[30], DECA, TDE1, and TDE2 in terms of network lifetime, nodes' death rate, energy consumption rate, node's average
residual energy, and packet delivery, respectively, in Figures 9–12. Performance of the aforesaid schemes has been
recorded under varying node distributions for two exemplary network scenarios-one with the 15 control nodes and
another with 30 control nodes, respectively.

Network Lifetime
The definition of the network lifetime is adopted from previous studies9–11,30 as the time when the first control node
(or equivalently, the CH) dies in the network. It is evident from Figure 9 that DEICA outperforms the rest of the
schemes under varying network configurations with respect to network lifetime.

In a network with 15 control nodes and 100, 200, 300, 400, and 500 normal nodes, the first control node death
(FCND) occurs at 4289, 2270, 1750, 1304, and 1199 rounds, respectively, in DEICA. For the above-mentioned network
configuration, FCND occurs at 3369, 1816, 1485, 1122, and 989 rounds in Scheme-[30]; at 3037, 1659, 1320, 1050, and

FIGURE 9 Network lifetime measured as first control node death. (A) First control node death in N/W with 15 control nodes. (B) First

control node death in N/W with 30 control nodes

FIGURE 10 Network stability in terms of normal node's death rate. (A) Node's death rate in N/W with 15 control nodes. (B) Node's

death rate in N/W with 30 control nodes
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FIGURE 11 Network energy resource utilization over the network rounds. (A) Energy resource utilization in N/W with 15 control

nodes. (B) Energy resource utilization in N/W with 30 control nodes

FIGURE 12 Data packet delivery at the base station. (A) Data packet delivery in N/W with 15 control nodes. (B) data packet delivery in

N/W with 30 control nodes

TABLE 3 Percentage gain in network lifetime

No. of GWs No. of nodes

Percentage Gain in Network Lifetime

Scheme-[30] DECA TDE1 TDE2

15 100 27.27% 41.42% 42.55% 33.92%

200 24.94% 36.77% 15.06% 18.42%

300 17.78% 32.5% 14.24% 30.91%

400 16.22% 24.19% 12.12% 33.33%

500 21.23% 31.61% 31.04% 40.21%

30 100 17.10% 19.30% 20.25% 57.69%

200 18.69% 6.97% 15.45% 13.97%

300 12.03% 11.89% 18.66% 28.62%

400 11.95% 18.32% 31.62% 38.04%

500 19.26% 12.89% 51.85% 25.93%
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911 rounds in DECA; at 3008, 1972, 1531, 1163, and 915 rounds in TDE1; and at 3202, 1916, 1336, 978, and 848 rounds
in TDE2.

Similarly, in a network with 30 control nodes and with 100, 200, 300, 400, and 500 normal nodes, the FCND occurs
at 5595, 3468, 2728, 2435, and 2006 rounds, respectively, in DEICA. For the above-mentioned network configuration,
FCND occurs at 4778, 2921, 2435, 2175, and 1682 rounds in Scheme-[30]; at 4690, 3241, 2438, 2058, and 1777 rounds in
DECA; at 4653, 3003, 2299, 1850, and 1321 rounds in TDE1; and at 3548, 3042, 2121, 1764, and 1593 rounds in TDE2.

Table 3 summarizes the above-obtained results while describing the percentage gain in network lifetime for the pro-
posed scheme, DEICA over Scheme-[30], DECA, TDE1, and TDE2, respectively. It can be easily observed that under
varying network configuration, DEICA assures up to 57.69% gain in terms of network lifetime over the other competing
schemes.

In addition to the FCND taken as the criterion to measure the network lifetime, normal nodes' death rate in the
deployed IoT-based HWSN can also be considered an important parameter for evaluating the performance perfor-
mance. Figure 10 describes the same for the proposed scheme, DEICA with respect to that in Scheme-[30], DECA,
TDE1, and TDE2. In their respective network lifetimes, DEICA, Scheme-[30], DECA, TDE1, and TDE2 consume 60, 41,
52, 51, and 46 normal nodes in the first network scenario (with 100 nodes and 15 control nodes) and 68, 68, 58, 66, and
53 normal nodes in the second network scenario (with 100 nodes and 30 control nodes). Here, the lesser number of
dead nodes in the schemes other than DEICA indicate that the normal nodes are uncovered due to early death of their
respective control nodes.

Network energy utilization
In the above-prescribed two-tier network where the energy-intensive tasks are handled by the energy-enriched control
nodes and normal nodes are kept reserved for environment sensing and monitoring, it is more desirable to keep the net-
work operating for a longer time. In other words, normal nodes must keep on sensing and monitoring activities for a
longer time and hence available network energy resource must be utilized for a longer duration for the fulfillment of
the intended objectives. For example, from Figure 11A, considering a network scenario with 100 normal nodes and
15 control nodes, it can be easily observed that DEICA utilizes 300.69 J (out of 350 J) network energy with a percent
energy utilization of 85.71%. This is because DEICA is able to engage most of the normal nodes for network operation.
Contrary to this, schemes—Scheme-[30], DECA, TDE1, and TDE2—have percent energy utilization of 72.00%, 71.70%,
70.69%, and 71.61%, respectively. Similarly, Figure 11B depicts that DEICA utilizes 377.89 J (out of 500 J) network
energy with percent energy utilization of 75.57% in comparison to 69.56%, 66.77%, 67.73%, and 57.90% percent energy
utilization due to Scheme-[30], DECA, TDE1, and TDE2, respectively. This establishes the supremacy of DEICA in
terms of network energy utilization over the other competing schemes.

Table 4 further describes the supremacy of DEICA by detailing the percentage gain in network energy utilization
over the schemes—Scheme-[30], DECA, TDE1, and TDE2. From Table 4, it can be observed that DEICA outperforms

TABLE 4 Percentage gain in network energy utilization

No. of GWs No. of nodes

Percentage gain in network energy utilization

Scheme-[30] DECA TDE1 TDE2

15 100 19.31% 19.80% 21.52% 19.98%

200 26.40% 29.73% 19.39% 18.67%

300 9.59% 24.90% 8.76% 23.85%

400 13.23% 20.40% 9.71% 33.16%

500 9.66% 18.75% 21.18% 28.29%

30 100 8.65% 13.19% 11.57% 30.52%

200 10.01% 1.45% 8.76% 7.72%

300 5.52% 2.63% 9.95% 15.91%

400 11.52% 15.40% 22.41% 26.51%

500 7.89% 5.34% 30.15% 11.34%
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other competing schemes in terms of network energy utilization by assuring up to 33.16% more utilization under vari-
able network configurations.

Packet delivery at BS
In this last set of experimentation, the performance of the proposed scheme, DEICA has been compared with that of
Scheme-[30], DECA, TDE1, and TDE2 with respect to total number of data packet delivered to the BS. Figure 12
describes the comparative performance of DEICA over the other schemes.

DEICA ensures delivery of 64,320, 34,035, 26,235, 19,560, and 17,985 data packets to the BS in a network with
15 control nodes and 100, 200, 300, 400, and 500 nodes, respectively. For the above-mentioned network configuration,
the total number of data packets delivered to the BS are 50,520, 27,225, 22,260, 16,815, and 14,820 in Scheme-[30];
45,540, 24,870, 19,785, 15,735, and 13,650 in DECA; 45,105, 29,565, 22,950, 17,430, and 13,710 in TDE1; and 48,015,
28,725, 20,025, 14,655, and 12,705 in TDE2.

Similarly, for the network with 30 control nodes and 100, 200, 300, 400, and 500 nodes, the number of data packets
delivered to the BS are 167,850, 104,010, 81,840, 73,050, and 60,180 in DEICA; 143,310, 87,600, 73,020, 65,220, and
50,430 in Scheme-[30]; 146,670, 97,200, 73,110, 61,710, and 53,280 in DECA; 139,560, 90,060, 68,940, 54,770, and 39,600
in TDE1; and 106,410, 91,230, 63,600, 52,890, and 47,760 in TDE2.

The above-mentioned results are summarized in Table 5 that describes the percentage gain in data packet delivery
at BS for DEICA over the schemes—Scheme-[30], DECA, TDE1, and TDE2. It is self-evident from Table 5 that DEICA
enables up to 57.74% more data packets to be delivered at the BS under varying network configuration.

Hence, from the above experimentation, it can be concluded that DEICA outperforms the schemes—Scheme-[30],
DECA, TDE1, and TDE2 in terms of quality cluster formation, network longevity, network resource utilization, and
data packet delivery.

6 | CONCLUSION AND FUTURE WORKS

In the present work, a DEICA is proposed for the IoT-based two-level heterogeneous WSNs. DEICA utilizes the
straightforward and fast converging DE scheme via the BS to distribute the nodes evenly among the clusters led by the
specialized energy-enriched control nodes. Various parameters have been considered for the formation of load-balanced
clusters, such as the lifetime of the control nodes, intracluster communication cost for the normal sensor nodes, and
cluster density. In addition to the algorithmic steps of DE with a specially devised fitness evaluation function, the pro-
posed scheme also applies a local improvement phase to improve the formulated clusters further. The supremacy of
DEICA is established through an extensive set of experimentations over the existing state-of-the-art schemes—Scheme-
[30], DECA, and traditional DE schemes with respect to clusters' quality, network lifetime improvement, network
resource utilization, and data packet delivery. It has been demonstrated that DEICA achieves considerable efficacy in

TABLE 5 Percentage gain in data packet delivery at base station

No. of GWs No. of nodes

Percentage gain in data packet delivery at base station

Scheme-[30] DECA TDE1 TDE2

15 100 27.32% 41.24% 42.60% 33.96%

200 25.01% 36.85% 15.12% 18.49%

300 17.86% 32.60% 14.31% 31.01%

400 16.32% 24.30% 12.22% 33.46%

500 21.36% 31.76% 31.81% 41.56%

30 100 17.12% 14.44% 20.27% 57.74%

200 18.73% 7.00% 15.49% 14.00%

300 12.78% 11.94% 18.72% 28.68%

400 12.00% 18.37% 33.37% 14.86%

500 19.33% 12.95% 51.97% 26.00%
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terms of gains in network lifetime, network energy utilization, and data packet delivery, respectively, over its peer
schemes under variable network configurations.

As a future version of this work, IoT-based HWSN with more levels of energy-heterogeneity might be investigated,
which is getting wide popularity due to the networks involving nodes with varying features and functionality.
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