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a b s t r a c t

The primary objective of this work is to look for any conceivable link between the geomagnetic storm
and coronal mass ejection (CME) events. The relevant data for both CME and geomagnetic storm
occurrences have been obtained from the Solar and Heliospheric Observatory mission’s LASCO and
the NOAA Space Weather Prediction Center, respectively, for the same time span (February 1999 to
December 2007). We performed Multivariate Singular Spectral Analysis (MSSA), Semblance Analysis,
and Multifractal cross-correlation detrended fluctuation (MFXDFA) analysis to achieve our target. We
also applied MSSA to investigate the causal link between the two data sets mentioned above. The
analysis identifies the supportiveness factor between the data series and the possibility of a one-
way statistical relationship between the data series is also verified. Then, Semblance and MFXDFA
were used to detect the presence of any conceivable local phase relationship (time and frequency-
dependent) and cross-correlation in the data sets. To make our analysis more persuasive, we must use
all three methods. The Semblance analysis reveals positive and negative phase correlation between the
signals under investigation at different time sub-intervals, whilst the MFXDFA validates the long-term
power-law cross-correlations.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

The Earth’s magnetic field can be considered our home planet’s
nly defence against high-energy particles and harmful radi-
tion emitted by the Sun. The scientific community is aware
hat significant disturbances in the geomagnetic field caused by
arious solar activities may jeopardise the functioning of critical
nfrastructures reliant on space-based assets and have terres-
rial consequences. However, the underlying mechanisms are
till poorly understood. This work has attempted to investigate
he statistical association and nature of dependency between
he Coronal mass ejection (CME) and the geomagnetic storm
ccurrence by analysing CME linear speed and Planetary K-index
ata.
Coronal mass ejection (CME) is a type of extreme solar event

hat happens when a giant cloud of magnetically charged plasma
s ejected from the Sun’s corona and travels at extremely high
peeds (thousands of kilometres per second) into interplanetary
pace. When a CME collides with our planet’s atmosphere, it
njects large amounts of energy into the Earth’s magnetosphere,
hich causes a massive disturbance in the geomagnetic field
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ossainkm_1976@yahoo.co.in (M.H. Khondekar).
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and triggers a geomagnetic storm. An intense geomagnetic storm
poses a severe threat to our civilised society, as it can disturb
almost every aspect of modern technology, like power grids,
global communication navigation systems and complicate mod-
ern civilisation’s operations (Hapgood, 2012; Kappenman, 1996,
2012; Thomson et al., 2010) The magnitude of the geomagnetic
storms can be characterised and quantified by the value of the
Planetary K-index (Kp-index) which is based on a global average
of abnormal geomagnetic field variations (Menvielle and Berthe-
lier, 1991). The Kp-index ranges from 0 to 9, with an intense
geomagnetic storm defined as one with a value greater than
or equal to 5. NOAA Space Weather Prediction Center (SWPC)
derives the estimated 3-hour Planetary K-index using the data
from ground-based magnetometers located in different countries.

The CME linear speed data were collected from February 1999
to December 2007 as obtained from the Solar and Heliospheric
Observatory (SOHO) mission’s Large Angle and Spectrometric
Coronagraph (LASCO) as compiled in the CME catalogue1 (Gopal-
swamy et al., 2009). Gopalswamy, et al. identified four primary
attributes of a CME as ‘linear speed’, ‘width’, ‘CPA’, and ‘accelera-
tion’ in their research work, whereas the ‘linear speed’ attribute
has been taken here as the most appropriate parameter compared

1 http://cdaw.gsfc.nasa.gov/CME_list/index.html.
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o the other three parameters for the investigation (Chattopad-
yay et al., Stationarity and periodicities of linear speed of coronal
ass ejection: a statistical signal processing approach, 2017) Sim-

larly, the Kp-index data are chosen for the same period (February
999 to December 2007) from the NOAA Space Weather Predic-
ion Center by determining the average value of the eight 3-hour
p indices per day for the analysis.2 Here, an effort has been made
o discover the statistical association between the geomagnetic
torm and coronal mass ejection by analysing the Kp-index and
ME speed signal for solar cycle 23.
Many geomagnetic storm occurrences have been reported

uring the solar cycle 23, but only a handful have influenced the
arth’s environment. Intense geomagnetic storms were observed
n October 4–7, 2000, and substantially influenced the iono-
phere. Though the ion temperatures of the terrestrial magneto-
ail generally used remain consistent, it has been noticed that in
ctober 2000, the measured ion temperature was 2–3 times more
han the average value (Keesee et al., 2008). Another geomagnetic
torm event was noticed on 21 October 2001, and its effect has
een explained in Jordanova et al. research paper (Jordanova
t al., 2008). They have observed the massive loss of electrons
n the radiation belt into the atmosphere, and electron flux
rops out due to the outward radial diffusion. In October 2003,
arious intense geomagnetic storm events were registered. As
n effect of these geomagnetic storm events, different incidents
ave been recorded by multiple researchers like increased photo-
onisation effects in the dayside ionosphere (Villante and Regi,
008), enormous ionospheric disturbances which had yielded a
swirling’ effect in a direction opposite to the Earth’s rotation
Gopalswamy, 2009) and high-value GIC (geomagnetically in-
uced currents) which is always a threat to our power grids
Ni, 2017) During the August–September 2005, various high-
alue Kp index peaks have were noticed while among them 24
ugust, 31 August, 11 September and 13 September most intense
eomagnetic storm events were recorded with a peak Kp index
alue of ≈8 (Papaioannou et al., 2009). The geomagnetic storm
vents were recorded on 14–15 December 2006 when Earth’s
agnetosphere is affected by the CME-associated interplanetary
hock. Ionospheric disturbances have been recorded due to these
eomagnetic storm events, which produce increases and de-
reases in electron densities and total electron content (TEC) and
lso provide GIC (Sahai et al., 2012; Zhao et al., 2008; Suvorova
t al., 2015). In space research, Earth’s magnetosphere is always
n exciting domain for researchers to explore (Horvath and Lovell,
017; Holappa et al., 2014; Mansilla, 2013; Echer et al., 2006;
uttunen et al., 2008). Here, the causal relationship between
ME and the geomagnetic storm has been investigated using
ultivariate Singular Spectral Analysis (MSSA) technique (Has-
ani et al., Forecasting UK Industrial Production with Multivariate
ingular Spectrum Analysis, 2013). The long-term power-law
ross-correlations between these two signals have also been veri-
ied using the Multifractal cross-correlation detrended fluctuation
nalysis (MF-X-DFA) algorithm (Zhou, 2008). Also, to reveal the
ocal phase relationship between two signals using continuous
avelet transform (CWT) based Semblance Analysis has been
erformed (Cooper and Cowan, 2008).
The rest of this work is planned as follows. In Section 2,

he formal description of the algorithms for MSSA, CWT-based
emblance Analysis and MF-X-DFA methods are summarised.
ection 3 includes different plots of our results along with a
etailed discussion of the crucial observations, while the paper
oncludes in Section 4 with a summary of the results.

2 https://www.swpc.noaa.gov/products/planetary-k-index.
2

2. Algorithms for analysis

2.1. Multivariate Singular Spectrum Analysis (MSSA)

MSSA technique evolved from the basic SSA algorithm, which
is a nonparametric method and can be worked with any statistical
process without making any assumptions about its stationarity
and nonlinearity. Here, the causal relationship between two time
series signals (CME and Kp-index) has been investigated by using
the MSSA algorithm. This method can be summarised as fol-
lows (Hassani et al., Forecasting UK Industrial Production with
Multivariate Singular Spectrum Analysis, 2013) (Khondekar et al.,
2012).

2.1.1. Basic SSA
Consider the one-dimensional real-valued nonzero time series

St of length l(1 ≤ t ≤ l) is converted into the L × K trajectory
atrix ψ = ψ1, . . . , ψk =

(
sn,m

)L,k
n,m=1 with lagged vectors

n = [sn, sn+1, . . . , sn+L−1]T ∈ ℜ
L where, k = l − L + 1 is

he transformation step, and L is the window length. This ψ
s a Hankel matrix where diagonal elements are always equal
.e.

(
ψn(m−1) = ψ(n−1)m

)
. Construction of the trajectory matrix is

he first step of basic SSA. In the second step, singular value
ecomposition (SVD) is applied to a new matrix Q = ψψT

hich provides L eigenvalues λ1 ≥ λ2 ≥ · · · λL ≥ 0 and
he corresponding eigenvectors E1 · · · EL where each eigenvector
s normalised to the corresponding eigenvalue. The SVD of the
rajectory matrix ψ can be expressed as

=

d∑
i=1

ψi (1)

here, ψi =
√
λiEiPT and d = max {i : λi > 0}.

√
λi, Ei and Pi are called as ith ‘eigentriple’ of the SVD where

i = ψTEi/
√
λi ;

(i = 1, . . . , d). The third step is all about forming different groups
by splitting the elementary matrices and summing the matrices
within each group. Considering I1 =

{
i1, . . . , ip

}
be the first sub-

set of indices i1, . . . , ip. Then the resulting matrix corresponding
to the subset of I1 is defined as ψI1 = ψi1 + · · · + ψip . In the
final step, the matrix ψ̃ =

∑p
k=1 EikE

T
ik
ψ is determined as an

approximation to the trajectory matrix ψ . Now initial time series
St can be estimated by averaging over the diagonals of the matrix
ψ̃ .

2.1.2. Causality test
To find out the causality, the forecasted values are needed to

determine first by using SSA and MSSA methods. Then, these fore-
casted values are compared with the actual values to evaluate the
error values for both SSA and MSSA. If the error value obtained
using MSSA is considerably smaller than that obtained using SSA,
then it suggests a causal relationship between these time series
(Hassani et al., 2010).

The causality test method can be summarised using the MSSA
algorithm (Chattopadhyay et al., Multivariate Singular Spectral
Analysis (MSSA) to explore geomagnetic storm and CME bond,
2019). Consider R and S are two trajectory matrices of two time
series signals RN = r1, . . . , rN and SN = s1, . . . , sN respectively
where L is the window length. The joint trajectory matrix U can
be defined as

U =

[
R
S

]
(2)

Now, RN is separated into two parts RX = r1, . . . , rN−fm and

RY = rN−fm+1, . . . , rN where fm ≤ N/10 is the number of data

https://www.swpc.noaa.gov/products/planetary-k-index
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equired to forecast. The sub-signal RX is used to determine the
oise-free signal R̃SSA

X using SSA considering the trajectory matrix
s RX .
˜ SSA
X = rSSA1 , . . . , rSSAN−fm (3)

Like RN , time series SN also split into SX and SY for the same
indow length. Let, SX be the trajectory matrix of SX then the

oint trajectory matrix UX for RX and SX can be expressed as

X
=

[
RX

SX

]
(4)

With this trajectory matrix UX the reconstructed noise free
ignal R̃MSSA

X is determined from RX and SX using MSSA algorithm,
iven as

˜MSSA
X = rMSSA

1 , . . . , rMSSA
N−fm (5)

Here, Iterated forecasting algorithm (Golyandina et al., 2001)
s used to forecast R̃SSA

Y and R̃MSSA
Y from noise free signals R̃SSA

X
nd R̃MSSA

X respectively for next fm data points (Chattopadhyay
t al., Multivariate Singular Spectral Analysis (MSSA) to explore
eomagnetic storm and CME bond, 2019). The supportiveness
etween two signals is judged by the criterion discussed in the
aper (Hassani et al., 2010), and can be expressed as

R|S =
∆MSSA

∆SSA
(6)

where ∆MSSA and ∆SSA are the root mean square error (MSE)
between R̃MSSA

Y with RY and R̃SSA
Y with RY respectively. Similarly,

another criterion ℑS|R can be estimated.
Based on this criterion, a conclusion can be made about the

forecasting supportiveness of the signals. The existence of a re-
lationship between R and S is validated if the value of ℑR|S is
significantly small i.e. ℑR|S < 1. Also ℑR|S < 1 suggests that S
is more supportive of forecasting R. If both ℑR|S and ℑS|R are very
small (i.e. ℑR|S < 1 and ℑS|R < 1) then it verifies the presence
of mutual supportiveness between R and S. If ℑR|S < ℑS|R, then
it suggests that S is more supportive compared to R whereas if
ℑS|R < ℑR|S , then an opposite conclusion can be made.

2.2. CWT-based semblance analysis

Continuous Wavelet Transform (CWT) technique is generally
performed to decompose a signal into wavelets. The CWT of a
signal z (t) is described as the inner product of the family of
wavelets ψxy (t) with the signal.

CW (x, y) =
⟨
z (t) ψxy (t)

⟩
=

1
√
y

∫
∝

−∝

z (t) ψ
(
t − x
y

)
dt (7)

Here, x is the translation parameter while y defines various scales
where the wavelet can be stretched and ψxy (t) =

1
√
yψ

(
t−x
y

)
.

The CWT also can be defined as the convolution of the signal
ith a scaled version of the wavelet, given as (Rucka and Wilde,
006)

W (x, y) =
1

√
y

∫
∝

−∝

z (t) ψ
(

− (x − t)
y

)
dt

=
1

√
y
z (t) ∗ ψ

(
−x
y

)
= z (t) ∗ ψ̄y (x) (8)

where ψ̄y (x) =
1

√
yψ

(
t
y

)
.

The complex Morlet wavelet is used in this work to get bet-
er frequency resolution, which can be expressed as (Teolis and
enedetto, 1998)

(t) =
1

e2π jfc te
−t2
fm (9)
π fm
3

where fc is the wavelet centre frequency and fm tunes the wavelet
bandwidth.

Assuming, CW1 and CW2 are the continuous wavelet trans-
orms of two time series signals r (t) and s (t) respectively. Since
he chosen wavelet is complex here, the CWT will also become
omplex, and its imaginary and real parts produce a Hilbert
ransform pair with orthogonality. The cross-wavelet transform
an be expressed as (Torrence and Compo, 1998)

W1,2 = CW1 × CW ∗

2 (10)

he amplitude (A) and local phases (φ) of CW1,2 can be defined
s A =

⏐⏐CW1,2
⏐⏐ and φ = tan−1

[
ℑ(CW1,2)
ℜ(CW1,2)

]
respectively, for −π ≤

≤ π .
Hence, the semblance S can be determined as

= cosn (φ) (11)

here n are odd positive values.
The degree of correlation between two signals can be decided

ased on the value of S. If S → 0, then it can be concluded that
poor correlation is present between the signals. Similarly, the
alue of S is close to 1 validates that the correlation between two
ignals is positive, whereas it is negative for S ≈ −1.
Hence, the value of S is entirely dependent on phase value, not

mplitude value, and it is less sensitive to noise. This problem is
itigated by determining the parameter D, which can be defined
s (Cooper and Cowan, 2008)

= S
⏐⏐CW1 × CW ∗

2

⏐⏐ (12)

.3. Multifractal cross-correlation detrended fluctuation analysis
MF-X-DFA)

Assuming {ri} and {si} two time series of length L where i =

, . . . , L. MFXDFA algorithm is summarised as follows based on
FDFA algorithm (Chattopadhyay et al., Fractality and singularity

n CME linear speed signal: Cycle 23, 2018) (Zhou, 2008):

• Step 1: Determine the signal profile of time series,

R(i) =

i∑
n=1

(r (n)− r̄) ; i = 1, . . . , L (13)

S(i) =

i∑
n=1

(s (n)− s̄) ; i = 1, . . . , L (14)

where r̄ and s̄ are the sample averages.
• Step 2: Profile R(i) and S(i) are split into Ls number of non-

overlapping segments of length s, where Ls = int (L/S).
Usually, a short tail remains at the signal profile because
the data length L is not a multiple of time scale s. Hence
the same process is repeated again but from the opposite
end, this time to incorporate this profile tail. Therefore, 2Ls
segments are obtained altogether.

• Step 3: The variance F 2 (s,m) has been computed by de-
termining the local trends for each segment m using least
square fit method.

F 2 (s,m) =
1
s

s∑
i=1

⏐⏐⏐R ((m − 1) s + i)− R̃m (i)
⏐⏐⏐

×

⏐⏐⏐S ((m − 1) s + i)− S̃m (i)
⏐⏐⏐ ; m = 1, . . . , Ls (15)

F 2 (s,m) =
1
s

s∑
i=1

⏐⏐⏐R (L − (m − Ls) s + i)− R̃m (i)
⏐⏐⏐

×

⏐⏐⏐S (L − (m − Ls) s + i)− S̃m (i)
⏐⏐⏐ ; m = Ls + 1, . . . , 2Ls
(16)



A. Chattopadhyay and M.H. Khondekar Astronomy and Computing 43 (2023) 100695

m

Fig. 1. (A) CME linear speed signal from SOHO; (B) Kp-index signal from the NOAA - SWPC.
q
m

Fig. 2. ACF vs. Lag (A) CME and (B) Kp-index signal.

Here, R̃m (i) and S̃m (i) are the fitting polynomial in the seg-
ent m.

• Step 4: By averaging over all segments, the qth order fluc-
tuation function Fq (s) can be determined as follows,

Fq (s) =

[
1
2Ls

2Ls∑
m=1

(
F 2 (s,m)

) q
2

] 1
q

; q ̸= 0 (17)

Whereas, if q → 0 then L’Hospital rule is used to determine
the fluctuation function as follows,

F0 (s) = exp

[
1
4Ls

2Ls∑
m=1

ln
⏐⏐F 2 (s,m)

⏐⏐] (18)

• Step 5: In this final step, we determine the slope of the log–
log plot of Fq (s) Vs s. If Fq (s) is increasing continuously for
large values of s as power-law

(
Fq (s) ≈ shrs(q)

)
then it can be

concluded that two time series {ri} and {si} are long-range
cross-correlated.
4

Here, hrs (q) is known as the cross-correlation Hurst exponent.
The cross-correlation behaviour between two signals depends on
the relationship between hrs (q) and q. If hrs (q) is dependent on
then the behaviour of cross-correlations between two signals is
ultifractal otherwise monofractal. The specific value of hrs (2) is

known as bivariate cross-correlation Hurst exponent. If the value
of hrs (2) is less than 0.5 then it can be concluded that signals are
long-range anti-correlated or cross anti-persistent whereas if the
value is greater than 0.5 then the signals are cross-persistent or
long-range correlated. The cross-correlations between two signals
are entirely missing when the value of hrs (2) is equal to 0, or it
can be said that for hrs (2) = 0, short-range cross-correlations
present between signals.

The scaling exponents τrs (q) can be determined from the
relation between Hurst exponents and scaling exponents, given
as

τrs (q) = qhrs (q)− 1 (19)

Eq. (13) can be modified as

τrs (q) = qhrs (q)− qhrs (1)− 1 (20)

If τrs (q) is varying non-linearly with q, then the behaviour of
cross-correlation is multifractal. The Singularity spectrum can be
obtained by using Legendre transformation, given as

frs (α) = qαrs − τrs (q) (21)

Here, parameter α is known as the Lipschitz–Hölder exponent,
which is computed from the slope of τrs (q) vs. q curve.

αrs (q) =
d
dq
τrs (q) (22)

3. Result and analysis

The original Kp-index and CME linear speed signals are repre-
sented in Fig. 1(A) and (B), respectively. Different analysis results
for the MSSA-based causality test are shown in Figs. 2, 3 and
Tables 1, 2. The performance of this method is mostly dependent
upon the value of two parameters, (i) window length (L) and
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Table 1
Window length and Eigen triples of Kp-index and CME time series.
Signal Windows length (L) Eigentriples (I)

Kp-index 475 1:441
CME 487 1:189

(ii) the number of significant eigentriples (I). Hence, to get an
ptimum analysis result, these two parameters needed to find
ut precisely. The window length is determined from the correlo-
ram, where L is chosen as that particular lag value for which the
utocorrelation Function (ACF) intersects the standard Gaussian
onfidence interval (95% CI) for the first time.
In Fig. 2, it can be seen that 475 and 487 are the respective lag

alues where the ACFs of the Kp-index and CME speed signals
ntersect for the first time with 95% CI. Therefore, optimised
indow lengths have been computed here 475 and 487 for the
ignals under investigation. The ‘Eigen triple grouping’ criteria is
ased on ratio term (Rt ), which approximates the energy contri-
ution percentage for the tth principal component of the original
ignal. The ratio term (Rt ) can be defined as,

t =
σt∑L
k=1 σk

∗ 100 (23)

he group is formed by the number of elements (Imax); only those
omponents have significant energy while ignoring others low
nergy components. The first Imax Eigen triples are chosen as the
ost significant Eigen triples (i.e. I = 1 : Imax). Fig. 3 reveals

he energy contribution of the above signals, while the computed
igentriples (I) and window length (L) for the two signals are
iven in Table 1.
After determining I and L, the values of IR|S and IS|R are

btained to reveal the statistical relationship between the two
ignals, given in Table 2. Assuming here, R and S represent the
CME linear speed and Kp-index signal, respectively. In Table 2,
it is seen that the value of ℑR|S > 1 implies that the information
extracted from the CME signal may assist in forecasting the Plane-
tary K-index signal. Also, it can be seen that the value of IS|R is less
than 1, whereas the value of I is greater than 1, which denies
R|S

5

Table 2
Causality factors.

ℑR|S ℑS|R

R: CME linear speed & S: Kp-index 1.006203 0.900672

the possibility of any feedback system between these two signals.
Now to judge which signal is more supportive compared to the
other one, we compare between ℑR|S and ℑS|R. Here, ℑR|S > ℑS|R
this clearly validates that R is more supportive of predicting S.
Therefore, the final result of this analysis reveals that a one-way
statistical association exists between CME and Kp-index signal
and that the supportiveness of CME is more compared to the
Kp-index signal.

It may not be enough to evaluate the supportiveness between
two time series to investigate the statistical relationship. There-
fore, correlation analysis has also been performed in addition
to investigating the supportiveness of CME and Kp-index. To
attain this purpose, the Semblance and MFXDFA analyses are
practically applied. The semblance analysis between the CME and
Kp-index time series has been depicted in Fig. 4. The positive
phase correlations can be observed between CME and Kp-index
at upper scales (wavelengths) between 200 and 500 during June
2003 to February 2004 and May 2005 to October 2005 from the
Semblance analysis plot displayed in Fig. 4. There is a negative
phase correlation on nearly every scale in between February 1999
to May 2000. From August 2000 to March 2001, a mixed-phase
correlation has also been observed, with positive correlation at
lower scales (100–300) and negative correlation at higher scales
(200–500).

In Fig. 5, the dependency of the F (q), h(q), τ (q) on q, the
ehaviour of log(F (s)) vs. log(s) plot and the nature of the sin-
ularity spectrum f (α) are presented for both CME linear speed
nd Kp-index signals using MFXDFA algorithm. Also, the variation
f the (hrr + hss) /2 along with q has been shown in Fig. 5c. Here,
he range of exponent q is taken as −10 to +10 with a fixed step
nterval of 0.5.

The nonlinear nature of F (q) function can be noticed in Fig. 5a
hich advocates for the multifractal characteristics of both sig-
als. It can be seen in Fig. 5b that the values of log (F (s)) increase
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Fig. 4. Semblance analysis for the CME and Kp-index signal.
Fig. 5. MFXDFA plots for CME linear speed and Kp-index (a) F (q) vs. q (b) log(F (s)) vs. log(s) (c) h(q) vs. q (d) τ (q) vs. q (e) f (α) vs. α.
as log(s) increases which confirms the presence of a power-
law cross-correlation between CME and Kp-index. In Fig. 5c,
the decreasing relationship between h(q) and q has been ob-
served. This nature of the h(q) function reveals that the small
fluctuation scaling properties are more dominant than the large
fluctuation scaling properties for both signals. Also, the cross-
correlation Hurst exponent has been determined from Fig. 5c,
which is 0.82992±0.036252. It is found that the value of hrs(2) is
greater than 0.5, confirming the presence of positive persistence
temperament in the cross-correlations. In Fig. 5d, the τ (q) func-
tion exhibits nonlinear nature with respect to q,which reveals the
6

possibility of multifractal characteristics in corresponding cross-
correlations. The singularity spectrum is one of the key functions
used to quantify multifractal behaviour (Shimizu et al., 2002).
The degree of multifractality of a signal can be measured by
computing the width of the singularity spectrum. The singularity
spectrum of MFXDFA has been portrayed in Fig. 5f. The maximum
and minimum singularity strengths can be denoted as αmin and
αmax respectively while these two parameters are the lowest and
highest values of the Hölder exponent α of the spectrum for
which f (α) = 0. In this work, the computed values of αmin and
αmax for cross correlations analysis using MFXDFA are 0.6892 and
1.068, respectively. The width of the spectrum can be defined as



A. Chattopadhyay and M.H. Khondekar Astronomy and Computing 43 (2023) 100695
Table 3
Cross-correlation parameters of CME and Kp-index using MFXDFA.
Cross correlation αmin (f = 0) αmax (f = 0) ∆α (αmax − αmin) hrs(q = 2)

MFXDFACME−Kp 0.6892 1.06892 0.37972 0.82992 ± 0.036252
the difference between the αmax and αmin (denoted as ∆α) which
gives measures the length of the range of fractal exponents in the
signal, i.e. the degree of multifractality. Here, the computed value
of the ∆α for MFXDFA is 0.37972 (see Table 3).

4. Conclusion

i. The CME Linear Speed information may assist in predicting
the Planetary K-index signal.

ii. The calculation possibly indicates that the variation of the
Kp-index may be expressed as a function of CME linear
speed fluctuations but not vice versa. This, in turn, suggests
that CME linear speed fluctuation possibly regulates the
time variability of geomagnetic storms and hence possibly
helps to determine its precision.

iii. The width of the singularity spectrum suggests that the
range of the fractal exponents existing in the cross-corre-
lation is quite significant.

iv. The actual Kp-index values support or agree with the out-
come of the forecasting made from the CME linear speed
signal to predict the Kp-index.

v. Positive phase correlations have been discovered between
the Kp-index and CME.

vi. The CME and Kp, along with their cross-correlation, follow
the power law.

vii. The structures in the CME linear speed and Kp-index sig-
nals are self-similar. Moreover, the structural patterns of
CME linear speed are highly correlated with the Kp-index
signal, and this correlation is long-range.
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