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Abstract
This research aims to examine the multiscale-multifractal correlation
properties between the geomagnetic storm and coronal mass ejection (CME)
occurrences by analyzing the CME linear speed and Planetary K-index time
series data. The relevant data for both CME and geomagnetic storm occur-
rences were obtained from the Solar and Heliospheric Observatory mission’s
LASCO and the NOAA Space Weather Prediction Center, respectively, for the
same period (February 1999 to December 2007). We performed MultiFractal
cross-correlation Detrended Fluctuation Analysis (MFXDFA) and Multi-
fractal cross-correlation Detrending Moving average Analysis (MFXDMA)
to investigate and quantify the possible cross-correlation between the two
natural events. The MFXDFA technique is also compared to the back-
ward MFXDMA algorithm’s performance. The change in the degree of
cross-correlation over time has been investigated, and the findings are quan-
titatively analyzed. The existence of significant power-law cross-correlations
has been discovered within all scaling orders. Furthermore, we also find
evident persistence of cross-correlation with substantial Hurst exponents.
In addition, it has been observed that long-term cross-correlation has a
more considerable degree of multifractality and persistence than short-term
cross-correlation.
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1 INTRODUCTION

The Earth’s magnetic field might be considered as our
planet’s only defense against the Sun’s high-energy parti-
cles and hazardous radiation. According to the scientific
community, significant changes in the geomagnetic field
generated by different solar activities may jeopardize the
operation of crucial infrastructures relying on space-based
assets and have terrestrial effects. The fundamental

mechanics, on the other hand, are still not clear. By
analyzing CME linear speed and Planetary K-index (Kp-
index) data, an attempt has been made to explore the
cross-correlations between the Coronal Mass Ejection
(CME) and the occurrence of geomagnetic storms. Coro-
nal Mass Ejection (CME) is a sort of severe solar event
that occurs when a massive cloud of magnetically charged
plasma is released from the Sun’s corona and travels at
large speeds(thousands of kilometers per second) into
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interplanetary space. When a CME collides with our
planet’s atmosphere, it releases large quantities of energy
into the magnetosphere, causing massive disruption in
the geomagnetic field and triggering a geomagnetic storm.
An intense geomagnetic storm poses a massive threat
to our civilization of its impact on critical infrastruc-
tures such as electrical power, satellite-enabled commu-
nications, navigation, and monitoring (Hapgood 2012;
Kappenman 1996; Kappenman 2012; Thomson et al.
2010). The intensity of geomagnetic storms may be classi-
fied and measured using the Planetary K-index (Kp-index),
which is based on a worldwide average of aberrant geo-
magnetic field changes (Menvielle & Berthelier 1991).
NOAA Space Weather Prediction Center (SWPC) derives
the estimated 3-hour Planetary K-index using the data
from ground-based magnetometers located in different
countries. The Kp- index varies from 0 to 9, with a value
greater than or equal to 5 suggesting an extreme geomag-
netic storm.

The Solar and Heliospheric Observatory (SOHO)
obtained the CME time series data from February 1999
to December 2007 as summarized in the CME catalogue1

(Gopalswamy et al. 2009). In their research, Gopalswamy
et al. identified four primary attributes of a CME: “lin-
ear speed”, “width”, “CPA”, and “acceleration”. Here, the
‘linear speed’ attribute has been chosen as the most
appropriate attribute in comparison to the other three
parameters (width, CPA, acceleration) for the analysis
(Chattopadhyay et al., Stationarity and periodicities of lin-
ear speed of coronal mass ejection: a statistical signal
processing approach Chattopadhyay et al. 2017). Simi-
larly, the Kp- index data are chosen for the same period
(February 1999 to December 2007) from the NOAA
Space Weather Prediction Center by determining the aver-
age value of the eight 3-hour Kp indices per day for the
analysis.2 An effort has been made here to investigate
the cross-correlation between two natural occurrences,
namely geomagnetic storm and coronal mass ejection,
by analyzing the Kp- index and CME speed signal (see
Figure 1).

There have been a large number of geomagnetic
storm occurrences reported during solar cycle 23, but
only a handful of them have influenced the Earth’s envi-
ronment. Intense geomagnetic storms were observed on
October 4–7, 2000, which substantially influenced the
ionosphere. Although the ion temperatures of the ter-
restrial magneto-tail generally used to remain consistent,
it has been noticed that in October 2000, the measured
ion temperature was 2–3 times more than the average
value (Keesee et al. 2008). Another geomagnetic storm

1 http://cdaw.gsfc.nasa.gov/CME_list/index.html.
2 https://www.swpc.noaa.gov/products/planetary-k-index.

event was noticed on October 21, 2001, and its effect
has been explained in Jordanova et al. research paper
(Jordanova et al. 2008). They have observed the massive
loss of electrons in the radiation belt into the atmosphere,
and electron flux drops out due to the outward radial
diffusion. In October 2003, various intense geomagnetic
storm events were registered. As an effect of these geomag-
netic storm events, different incidents have been recorded
by multiple researchers like increased photoionization
effects in the dayside ionosphere (Villante and Regi 2008),
enormous ionospheric disturbances which had yielded a
“swirling” effect in a direction opposite to the Earth’s
rotation (Gopalswamy 2009) and high-value GIC (geomag-
netically induced currents) which is always a threat to our
power grids (Ni 2017). During August–September 2005,
various high-value Kp index peaks were noticed, while
among them, 24 August, 31 August, 11 September, and 13
September most intense geomagnetic storm events were
recorded with a peak Kp index value of ≈ 8 (Papaioannou
et al. 2009). The geomagnetic storm events were recorded
on 14–15 December 2006 when Earth’s magnetosphere
was affected by the CME-associated interplanetary shock.
Ionospheric disturbances have been recorded due to these
geomagnetic storm events which produce increases and
decreases in electron densities and total electron con-
tent (TEC) and also provide GIC (Sahai et al. 2012;
Suvorova et al. 2015; Zhao et al. 2008). In space research,
Earth’s magnetosphere is always an exciting domain for
researchers to explore (Echer et al. 2006; Horvath &
Lovell 2017; Holappa et al. 2014; Huttunen et al. 2008;
Mansilla 2013).

The scatter plot in Figure 2 reveals a slight positive cor-
relation between the CME Linear speed and the Kp index
value. The Pearson Correlation Coefficient is found to be
0.3743, which indicates the degree of the linear relation-
ship between the two. The slope of the Linear regression
line that fits the relationship between the CME Linear
speed and the Kp index value is 0.57, which corresponds
to the angle of 300.

The long-term power-law cross-correlations between
these two signals have also been verified using the Mul-
tifractal cross-correlation detrended fluctuation analysis
(MF-X-DFA) algorithm (Zhou 2008). Continuous wavelet
transform (CWT) based Semblance Analysis has also been
performed to reveal the local phase relationship between
two signals (Cooper & Cowan 2008).

The rest of this work is planned as follows. Section 2
summarizes the formal description of the algorithms
for MFXDFA and MFXDMA techniques. Section 3
includes different plots of our results along with a
detailed discussion on the crucial observations, while the
paper concludes in Section 4 with a summary of the
results.

http://cdaw.gsfc.nasa.gov/CME_list/index.html
https://www.swpc.noaa.gov/products/planetary-k-index
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F I G U R E 1 Two time series
signals from Feb. 1999 to Dec. 2007 (a)
CME linear speed signal from SOHO;
(b) Kp- index signal from the
NOAA—SWPC
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F I G U R E 2 Scatter Plot and Linear Regression line for CME
Linear speed and Planetary K-Index

2 ALGORITHMS FOR ANALYSIS

2.1 Multifractal cross-correlation
detrended fluctuation analysis
(MFXDFA)

Assuming {ri} and {si} as two time series of length
L, where i = 1, · · · ,L MFXDFA algorithm is summa-
rized as follows based on MFDFA algorithm (Zhou 2008)

(Chattopadhyay et al., Fractality and singularity in CME
linear speed signal: Cycle 23 Chattopadhyay et al. 2018):

• Step 1: Determine the signal profile of the time series,

R(i) =
i∑

n=1
(r(n) − r); i = 1, · · · ,L (1)

S(i) =
i∑

n=1
(s(n) − s); i = 1, · · · ,L (2)

where r and s are the sample averages.
• Step 2: Profile R(i) and S(i) are split into Ls number

of non-overlapping segments of length s, where Ls =
int(L∕S). Usually, a short tail always remains at the sig-
nal profile because mostly the data length L is not a
multiple of time scale s. Hence, the same process is
repeated again but from the opposite end this time to
incorporate this profile tail. Therefore, 2Ls segments are
obtained altogether.

• Step 3: The variance F2(s,m) has been computed by
determining the local trends for each segment m using
the least square fit method.

F2(s,m) = 1
s

s∑

i=1

|||R((m − 1)s + i) − ̃Rm(i)
|||

× |||S((m − 1)s + i) − ̃Sm(i)
||| ; m = 1, · · · ,Ls

(3)
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F2(s,m) = 1
s

s∑

i=1

|||R (L − (m − Ls) s + i) − ̃Rm(i)
|||

× |||S (L − (m − Ls) s + i) − ̃Sm(i)
||| ;

m = Ls + 1, · · · , 2Ls (4)

Here, ̃Rm(i) and ̃Sm(i) are the fitting polynomial in the
segment m.

• Step 4: By averaging over all segments, the qth

order fluctuation function Fq(s) can be determined as
follows,

Fq(s) =

[
1

2Ls

2Ls∑

m=1

(
F2(s,m)

) q
2

] 1
q

; q ≠ 0 (5)

Whereas, if q → 0 the L’Hospital rule is used to
determine the fluctuation function as follows,

F0(s) = exp

[
1

4Ls

2Ls∑

m=1
ln |||F

2(s,m)|||

]
(6)

• Step 5: In this final step, we determine the slope of the
of Fq(s) versus s plot from where the scalingexponent
hrs(q) can be determined as:

Fq(s) ≈ shrs(q) (7)

2.2 Multifractal detrending moving
average cross-correlation analysis
(MFXDMA)

MFXDMA, like MFXDFA, entails all five of the preceding
steps. Only step 3 distinguishes MFXDMA from MFXDFA.
In contrast to MFXDFA, where ̃Rm(i) and ̃Sm(i) are fit-
ting polynomials, ̃Rm(i) and ̃Sm(i) in MFXDMA are mov-
ing average functions in a moving window which can be
mathematically expressed as (Zhou et al. 2011):

̃Rm(i) =
1
l

⌈(l−1)(1−𝜃)⌉∑

k=−⌊(l−1)𝜃⌋

̃Rm(i − k); i = 1, 2, … ,L (8)

where l and 𝜃 denote the sliding window and position
parameter respectively. The parameter 𝜃 lies between
0 to 1. ⌊𝛼⌋ is the greatest integer less than 𝛼, whereas ⌈𝛼⌉
is the lowest integer greater than 𝛼. DMA analysis can be
divided into three unique scenarios depending on the val-
ues of 𝜃 as: (i) 𝜃 = 1, where all future (l − 1) data values are
considered to compute the moving average function ̃Rm(i).
This unique condition is referred to as the forward-moving

average. (ii) 𝜃 = 0, ̃Rm(i) is determined by considering
all past (l − 1) data values of the signal, referred as the
backward-moving average. (iii) 𝜃 = 0.5, when the ̃Rm(i)
can be assessed using half past and half future data val-
ues of the time series, referred to as the centered moving
average technique.

2.3 Multifractal parameters

Here, we determined the Hurst exponent hrs(q), the scal-
ing exponents 𝜏rs(q), which measures the multifractality
of the cross-correlation of the cross-correlated time series.
To analyze the singularities, we calculated the singularity
strength 𝛼rs(q) and also obtained the singularity spectrum
frs(𝛼).

The cross-correlation behavior between two signals
depends on the relationship between hrs(q) and q. If hrs(q)
is dependent on q then the behavior of cross-correlations
between the two signals are multifractal otherwise
monofractal. The specific value of hrs(2) is known as bivari-
ate cross-correlation Hurst exponent. If the value of hrs(2)
is less than 0.5 then it can be conclude that signals are
cross anti-persistent or long-range anti-correlated whereas
if the value is greater than 0.5 then the signals are cross
persistent or long range correlated. The cross-correlations
between two signals are entirely missing when the
value of hrs(2) is equal to 0 or it can be said that for
hrs(2) = 0, short-range cross-correlations present between
signals.

The scaling exponents 𝜏rs(q) can be determined from
the relation between Hurst exponents and scaling expo-
nents, given as

𝜏rs(q) = qhrs(q) − 1 (9)

Equation (13) can be modified as

𝜏rs(q) = qhrs(q) − qhrs(1) − 1 (10)

If 𝜏rs(q) is varying non-linearly with q, then the behav-
ior of cross-correlation is multifractal. The Singularity
spectrum can be obtained by using Legendre transforma-
tion, given as

frs(𝛼) = q𝛼rs − 𝜏rs(q) (11)

The width of the singularity spectrum reveals the
degree of cross-multifractality.

Here, the parameter 𝛼 is known as Lipschitz–Hölder
exponent, which is computed from the slope of 𝜏rs(q) vs.
q curve.

𝛼rs(q) =
d

dq
𝜏rs(q) (12)
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3 RESULT AND ANALYSIS

In Figure 3, the dependency of the F(q), h(q), 𝜏(q) on q,
the behavior of log(F [s]) versus log(s) plot and the nature
of the singularity spectrum f (𝛼) are presented for both
CME linear speed and Kp-index signals using MFXDFA
algorithm. Also, the variation of the (hrr + hss) ∕2 along
with q has been shown in Figure 3c. Here, the range of
exponent q is taken as−10 to+10 with a fixed step interval
0.5 and the scale s in the range 10 to (≤ L∕5) (Kantelhardt
et al. 2002).

The cross-correlation of the two time series signals
has also been investigated by applying backward moving
average-based MFXDMA (𝜃 = 0). Gu and Zhou demon-
strated in their study (Gu and Zhou 2010) that among
the three MFDMA approaches based on forward (𝜃 = 1),
centered (𝜃 = 0.5), and backward (𝜃 = 0) moving average,
the last one outperforms the other two. Singularity spec-
trum f (𝛼) and F(q), h(q), 𝜏(q) for both time series applying
MFXDMA (𝜃 = 0) are shown in Figure 4. Here, the param-
eter s varied from 10 to L/10 (Gu and Zhou 2010) and q is
set in steps of 0.5 from −10 to +10.

The nonlinear nature of F(q) function can be noticed
in Figure 3a which advocates for the multifractal char-
acteristics of both signals. The multifractal character is
further supported by a similar fluctuation in the slope
of the F(q) with q as shown in Figure 4a. It can be
seen in Figure 3b that the values of log(F (s)) increases
as log(s) increases which confirms the presence of a
power-law cross-correlation between CME and Kp-index.

In Figure 3c, the decreasing relationship between h(q)
and q has been observed. This nature of the h(q) func-
tion reveals that the small fluctuation scaling properties
are more dominant compared to the large fluctuation
scaling properties for both signals (Ausloos 2012). Also,
the cross-correlation Hurst exponent has been determined
from Figure 3c, which is 0.79341 ± 0.028982. It is found
that the value of hrs(2) is greater than 0.5, which confirms
the presence of positive persistence temperament in the
cross-correlations.

The h(q) is computed for MFXDMA (𝜃 = 0) and pre-
sented in Figure 4b for various q values. The h(q), like the
MFDFA, is shown to have a nonlinear dependence on q.
The backward MFXDMA analysis verifies MFXDFA’s
claim that both time series data are not mono-fractal but
have multifractal properties because mono-fractal time
series has a constant h(q) value (Kantelhardt et al. 2002).
The reduction in values of the h(q) with q implies that
the scaling qualities of minor fluctuations of the data
are higher than the big fluctuations, which is the same
point made by the MFXDFA analysis. The computed value
of the cross-correlation Hurst exponent hrs(2) = 1.0644
± 0.020328 validates a significant positive long-term mem-
ory in the cross-correlations between the two time series.
The non-stationary nature of the signals is further sup-
ported by the unity value of hrs(2). For each q, the values
of the 𝜏rs(q) are computed using Equation (10) and plot-
ted in Figures 3d and 4c for MFXDFA and MFXDMA
(𝜃 = 0) respectively. In Figure 3d and 4c, the 𝜏rs(q) func-
tion exhibits nonlinear nature with respect to q, which

F I G U R E 3 MFXDFA plots for
CME linear speed and Kp-index (a)
F(q) versus q (b) log(F (s)) versus log(s)
(c) h(q) versus q (d) 𝜏(q) versus q (e)
f (𝛼) versus 𝛼
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F I G U R E 4 MFXDMA (𝜃 = 0)
plots for CME linear speed and
Kp-index (a) F(q) versus q (b) h(q)
versus q (c) 𝜏(q) versus q (d) f (𝛼)
versus 𝛼

reveals the possibility of multiple scaling in corresponding
cross-correlations, while the degree of multifractality
indicates by the degree of nonlinearity of the 𝜏(q)
function.

The singularity spectrum f (𝛼) of MFXDFA and
MFXDMA has been portrayed in Figure 3e and 4d respec-
tively. The singularity spectrum is one of the essen-
tial functions used to emphasize multifractal behavior
(Shimizu et al. 2002). The degree of multifractality of a
signal can be measured by computing the width of the
singularity spectrum. The broad singularity width sug-
gests that the cross-correlations between the two time
series exhibit multifractal behavior. The critical param-
eters 𝛼min, 𝛼max,Δ𝛼, 𝛼0 for both data series are obtained
and reported in Table 1 by extrapolating the singularity
spectrum.

The maximum and minimum singularity strengths
are denoted as 𝛼min and 𝛼max, respectively, while these
two parameters are the lowest and highest values of the
Hölder exponent 𝛼 of the spectrum for which f (𝛼) = 0.
In this work, the computed values of 𝛼rs min and 𝛼rs max
for cross-correlation analysis using MFXDFA are 0.8055
and 1.0468, respectively, whereas for MFXDMA 𝛼rs min and
𝛼rs min are 0.7322 and 1.0614, respectively. The spectrum
width can be defined as the difference between the 𝛼rs min
and 𝛼rs min (denoted as Δ𝛼rs), which measures the length
of the range of fractal exponents in the signal, that is, the
degree of multifractality. Here, the computed values of the
Δ𝛼rs for MFXDFA and MFXDMA (𝜃 = 0) are 0.2413 and
0.3292 respectively.

The shape of the singularity spectrum depends upon
the parameter δ, which can be obtained by fitting the spec-
trum to a quadratic equation around 𝛼0, that is, f (𝛼) =
𝛿(𝛼 − 𝛼0)2 + 𝛾 (𝛼 − 𝛼0) + fmax (Dutta et al. 2013). The polar-
ity of 𝛿 determines the direction in which the parabolic
shape of the spectrum opens up; positive 𝛿 produces
a U-shaped parabola, whereas negative 𝛿 produces an
inverted U-shaped parabola. The degree of openness of the
parabola is inversely proportional to 𝛿’s magnitude, that
is, the value of 𝛿 is inversely related to spectrum width
(Δ𝛼). A larger 𝛿 will compress the spectrum curve inward,
whereas a lesser 𝛿 would extend it outward. It is evident
from Figures 3e and 4d that 𝛿 is negative. The symme-
try of the spectrum (right/left skewed/symmetric) deter-
mines whether high (or low) fluctuations predominate.
It can be quantified by a measure known as the Asym-
metry Index (AI) which is determined using the width of
the parabola’s right and left wings as follows: AI = Δ𝛼left −
Δ𝛼right∕Δ𝛼left + Δ𝛼right. Here,Δ𝛼right andΔ𝛼left can be deter-
mined as 𝛼rs max − 𝛼rs0 and 𝛼rs0 − 𝛼rs min respectively. The
zero value of AI indicates that the spectrum is symmet-
ric, while the negative and positive magnitudes suggest
a left-skewed or right-skewed spectrum. A negative AI
value indicates that the multifractality is unaffected by
small-magnitude local fluctuations, implying that extreme
occurrences occur frequently. Here, the computed AI val-
ues for both MFXDFA and MFXDMA (𝜃 = 0) analysis are
negative magnitudes as shown in Table 1.

In Figure 5, the outcomes of the MFXDFA and
MFXDMA (𝜃 = 0) algorithms have been compared.
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T A B L E 1 Cross-correlation parameters of CME and Kp-index using MFXDFA and MFXDMA

Cross-correlation 𝜶rs min(f = 0) 𝜶rs max(f = 0) 𝚫𝜶rs

(
𝜶rs max−
𝜶rs min

)
hrs(q = 2) 𝜶rs0

AI = 𝚫𝜶left−𝚫𝜶right

𝚫𝜶left+𝚫𝜶right

MFXDFACME-Kp 0.8055 1.0468 0.2413 0.79+/− 0.02 0.9735 −0.1950

MFXDMACME-Kp 0.7322 1.0614 0.3292 1.06+/− 0.02 0.8567 −0.2436

F I G U R E 5 Comparative study of
the plots using MFXDFA and backward
MFXDMA for (a) F(q) versus q (b) h(q)
versus q(c) 𝜏(q) versus q (d) f (𝛼) versus 𝛼
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It is evident from Figure 5a–d that in comparison
to the MFXDFA, the backward MFXDMA more pre-
cisely reveals cross-correlations between the two time
series exhibiting multifractal behavior. The computed
degree of multifractality (Δ𝛼rs) for cross-correlation
analysis applying backward MFXDMA is greater than
that of MFXDFA, as shown in Table 1 and Figure 5d.
The comparative analysis uncovers some interesting
points:

i. The rise of the F(q) is greater for MFXDMA (𝜃 = 0)
than for MFXDFA.

ii. The hrs(2) value obtained using the MFXDMA
(𝜃 = 0) technique is greater than the MFXDFA
method.

iii. The degree of nonlinearity of 𝜏rs(q) in backward
MFXDMA and MFXDFA is approximately the same.

iv. MFXDMA (𝜃 = 0) has a broader singularity spectrum
than MFXDFA.

v. The uncertainty (indicated by the error bar) asso-
ciated with the cross-correlation Hurst exponent is
essentially the same for the MFXDFA and backward
MFDMA methods.

Therefore, it can be noted that the backward MFXDMA
approach is more apparent than the MFXDFA method in
terms of cross-correlation analysis of the CME linear speed
and Kp-index time series signals.

4 CONCLUSION

i. The CME and Kp-index, along with their
cross-correlation, exhibit power law behavior.

ii. The Hurst exponent hrs(2) of the cross-correlation
generated by the MFXDMA (𝜃 = 0) and MFXDFA
algorithms is more than 0.5, suggesting that the
cross-correlations between the time series under
investigation have strong positive long-term memory.

iii. The scaling exponent reveals the possibility of multi-
ple scaling in corresponding cross-correlations.

iv. The width of the singularity spectrum suggests that
the range of the fractal exponents existing in the
cross-correlation is quite significant.

v. The negative values of AI for both MFXDFA and
MFXDMA (𝜃 = 0) advocate for the occurrence of
severe events on a regular basis.
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vi. The different computed cross-correlation parame-
ters validate the better performance of backward
MFXDMA over the MFXDFA.

vii. The CME linear speed and Kp-index signals have
self-similar patterns. Furthermore, the structural pat-
terns of CME linear speed are significantly corre-
lated with the Kp-index signal with a long-range
correlation.
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