

Proceeding of NCRIMA 2021

National conference on recent trends in IOT, Machine learning, Artificial intelligence and its application NCRIMA-2021

LAP Lambert Academic Publishing (2022-02-25)

€ 79,90

Buy at the MoreBooks! Shop

Department of Electronics and Communication, SIRT, Bhopal organized an Online National Conference on Recent trends in IOT, Machine Learning, Artificial Intelligence and its Applications under IETE student Chapter on 7 May 2021.This conference aims to bring together leading academic scientists, researchers and research scholars to exchange and share their experiences and research results on all aspects of IOT, Machine Learning and Artificial Intelligence. It also provides a premier interdisciplinary platform for researchers, practitioners and educators to present and discuss the most recent innovations, trends, and concern as well as practical challenges encountered and solutions adopted in the fields of IOT, Machine Learning and Artificial Intelligence. Participants will develop a deep understanding of latest tools and technologies pertaining to latest topics and will get a chance to connect with other professionals in the field.This book is collection of research papers in the form of proceeding.

Book Details:

ISBN-13:	978-620-4-73542-9
ISBN-10:	620473542X
EAN:	9786204735429
Book language:	English

By (author) :	M. Fatima Navneet Kaur Jyoti Jain
Number of pages:	196
Published on:	2022-02-25
Category:	Electronics, electro-technology, communications technology

The Publisher

Lambert Academic Publishing is a brand of OmniScriptum S.R.L.

Business Address:

OmniScriptum SRL Str. Armeneasca 28/1, office 1 Chisinau, MD-2012, Republic of Moldova

Registration number: 1018600021562

Managing Directors: Virtoria Ursu, Dr. Philipp W. Müller

This imprint also applies to:

- https://www.fb.com/omniscriptum
- https://twitter.com/OmniScriptum
- https://www.instagram.com/omniscriptum.publishing
- https://www.linkedin.com/omniscriptum

Current News

NATIONAL CONFERENCE ON RECENT TRENDS IN IOT, MACHINE LEARNING, ARTIFICIAL INTELLIGENCE AND ITS APPLICATIONS (NCRIMA 2021)

In Association with

Conference Chair Dr. Jyoti Jain HOD-EC, SIRT

Conference Co Chair

Dr. Mehajabeen Fatima Prof. Navneet Kaur

Organized by **Department of Electronics and Communication**

Sagar Institute of Research and Technology

PROCEEDING OF NATIONAL CONFERENCE ON RECENT TRENDS IN IOT, MACHINE LEARNING, ARTIFICIAL INTELLIGENCE AND IT'S APPLICATIONS, 7 May 2021

EDITORS

DR. MEHAJABEEN FATIMA PROF. NAVNEET KAUR VIRENDRA RAJPUT SATYAM SAHU ADITI PARASAR MANVI GUPTA

ORGANIZED BY

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SAGAR INSTITUE OF RESEARCH AND TECHNOLOGY (The First 9001-2008 ISO Certified, E- Governed World Class Institute) Ayodhya Bypass Road Bhopal – 462041, MP, INDIA www.sirtbhopal.ac.in

NCRIMA2021 VOLUME 1

Table of Contents

ANALYSIS OF USER'S OPINION USING DEEP NEURAL NETWORK TECHNIQUES	6
V. Harini, K. Rajalakshmi And G.S. Varsha	6
OPTIMAL OF 1-BIT COMPARATOR DESIGN AND ENERGY ESTIMATION USING QU DOT CELLULAR AUTOMATA	JANTUM 6
V. Satyanarayana ¹ , M.Tech Scholar, M. Balaji ² , Assistant Processor And K. Neelima ³ , Assista	nt Professor 6
COMPARATIVE STUDY BETWEEN DIRECTION OF ARRIVAL FOR WIDE BAND & NA BAND SIGNAL USING MUSIC ALGORITHM	ARROW 11
Suman Anand ¹ And Dr. Sandeep Santosh ²	11
PREDICTION OF NAAC GRADES FOR AFFILIATED INSTITUTE WITH THE HELP OF STATISTICAL MULTICRITERIA DECISION ANALYSIS	15
Sukarna Dey Mondal ¹ , Dipendra Nath Ghosh ² , and Pabitra Kumar Dey ³	15
MACHINE LEARNING-BASED LINEAR REGRESSION WAY TO DEAL WITH MAKING SCIENCE MODEL FOR CHECKING THE SUFFICIENCY OF NIGHT CURFEW IN MAH, INDIA	DATA ARASHTRA, 26
Subham Panda1, Ayan Kumar Ghosh1, Anup Das2, Uttam Dey3, Subir Gupta1	26
SALES PREDICTION OF A PHARMACEUTICAL DISTRIBUTION COMPANY	31
Smriti Keny, Sagarika Nair, Silka Nandi and Deepak Khachane	31
PATIENT HEALTH MANAGER TO FIGHT COVID-19 PANDEMIC	36
1Prachi Nalawade, 2Riya Warkhandkar, 3Shikha Sharma, 4Manoj Kavedia	36
IMAGE SEGMENTATION TECHNIQUES: A SURVEY	41
Sannihit1, Saurav Puri2, Surender Singh3	41
BUSINESS INTELLIGENCE: AN INNOVATIVE APPROACH TO INFLUENCE CORPORA	ATE 54
Riteesh M Mandi1, Gowrishankar S Nath2	54
VOLUME-1 NCRIMA 2021 EC SIRT BHOPAL	3 P a g e

NATIONAL CONFERENCE ON RECENT TRENDS IN IOT, MACHINE LEARNING, ARTIFICIAL INTELLIGENCE AND ITS APPLICATIONS (NCRIMA 2021)

CARDIO VASCULAR AILMENTS PREDICTION AND ANALYSIS BASED ON DEEP LEARNING TECHNIQUES	59
Riddhi Kasabe1, PG Student; Dr. Prof. Geetika Narang2,	59
AUTOMATED CONTROLLED INTELLIGENT WHEEL CHAIR USING IOT AND WIRELESS SENSORS FOR SPECIALLY ABLED PERSONS	63
SOFTWARE DESIGN OF A VOICE CONTROLLED HOME AUTOMATION SYSTEM	72
Priyanshu Lawania1, Balasa Manikalyan2, Ravuru Venkata Lokesh3, and Merugumala Jaswanth4	72
ADJUSTABLE RADIO TECHNOLOGY USING BPSK MODULATION	76
L.Vamsi Krishna Reddy, T.Ravi Sekhar,	76
DATA MINING AND MACHINE LEARNING APPROACH FOR AIR QUALITY INDEX PREDICT	10N 80
Mayuresh Mohan Londhe	80
DETECTION OF RETINAL DISEASE USING IMAGE PROCESSING	92
Manunee Dave1, Mrunali Kokane2, Sudeepa Deshmukh3, Veena Lad4, Sandeep Mishra5	92
DATA ACQUISITION SYSTEM FOR FORMULA SAE VEHICLE	97
Kshitij Mayekar1, Tanmay Dangle2, Soham Sawant3 and Tushar Pawar4	97
SPEAK TO ARDUINO AND CONTROL IT WITH GOOGLE ASSISTANT	102
Khushi Jain, Manali Joshi, NayanKarpe , Prof. Deepak Khachane	102
SURVEY OF HUMOR DETECTION USING LANGUAGE MODELS	107
Hemant Palivela1, Pramod Kumar R2, and Nirmala C R3	107
CRIME RATE ANALYSIS FOR CRIMINAL INVESTIGATION REQUIREMENTS	113
D. Divya1, R. Pradeepa2, B. Suvedha3 and Dr.C. Senthilkumar,4	113
COMPARATIVE STUDY OF ABSTRACTIVE TEXT SUMMARIZATION TECHNIQUES	118
Anusar Soni1, Aneesh Kundu1, and Ankit Sood1	118

Prediction of NAAC Grades for Affiliated Institute with the help of Statistical MultiCriteria Decision Analysis

Sukarna Dey Mondal¹, Dipendra Nath Ghosh², and Pabitra Kumar Dey³

[1,3] Dr. B.C Roy Engineering College, Jemua Road, Fuljhore, Durgapur-713206, West Bengal, India ²Controller of Examinations, Kazi Nazrul University, Asansol, West Bengal, India

Corresponding author: Sukarna Dey Mondal (e-mail: sukarna.dey@bcrec.ac.in).

ABSTRACT: National Assessment and Accreditation Council is an impartial group of the University Grants Commission (UGC) of India, mounted in 1994. It has taken the duty of assessing and accrediting faculties and universities in India to encourage the instructional surroundings for the development of excellence in teaching, learning, and discovery in superior training. In those missions, NAAC acts a dynamic role. NAAC has been worried about reforming its ongoing Valuation and Certification policies, grounded on its arena, its shared statistics with different International Quality Assurance Agencies, and the best necessities within side the worlds converting the state of affairs over the progressive training development. In this paper, a new mathematical model is developed to explore the NAAC rating of a well-known Engineering College, considering nine more well-known Engineering Colleges. The system is characterized by NAAC Accreditation Criteria using Multi-Criteria Decision Making Methods, Statistics, and Group Decision Making.

INDEX TERMS: WSM, ENTROPY, TOPSIS, VIKOR, ANOVA, Spearman's Rank Correlation Coefficient, Group Decision Making, Additive Ranking, Multiplicative Ranking, Least Square Additive Regression method

I. INTRODUCTION

In the present centuries, several colleges and universities have been built. Still, the prevalence and difficulty amongst them have now no longer been stepped forward proportionally. This has been an unembellished difficulty for the state and the universities. The directors of the instructional establishments have to awareness greater at the enhancement of worldwide eminence of training like

- · Proprietor Status
- · Teacher/Student Proportion
- · Teacher Credentials
- · Worldwide Faculty Ratio
- · Worldwide Student Ratio etc.

through constant upgrading agendas. They have to recognize its sturdy points, faintness, and possibilities via a knowledgeable assessment process. They should identify the internal areas of planning and resource allocation, teamwork on the campus. Also, the funding agencies look for objective data for performance funding.

NAAC accreditation helps higher learning associations to recognize their assets, prospects, and weaknesses through a well-versed assessment procedure. NAAC approval will also support funding agencies with impartial data to decide on the funding of higher learning establishments. The National Accreditation and Assessment Council (NAAC, 2008) show that only 30 percent of universities and 10 percent of the colleges are with 'A' grade or "Five-star" institutions. The rest are tolerable or poor. Maintaining and improving advanced education quality are the tremendous challenges in India (Muzammil.M,2010). Performance-linked development systems with validity and reliability will be crucial for excellence declaration and quality sustainability in engineering colleges. The seven criteria recognized by NAAC, assist as the origin for assessment of Higher Education Institutions (HEIs) are:

Program of studies.

Education-training and Assessment.

Revolutions, Investigation, and Extension.

Association and enlightenment.

Beginner Facility and Development.

Authority, Guidance, and Supervision.

Revolutions & Policies.

In our proposed paper, we have sketched a methodical model to evaluate the NAAC score of an Engineering College concerning two criteria (recognized by NAAC) Criteria-2 Teaching-Learning and Evaluation and Criteria-3 Research, Consultancy Extension. These paper intentions to offer a hypothetical methodology in multi-criteria decision-making problems with Statistics and a practical application of improvement of the overall excellence of the education system. The proposed approach integrates Weighted Sum Method (WSM), ENTROPY, and Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS), VIKOR, ANOVA, Spearman's Rank Correlation Coefficient, Group Decision Making, Additive Ranking, Multiplicative Ranking, Additive Least Square Regression method, and Multiplicative Least Square Regression method.

II. LITERATURE REVIEW

The multi-criteria decision-making method is a general manner substantially implemented for outlining the best rationalization amongst several options having more than one attributes or option. Pin-Chang Chen tries in [1] to categorize appropriate man or woman tendencies and seriously qualified assistances through facts statistics. P. Kousalya and et al. presented the usage of multistandards decision-making strategies for status options to manipulate pupil absenteeism in engineering colleges Hwang first developed a method for Order [2]. Preference by Similarity to the Ideal Solution (TOPSIS), and Yoon [3] is constructed at the concept that the chosen opportunity ought to have the shortest distance from the positive ideal solution and, on the other side, the farthest attain of the perfect negative solution. The alternate resolution is taken into consideration as the ultimate answer within side the VIKOR approach [Opricovic, S. and Tzeng, G.-H., 2007]. The Entropy Method approximates the weights of the numerous standards from the given payoff matrix and is selffiguring out of the decision-maker's views. Hwang and Yoon (1981) mentioned that the Entropy Method facilitates discovery variations among units of data. Hwang and Yoon (1981) mentioned that the Entropy Method helps explore differences between sets of data.

Weighted Sum Method is a software kind MCDM approach.

The one-way analysis of variance (ANOVA) test is a manner to decide whether or not there are any statistically huge variations between the way of 3 or greater independent (unrelated) methods. NOVA parametric tests, with a couple of comparisons. Garcia et al. [4] proposed a mixed parametric/nonparametric process for evaluating evolutionary algorithms' convergence in a solitary criterion framework. The observed data are tested by the parametric ANOVA test.

Spearman rank correlation coefficient helps to decide the degree of association/correlation (including positive or negative direction of a relationship) amongst ranks attained via way of means of extraordinary MCDM strategies and extraordinary decision-makers and extraordinary situations for a given set of alternatives. Additive Ranking, Multiplicative Ranking are extensively utilized to decide the degree of association/correlation amongst strategies.

Finally, the Least Square Additive Regression method and Least Square Regression Multiplicative method are used to calculate the NAAC score.

III. PROPOSED METHODOLOGY

The experiment is constructed on Criteria 2 and Criteria 3 (recognized by NAAC), considering ten renowned Engineering Colleges. A preliminary literature survey is carried out to choose the criteria, and sub-criteria from NAAC Assessment System. 10 Engineering Colleges were examined and randomly nominated for the present study. Now names of 10 Colleges, Criteria 2 and Criteria 3 (recognized by NAAC) are described below:

Names of Colleges

Col-1:Dr. B.C. Roy Engineering College

Col-2:Alphonsa College

Col-3:KCG College

Col-4:Kavikulguru Institute of Technology and Science

Col-5:Sanghvi College of Engineering

Col-6:Walchand Institute of Technology

Col-7:Swami Ramanand Teerth Mahavidyalaya

Col-8:Dravidian University

Col-9:Guru Nanak Institute of Technology

Col-10:Netaji Subhash Engineering College Criteria 2 - Education-training and Assessment

C-1 Student registration percentage (average of last five years)

NATIONAL CONFERENCE ON RECENT TRENDS IN 10T, MACHINE LEARNING, ARTIFICIAL INTELLIGENCE AND ITS APPLICATIONS(NCRIMA 2021)

C-2	Percentage of seats for reserved categories (last five years)
C-3	Organizing special Programmes for modern novices and gradual novices
C-4	Student teacher ratio (Full time)
C-5	Problem-solving methodologies to enhance studying experiences
C-6	Using ICT for powerful coaching- studying process
C-7	Mentor student ratio
C-8	Full time teachers (average percentage)
C-9	Full time teachers with Ph.D./ D.M./M.Ch./D.N.B Super speciality/ D.Sc /D.Litt (average percentage)
C-10	Teaching experience of full-time teachers (average percentage)
C-11	Internal assessment
C-12	Internal/external examination related assessment
C-13	Course outcomes
C-14	Attainment of programme
C-15	Passing percentage of Students (last five years)
C-16	Review of Online teaching-learning process

<u>Criteria 3 – Revolutions, Investigation, and</u> <u>Extension</u>

C-1	Governmental and non- governmental agencies Grants
C-2	Recognizing as research guides (percentage of teachers)
C-3	Explore projects (percentage of departments)last five years
C-4	Ecosystem for innovations
C-5	Number of workshops/seminars (last five years)
C-6	Ph. Ds registered under per eligible teacher (last five years)
C-7	Publication research papers per teachers notified on the UGC (last five years)
C-8	Publication of books and chapters in national/ international conference proceedings per teacher (last five years)
C-9	Extension activities (last five years)

C-10	Receiving awards and extension activities from government/ government- recognized bodies (last five years)
C-11	NSS/ NCC/ Red Cross/ YRC etc. events (last five years)
C-12	Participation of students in extension activities (last five years)

Considering the above criteria and sub-criteria the data of 10 Engineering Colleges are shown in Table 1 and Table 2.

A. PROPOSED FLOWCHART

FIGURE 1. Steps of the proposed methodology

B. PROPOSED ALGORITHM

In this investigation, the proposed algorithm is given below:

STEP	Calculate the normalized pay-off matrix.
STEP 2	Calculate Weighted Normalized pay-off matrix.

NATIONAL CONFERENCE ON RECENT TRENDS IN 10T, MACHINE LEARNING, ARTIFICIAL INTELLIGENCE AND ITS APPLICATIONS(NCRIMA 2021)

LEVEL 1: MCDM APPROACHES

WSM:	
STEP 2.1.1	Establish final value datasheet.
	ENTROPY:
STEP 2.2.1	Calculate Entropy value.
	TOPSIS:
STEP 2.3.1	TOPSIS begins with a decision matrix having 16 attributes and 10 alternatives.
STEP 2.3.2	Determine the PIS and NIS as for each criterion: $A^* = \left\{ v_1^*, v_2^*, \dots, v_n^* \right\}$
	where v_n^* gives the maximum value of n th criteria. $A^- = \{v_1^-, v_2^-, \dots, v_n^-\}$
	where v_n^- gives the minimum value of n th criteria.
STEP 2.3.3	Calculate the distance of individually alternative from PIS and NIS and relative closeness to the ideal solution. $d_i^* = \sqrt{\sum_{j=1}^n (v_{ij} - v_j^*)^2} i = 1,2,3,,J$
	$d_i^- = \sqrt{\sum_{j=1}^n (v_{ij} - v_j^-)^2} i = 1, 2, 3, \dots, J$ where there are J alternatives and n
	criteria. $CC_i = \frac{d_i^-}{d_i^* + d_i^-}$ i = 1,2,3,, J
VIKOR	

STEP 2.4.1	Calculate R, S and Q.
	$Q_i = \vartheta \left[\frac{S_i - S^*}{S^ S^*} \right] + (1)$ $- \vartheta \left[\frac{R_i - R^*}{R^ R^*} \right]$
	where, Q_i represents the <i>i</i> -th VIKOR value, $i = 1, 2, 3 \dots m$; $S^* = Min(S_i); S^- = Max(S_i); R^*$ $= Min(R_i); R^-$ $= Max(R_i)$
	and ϑ is the weight of the maximum group utility (usually it is to be set to 0.5).
STEP 2.4.2	The alternative having a minimum VIKOR value is determined to be the finest solution.

STEP 3	Establish final Criteria 2 and Criteria 3 datasheets w.r.to 10 colleges according to 4 MCDM techniques.
STEP 4	Construct Ranking Matrix corresponding Criteria 2 and Criteria 3.

LEVEL 2: ONE WAY ANOVA TESTING

STEP 4.1.1	Normalize the raw score.
STEP 4.1.2	Summing the square of the raw score for each attribute.
STEP 4.1.3	Normalize above values for each attribute.
STEP 4.1.4	Divide the normalized sum by degree of freedom (no. of alternatives -1) to get the contribution of each attribute.
STEP 4.1.5	Checked and Passed (Fig 4 and Fig 5)

LEVEL 3: GROUP DECISION MAKING

STEP 4.2.1	Calculate Spearman Correlation Co- efficient matrix
STEP 4.2.2	Find relative importance among the 4 methods. $6\sum_{n=1}^{n} d_{n}^{2}$
	$\ell = 1 - \frac{a=1}{n^3 - n}$ Where d_a = difference between ranks
	U_a and V_a achieved by the same
	$n =$ number of alternatives and $-1 \le \ell \le 1$.
STEP 4.2.3	Calculate Additive and Multiplicative ranking.

LEVEL 4 : LEAST SQUARE REGRESSION

STEP	Apply Least Square Additive and
5	Multiplicative Regression Method.
STEP 6	Calculate NAAC Score of Engineering College w.r.to Criteria 2 and Criteria 3 both.

IV. RESULTS AND ANALYSIS

- In Level 1, after using MCDM procedures WSM, ENTROPY, TOPSIS, and VIKOR, we got the final datasheet of 10 Engineering Colleges according to Criteria 2 and Criteria 3. Also, we prepare a ranking structure of colleges w.r.to WSM, ENTROPY, TOPSIS and VIKOR under Criteria 2 and Criteria 3.In Level 2, we've checked if there any statistically considerable variations among the four techniques through applying ANOVA. Our checking is passed.
- In Level 3, we have applied Spearman Group Decision, Additive, and Multiplicative ranking to check relative importance among 4 methods, shown in Table 6 (Criteria 2 & Criteria 3). If we examine the information of table (stated earlier) with Table 7 (Characteristics of Coefficient ℓ), it is clear that under Criteria 2 and Criteria 3, the relationship among 4 methods either marked or very strong which is shown in Table 8. That implies

WSM, ENTROPY, TOPSIS, and VIKOR are strongly acceptable MCDM techniques for this study.

FIGURE 2. Ranking matrix chart under

Criteria 2

FIGURE 3. Ranking matrix chart under Criteria 3

- In Level 4, we have used Least Square Additive and Multiplicative Regression Method to evaluate the individual score w.r.to Criteria 2 and Criteria 3 respectively (Table 9 and Table 10).
- Now at the end of Level 4, finally we estimate **NAAC Score** w.r.to two Criteria together and their weights are given in Table 11.
- According to NAAC Grading System (Table 12), the letter grade of Engineering College is B++ and the said College is NAAC accredited.

V. CONCLUSION

Modern universities present their students with various programs designed to prepare them for different economic sectors. Universities encourage lifelong learning; they offer opportunities to connect and attract professionals into training and technical development. When our educational institutions have anticipated achieving as decent as their worldwide associates, substantial scientific revolutions have to be implemented. Traditional methods for transporting higher education have become less encouraging to the vast number of students. In these scenarios, HEIs (Higher Education Institutions) are eager to enrich their teaching-learning system and quality-related research education system, etc., through continuous improvement programs. For quality evaluation, promotion and nourishment, NAAC acts a dynamic role.

In our proposed study, we have predicted the NAAC rating in step with the NAAC Grading System to collaborate with MCDM Techniques and Statistical Methodologies. It presents an excellent preference to the Engineering Colleges/Institutions to approximate their grade before the declaration of the result of the NAAC committee. According to their estimated value, the authorities can reform their ongoing policies of Assessment. With the assistance of our mathematical model Engineering Colleges/Institutions can increase their goodwill and maintain the tradition.

REFERENCES

- [1] Pin-Chang Chen, "A Fuzzy Multiple Criteria Decision Making Model in Employee Recruitment", IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, pp:113-117, July 2009.
- [2] P. Kousalya, V. Ravindranath, and K. Vizayakumar, "Student Absenteeism in Engineering Colleges: Evaluation of Alternatives Using AHP", Journal of Applied Mathematics & Decision Sciences, Vol. 2006, Article ID 58232, Pages 1–26.
- [3] C.L. Hwang, K. Yoon, "Multiple Attribute Decision Making Methods and Applications", Springer, Berlin Heidelberg, 1981.
- [4] S. Garcia, D. Molina, M. Lozano, and F. Herrera, "A studyon the use of nonparametric tests for analyzing theevolutionary algorithms' behavior: A case study on theCEC'2005 special session on real parameter optimization," J. Heuristics, vol. 15, no. 6, pp. 617–644, 2008.

- [5] K.S. Raju, and D. Nagesh Kumar, Multi-criterion Decision-Making in Irrigation Planning, Agricultural Systems, 62(2), pp. 117- 129 (1999).
- [6] G. Woodbury, Introduction to Statistics, Thomson Learning, USA (2002).
- [7] P.H. Liu and C.C. Wei A Group Decision-Making Methodfor Appraising the Performance of Organizations, International Journal of theComputer, the Internet and Management, 8 (2), pp. 39-49 (2000).
- [8] Sukarna Dey and Dipendra Nath Ghosh "Non-Teaching StaffPerformance Analysis Using Multi Criteria Group Decision Making Approach" International Journal ofEducation and Learning Vol.4, No.2 (2015), pp.35-50.
- [9]
- [10] Pabitra Kumar Dey, Dipendra Nath Ghosh, Abhoy ChandMondal "Modified Group Decision Algorithmfor Performance Appraisal of Indian Premier League Cricketers" WSEAS TRANSACTIONS on INFORMATION SCIENCEand APPLICATIONS, Issue 10, Volume 10, October 2013.
- [11] Pabitra Kumar Dey, Dipendra Nath Ghosh, Abhoy Chand Mondal "IPL Team Performance Analysis: A Multi-CriteriaGroup Decision Approach in Fuzzy Environment", I.J. Information Technology and Computer Science, 2015, 08, 8-15.
- [12] J. Ch. Pomerol and S. B. Romero, "Multicriterion Decision in Management: Principles and Practice", Kluwer Academic, Netherlands, (2000).
- [13] NAAC, 2013, Manual for Universities, by NAAC, Bangalore, 23/01/2013. Available in www.naac.ac.in.
- [14] W. J. Connover, Practical Nonparametric Statistics, 3rd ed.New York: Wiley, 1999.
- [15] Opricovic S and Tzeng G-H, (2007), "Extended VIKOR Method in Comparison with Outranking Methods", European Journal of Operations Research, Vol. 178, p 514-529.
- [16] www.naac.gov.in.

Sukarna	Dey	Μ	Mondal			
	(D.O.B	3.:7 th Oct	tober,			
1985) is	currentl	y Ass	sistant			
Professorin			the			
Department	of Math	ematics	s of			
		Dr.B.0	C.Roy			
Engineering	College,D	urgapur	,West			
Bengal,			India.			
Sc (Math	ematics)	from	the			

Sheotained B.Sc (Mathematics) from University of Burdwan, India in the year of

2007

and M.Sc in Applied Mathematicsfrom the same university in the year 2009. Shehas over 05years of teaching experience and 01 year of research experience.

Dr. Dipendra Nath Ghosh (**D.O.B.:1stApril, 1976**) is currently Controller of Examinations, Kazi Nazrul University, Asansol, West Bengal. He got his Masters in Mathematics from the University of Burdwan in the in the year 1999. He obtained his M.C.A. degree from the same university in the year 2003. His

Ph.D. award from the Department of Computer Science, the University of Burdwan, Burdwan, India in the year 2008. He has altogether nine years of teaching and six years of research experience. He has fifteen publications in different reputed journals. His areas of research interest are Time Series Analysis, Fuzzy Logic and Decision Theory.

Dr. Pabitra Kumar Dey (D.O.B.:10th December, 1978) is currently

working as an Assistant Professor and Head of the department of Computer Applications, Dr. B.C.Roy Engineering College, Durgapur-713206, W.B., India. He obtained his MCA degree from NIT,

Durgapur, WB in 2004 and M.Tech.(CST) from M.A.K.A.U.T. (previously known as W.B.U.T.) in 2011. He was awarded Ph.D. in Computer Science from Burdwan University in 2018. He has about more than of 16 years of Teaching Experience and 12 years of Research Experience. He published more than 20 research papers in reputed international and national journal with SCI and Scopus indexed and in the proceedings of IEEE conference, National and International Conferences. He also reviewed more than 10 papers in reputed journal and conference. The broad area of his research interest is in "Soft Computing, Multi Criteria Analysis, Decision Theory, Machine Learning, Expert System, Data Science etc.

APPENDIX

TABLE 1 DATASHEET OF 10 COLLEGES CONSIDERING CRITERIA 2 (RENOGNIZED BY NAAC)

Weight (330)	10	10	20	20	20	20	10	30	20	30	20	30	20	10	10	50
Criteria / College	C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8	C-9	C-10	C-11	C-12	C-13	C-14	C-15	C-16
Col-1	77	23.66	3	17.51	6	16	21.64	95.86	27.6	9.7	8	8	4	2	87.15	3.21
Col-2	90.4	71.42	3	21.4	7	72.73	22.15	100	31.1	9.88	2	4	1	2	87.18	3.41
Col-3	71.7	100	3	10.98	2	100	10.98	102.8	17	11.84	9	5	2	2	97.24	3.45
Col-4	85	100	3	15.13	15	75.86	15.13	84.38	10.7	10.38	6	5	5	2	89.76	3.45
Col-5	98.1	93.73	2	20.24	3	100	23.64	94.84	16.3	12.11	2	3	3	3	98.74	3.27
Col-6	82.4	50.94	3	16.21	4	92.41	19.7	100	12.2	12.02	3	2	3	4	96.78	3.49
Col-7	50.5	76.02	2	25.37	1	55.26	43.82	92.5	55.1	4.89	1	1	1	1	56	3.41
Col-8	2.96	99	3	9.8	3	39.83	15.84	76.24	85	9.78	4	0.6	2	2	78.9	3.35
Col-9	91.1	89.64	8	16.13	4	100	16.13	100	14.6	8.16	9	5	10	1	84.79	3.35
Col-10	94.1	100	4	301.18	3	84.85	93.5	86.11	21.5	10.89	4	2	8	2	95.79	3.28

TABLE 2 DATASHEET OF 10 COLLEGES CONSIDERING CRITERIA 3 (RENOGNIZED BY NAAC)

Weight (120)	5	5	5	5	5	5	10	10	10	10	15	15	10	10
Criteria / College	C-1	C-2	C-3	C-4	C-5	C-6	C -7	C-8	C-9	C-10	C-11	C-12	C-13	C-14
Col-1	0	6.36	0	0.875	52	1.45	0.89	1.24	0.428	13	49	40.92	191	7
Col-2	27.08	11.36	1.32	0.625	8	0.1	0.16	1.61	0.571	12	219	46.12	119	23
Col-3	355.14	16.26	1.73	0.25	370	0.73	1.91	2.11	1	113	128	85.22	1007	194
Col-4	55.59	4.83	0.03	1	67	0.57	0.36	1.08	0.428	10	65	56.41	77	12
Col-5	8.02	4.79	1.11	9	85	0.71	2.27	2.12	7	92	95	29.38	508	13
Col-6	14.63	5.06	0.15	2	84	2.38	3.16	0.8	3	42	51	93.46	3270	59
Col-7	1.25	13.16	0.01	2	2	1.6	0.09	1.05	4	10	31	20.95	15	7
Col-8	547.71	0	0.6	2	0	1.39	1.37	1.21	3	0	5	46.39	2.6	16
Col-9	44.49	2.75	0.17	7	51	1.2	2.8	0.76	3	3.1	63	82.8	116	39
Col-10	46.31	4.04	0.08	3	14	0.38	0.85	0.84	6	8	25	5.67	93	6

TABLE 3

DATASHEET OF 10 COLLEGES ACCORDING TO 4 MCDM TECHNIQUES (CRITERIA 2 & CRITERIA 3)

Method/Colleges		CRITE	RIA 2		CRITERIA 3					
Method/Coneges	WSM	ENTROPY	TOPSIS	VIKOR	WSM	ENTROPY	TOPSIS	VIKOR		
COL-1	2.7918	2.8776	2.7951	2.8314	0.7020	0.8376	0.7776	0.7044		
COL-2	3.3660	3.4056	3.5376	3.3957	1.1832	1.1076	1.3620	1.5204		
COL-3	4.2108	3.8544	4.0722	4.1646	2.4888	2.2140	2.0340	1.9644		
COL-4	3.8709	3.7851	3.8445	3.9831	0.6708	0.7836	0.8640	0.8736		
COL-5	2.9898	3.1680	2.8809	2.9370	1.8228	1.7556	1.5816	1.4412		
COL-6	3.8346	3.5805	3.8841	4.2867	1.7748	1.6416	1.6512	1.7652		
COL-7	1.9932	2.0031	2.6466	2.6631	0.6516	0.7740	0.7224	0.6432		
COL-8	2.2506	2.4156	2.5476	2.3199	0.8976	0.9876	0.9360	0.8496		
COL-9	4.1217	4.0260	3.7521	3.3990	1.2516	1.2360	1.3368	1.4232		
COL-10	3.5706	3.8808	3.0360	3.0195	0.5544	0.6624	0.7344	0.8112		

		CRITE	RIA 2	CRITERIA 3						
Method/Colleges	WSM	ENTROPY	TOPSIS	VIKOR	WSM	ENTROPY	TOPSIS	VIKOR		
COL-1	8	8	8	8	7	7	8	9		
COL-2	6	6	5	5	5	5	4	3		
COL-3	1	3	1	2	1	1	1	1		
COL-4	3	4	3	3	8	8	7	6		
COL-5	7	7	7	7	2	2	3	4		
COL-6	4	5	2	1	3	3	2	2		
COL-7	10	10	9	9	9	9	10	10		
COL-8	9	9	10	10	6	6	6	7		
COL-9	2	1	4	4	4	4	5	5		
COL-10	5	2	6	6	10	10	9	8		

TABLE 4RANKING MATRIX (CRITERIA 2 & CRITERIA 3)

TABLE 5 STEPS OF ANOVA (CRITERIA 2 & CRITERIA 3) ANOVA: Single Factor (CRITERIA 2) ANOVA: Single Factor (CRITERIA 3)

	SUMM	ARY				SUMMARY							
Groups	Count	Sum	Average	Variance			Groups	Count	Sum	Average	Variance		
Column 1	10	33	3.3	0.595279			Column 1	10	11.9976	1.19976	0.413252		
Column 2	10	32.9967	3.29967	0.461875			Column 2	10	12	1.2	0.262451		
Column 3	10	32.9967	3.29967	0.332011			Column 3	10	12	1.2	0.210624		
Column 4	10	33	3.3	0.444774			Column 4	10	11.9964	1.19964	0.227837		
		ANC	AVO				ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	1.09E-06	3	3.63E-07	7.92E-07	1	2.866266	Between Groups	9.72E-07	3	3.24E-07	1.16E-06	1	2.866266
Within Groups	16.50545	36	0.458485				Within Groups	10.02748	36	0.278541			
Total	16.50545	39]				Total	10.02748	39				

TABLE 6

RELATIVE IMPORTANCE AMONG 4 METHODS(CRITERIA 2 & CRITERIA 3)

	CRITERIA 2											
Methods	WSM	ENTROPY	TOPSIS	VIKOR	SUM	No of considered colleges	AVG	RANK				
WSM	1.0000	0.9030	0.9273	0.8909	3.721	10	0.372	1				
ENTROPY	0.9030	1.0000	0.7455	0.7212	3.370	10	0.337	4				
TOPSIS	0.9273	0.7455	1.0000	0.9879	3.661	10	0.366	2				
VIKOR	0.8909	0.7212	0.9879	1.0000	3.600	10	0.360	3				
			CR	ITERIA	3							
WSM	1.0000	1.0000	0.9515	0.8545	3.806	10	0.381	2				
ENTROPY	1.0000	1.0000	0.9515	0.8545	3.806	10	0.381	2				
TOPSIS	0.9515	0.9515	1.0000	0.9636	3.867	10	0.387	1				
VIKOR	0.8545	0.8545	0.9636	1.0000	3.673	10	0.367	4				

TABLE 7 CHARACTERISTICS OF Co-EFFICIENT ℓ

Correlation	Nature of	Remark
0.9 - 1.0	Very High	Very Strong
0.7 – 0.9	High	Marked
0.4 - 0.7	Moderate	Substantial
0.2 - 0.4	Low	Definite
< 0.2	Slight	Small
	TABLE 8	

Relation between MCDM techniques	Correlation	Nature of relation (Criteria 2)	Correlation	Nature of relation (Criteria 3)
WSM and ENTROPY	0.9030	very strong	1.0000	very strong
WSM and TOPSIS	0.9273	very strong	0.9515	very strong
WSM and VIKOR	0.8909	Marked	0.8545	Marked
ENTROPY and TOPSIS	0.7455	Marked	0.9515	very strong
ENTROPY and VIKOR	0.7212	Marked	0.8545	Marked
TOPSIS and VIKOR	0.9879	very strong	0.9636	very strong
	,	TABLE 9		

NATURE OF RELATIONSHIP AMONG 4 MCDM TECHNIQUES

INDIVIDUAL SCORE W.R.TO CRITERIA 2

		Add	itive			Multip	licative	
	Х	Y=mx+b	X^2	XY	х	Y=mx+b	X^2	XY
С	1.0128	???			1.0124	???		
R	1.2294	3.17	1.5114	3.8972	1.2282	3.17	1.5085	3.8934
T	1.4639	3.4	2.1431	4.9773	1.4604	3.4	2.1327	4.9653
Ē	1.3893	2.75	1.9301	3.8205	1.3876	2.75	1.9255	3.816
R	1.0730	3.38	1.1513	3.6267	1.0727	3.38	1.1508	3.6259
I	1.3996	3.31	1.9589	4.6327	1.3941	3.31	1.9436	4.6146
А	0.8361	2.71	0.699	2.2657	0.8258	2.71	0.6819	2.2379
2	0.8548	2.94	0.7307	2.5131	0.8536	2.94	0.7287	2.5096
	1.3719	3.38	1.8821	4.637	1.3675	3.38	1.8701	4.6221
	1.2087	2.91	1.4609	3.5173	1.2037	2.91	1.4488	3.5027
SUM	10.6307	25.0400	12.0066	30.3702	10.7936	27.9500	13.3906	33.7875
m	2.4637				0.5994			
b	0				2.3867			
Y_COL 1	2.9920				2.9935	1		

TABLE 10INDIVIDUAL SCORE W.R.TO CRITERIA 3

	Additive				Multiplicative			
	Х	Y=mx+b	X^2	XY	Х	Y=mx+b	X^2	XY
С	0.2863	???			0.2853	???		
R	0.4892	3.24	0.2393	1.5851	0.4861	3.24	0.2363	1.5749
	0.8245	2.62	0.6797	2.1601	0.8204	2.62	0.673	2.1494
Ē	0.3021	3	0.0913	0.9064	0.3006	3	0.0903	0.9017
R	0.6257	3.02	0.3915	1.8896	0.6224	3.02	0.3874	1.8796
I	0.6468	3.37	0.4183	2.1796	0.6465	3.37	0.418	2.1787
A	0.2645	2.82	0.07	0.746	0.2635	2.82	0.0694	0.7431
3	0.3479	1.35	0.121	0.4696	0.3470	1.35	0.1204	0.4685
1	0.4966	2.48	0.2466	1.2316	0.4960	2.48	0.2461	1.2302
1	0.2613	1.43	0.0683	0.3736	0.2590	1.43	0.0671	0.3704
SUM	4.2586	23.3300	2.3260	11.5416	4.2415	23.3300	2.3080	11.4965
m	1.6159				1.6229			
b	1.8276				1.8274			
Y_COL 1	2.2903				2.2904			

TABLE 11
FINAL NAAC SCORE

Weight	3.3	1.2	Final NAAC
Criteria	Criteria 2	Criteria 3	Score
Grade	2.99275	2.29035	2.81

TABLE 12NAAC GRADING SYSTEM

Range of Institutional Cumulative Grade Point Average (CGPA)	Letter Grade	Status
3.51-4.00	A++	Accredited
3.26-3.50	A+	Accredited
3.01-3.25	Α	Accredited
2.76-3.00	B++	Accredited
2.51-2.75	B+	Accredited
2.01-2.50	В	Accredited
1.51-2.00	С	Accredited
≤ 1.50	D	Not Accredited