International Conference on Advanced Communication Control & Computing Technology (ICACCCT)

28 - 30 June 2022

SIMATS SCHOOL OF ENGINEERING

Approved By AICTE | IET-UK Accreditation

Saveetha Institute of Medical and Technical Sciences, Saveetha University, Saveetha Nagar, Thandalam, Chennai - 602105.

www.icaccct.com

www.saveethaengineering.com

TABLE OF CONTENTS

S.NO	PAPER ID	TITLE OF PAPER	PAGE NO.
1	ID-9987	AN IOT BASED LOW COST INTELLIGENT IRRIGATION SYSTEM USING DEEP LEARNING MODEL	1
2	ID-0350	NUMERICAL MODELING OF CNTMOSFET	2
3	ID-4209	SOLAR STREET LIGHT CONTROL SYSTEM USING ZIGBEE NETWORK IN ALL CLIMATIC CONDITIONS	3
4	ID-6411	A PROTOTYPE DEVELOPMENT OF PSW ENERGY SYSTEM TO POWER-UP THE BATTERY OF AN ELECTRIC VEHICLE	4
5	ID-3788	COVIDXDETECTOR: DEEP LEARNING BASED CHEST ABNORMALITY DETECTION FOR COVID RADIOGRAPHY DIAGNOSIS	5
6	ID-9408	MALIGNANT TUMOR IDENTIFICATION WITH CUSTOM ACTIVATED DEEP CNN ARCHITECTURE: TUMORNET	6
7	ID-7864	MONITORING NON-NUTRIENT LEVEL IN PACKAGED FOOD THROUGH DEEP LEARNING	7
8	ID-4835	IOT BASED SMART HELMET FOR IMPROVING SAFETY IN MINING INDUSTRY	8
9	ID-9069	SMART LIVESTOCK MONITORING USING IOT	9
10	ID-8634	PERFORMANCE ENHANCEMENT OF A PHOTOVOLTAIC CELL USING SEEBECK GENERATOR	10
11	ID-3908	LIFI BASED WIRELESS COMMUNICATION THROUGH VLC FOR NAVIGATION SYSTEMS	11
12	ID-7541	SECURE DATA STORAGE USING BLOCK CHAIN AND ACCESS BASED CONTROL	12
13	ID-8280	PRIVACY CHAIN: BLOCKCHAIN-BASED ACCESS CONTROL FRAMEWORK IN THE CLOUD WITH PRIVACY PROTECTION	13
14	ID-9462	PERIODIC VARIATION OF ECG, EEG AND RESPIRATION SIGNALS IN DIFFERENT PHYSIOLOGICAL STATES OF SLEEP APNEA SUBJECTS	14
15	ID-2750	SMART HEALTH MONITORING SYSTEM FOR ASTHMA USING IOT	15
16	ID-1631	FACE RECOGNITION BASED ONLINE TEST PROCTORING PLATFORM	16

PERIODIC VARIATION OF ECG, EEG AND RESPIRATION SIGNALS IN DIFFERENT PHYSIOLOGICAL STATES OF SLEEP APNEA SUBJECTS Bijoy Laxmi Koley

Assistant Professor , Department of Electrical Engineering , Dr. B.C ROY Engineering College , Durgapur <u>Bijoylaxmi.koley@bcrec.ac.in</u>

ABSTRACT

In the present work, a novel technique was used to identify Sleep (SL), Wake (WA), Apnea (AP), Hypopnea (HY) and Onset-of-Apnea (OA) stages for Obstructive Sleep Apnea (OSA) subjects from full night monitoring of polysomnography (PSG) at sleep laboratories. In this methodology, present stages of an OSA subject during sleep can be identified using only single cycle of respiration signal, ECG signal and EEG signal during the respiration interval. A trajectory was formed by assigning these three signals into three orthogonal axes where the spatial distribution of the trajectory was found to be varied with the different stages of OSA subjects. The discriminating information regarding different stages was extracted from the spatial distribution by dividing the whole hyperspace into equal sized subspaces and the persistence of the trajectory in a particular subspace was considered as feature. Dimension reduction techniques Factor Analysis (FA) were investigated where three Factor Components (FCs) were identified. Our approach will help to understand how the integrated system behaves during different physiological functions. Further, it could provide a potential direction to understand the development of sleep related disorders including sleep apnea.

Keywords: ECG, EEG, Factor Analysis, Obstructive Sleep Apnea.