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Abstract: This paper presents the optimal modeling of Power Law Filters (PLFs) with the low-
pass (LP), high-pass (HP), band-pass (BP), and band-stop (BS) responses by means of rational
approximants. The optimization is performed for three different objective functions and second-
order filter mother functions. The formulated design constraints help avoid placement of the zeros
and poles on the right-half s-plane, thus, yielding stable PLF and inverse PLF (IPLF) models. The
performances of the approximants exhibiting the fractional-step magnitude and phase responses
are evaluated using various statistical indices. At the cost of higher computational complexity,
the proposed approach achieved improved accuracy with guaranteed stability when compared to
the published literature. The four types of optimal PLFs and IPLFs with an exponent α of 0.5 are
implemented using the follow-the-leader feedback topology employing AD844AN current feedback
operational amplifiers. The experimental results demonstrate that the Total Harmonic Distortion
achieved for all the practical PLF and IPLF circuits was equal or lower than 0.21%, whereas the
Spurious-Free Dynamic Range also exceeded 57.23 and 54.72 dBc, respectively.
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1. Introduction

The theoretical concepts of fractional calculus [1–3], which generalized differ-integral
operators, have led to significant developments in circuit theory, signal processing, control
theory, bio-impedance modeling, etc. [4–8]. Fractional-order (FO) filters are considered as
the generalization of the traditional filters [9]. This is due to the ability of the FO filters
to achieve any roll-off rate [10]; in contrast, an integer-order filter can only achieve a roll-
off at −20 log10 n decibels/decade (dB/dec), where n is an integer [11]. FO analog filter
transfer functions are generally realized from the integer-order filters by substitution of
the Laplacian operator s with the non-integer Laplacian operator sα, where α ∈ (0, 1). The
frequency–domain transfer function of sα is given by (1):

(jω)α = ωα
[
cos
(απ

2

)
+ j sin

(απ

2

)]
, (1)

where j =
√
−1 and ω is the angular frequency in radians per second (rad/s).

Since sα is an irrational function, various rational approximations based on series
truncation, frequency–domain curve-fitting, pole-zero placement, optimization techniques,
etc., have been reported [12–15]. The impedance characteristics of the operator sα may
be practically realized using the FO elements (also known as the fractance devices or the
constant phase elements) [16–18]. Due to the unavailability of the commercial FO device,
their behavior may be emulated using the passive and active circuits [19–22].

Recent works have demonstrated the generalization of the Butterworth [23], Cheby-
shev [24], inverse Chebyshev [25], and elliptic filters [26] to the FO domain. Another design
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