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Abstract---Machine learning and deep learning are widely utilized and 

highly effective in attack classifiers. Little research has been 
undertaken on detecting and protecting cross-site scripting, leaving 

artificial intelligence systems susceptible to adversarial assaults (XSS). 

It is crucial to develop a mechanism for increasing the algorithm's 

resilience to assault. This study intends to utilize reinforcement 

learning to enhance XSS detection and adversarial combat attacks. 

Before mining the detection model's hostile inputs, the model's 
information is extracted using a reinforcement learning framework. 

Second, the detection technique is simultaneously trained using an 

adversarial strategy. Every cycle, the classification method is educated 

with freshly discovered harmful data. The proposed XSS model 

effectively mines destructive inputs missed by either black-box or 
white-box detection systems during the experimental phase. It is 

possible to train assault and detection models to enhance their 

capacity to protect themselves, leading to a lower rate of escape due to 

this training. 

 

Keywords---cyber security, reinforcement learning, machine learning, 
XSS. 
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Introduction  

 

Web application firewalls manage HTTP traffic (WAF)[1][2]. Two of the most 

prevalent cyber attacks are cross-site scripting (XSS) and SQL injection (SQLI). 

XSS vulnerabilities were examined. Even on sites that appear to be safe, 
JavaScript may include potentially harmful code. This is known as cross-site 

scripting (XSS). In an XSS attack, one user passes malicious code to another. 

Code in a client-side script is used in cross-site scripting attacks[3][4]. Many 

online programs accept user input without verifying or encrypting it, leaving them 

vulnerable to attack. Unaware users may fall victim to a malicious script 

distributed using cross-site scripting (XSS). Because the browser cannot 
determine if the Script should be trusted, it runs it nonetheless, which may be 

dangerous. The malicious script may be able to access cookies, login information, 

or other sensitive data since the browser believes the feature came from a 

trustworthy source. Because the browser thinks the capability is dependable. 

 
The Internet and online application services have exacerbated network 

security concerns. Cyberattacks destroy lives. SQL injection, file upload, XSS, 

and CSR are instances of online attacks. Cybercriminals want sensitive 

information or website administration. SQL injection, file upload, and other 

online vulnerabilities are prevalent. These are susceptible to XSS in 

browsers[5]. Consequently, the attacks pose a risk to user privacy and server 
security, exposing information and executing orders. Multiple research groups 

have integrated machine learning and deep learning into XSS detection. The 

evolution of attack detection technology has included adversarial AI-based 

assault strategies. An attacker evades detection models by creating aggressive 

and perplexing countermeasure samples to portray malevolent activities as 
innocuous. According to Generative Adversarial Networks, humans can still 

discern if a panda image is actual (GAN)[6]. One pixel can influence the 

classification outcome of a deep neural network (a "one-pixel assault"). The 

study of malware detection is also researched as a cyberattack.  

 

It trains its detection system using samples of malicious software. Malware may 
be identified using reinforcement learning and GAN. There is insufficient research 

on how to utilize this to enhance XSS identification. Enhance the detection 

model's resistance to assault. Figure 1  demonstrates CSC. XSS makes use of 

reinforcement learning. By classifying preventative and mitigating data as XSS 

bad samples, we may be able to enhance the detection model's defense 
capability[7]. The following is a list of four main contributions: 

 

• An XSS attack can be turned into an escape plan and the best plan 

because of the environment. Reinforcement learning is used to make 

this happen. 

• Three XSS attack evasion strategies are proposed: encoding obfuscation, 

Hypersensitive word substitutions and morphological transformations. 

• The detection model's ability to defend against adversarial assaults is 

continually improved. 
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Figure 1: Cross-Site Scripting, https://www.geeksforgeeks.org/what-is-cross-site-

scripting-xss 

 

Literature Survey 

 
Cross-site scripting and identification of vulnerabilities are crucial. Recent 

research combines these subjects. XSS detectors have been designed. Using 

their research, we enhance it.Ten machine learning techniques classify XSS 

and non-XSS attacks. The study of XSS produces attack vectors. Miscoded. 

Mohammadi developed a syntactic attack generator to assess cross-site 

scripting vulnerabilities. Researcher proposed a method for extracting XSS 
vulnerabilities using data from the most effective attack vectors. It may be 

used to build the XSS attacker library, resource library, and mutagens rule 

cat data for an attacker. Exploiting XSS vulnerabilities through attack vector 

design and automated testing is complicated by the diversity and complexity 

of Web applications. Classifying XSS receives less attention than identifying 

vulnerabilities or assaults. This study investigates how reinforcement learning 
may assist XSS in detecting attacks. 

 

Machine Learning based XSS Classificatio Approaches 

 

The Origin Policy limits the same Access to Netscape scripts. Only windows 
and documents made with JavaScript can be read and written. Insert Mozilla 

did not make any Script for Firefox, Sea Monkey, or any other browsers based 

on Mozilla. Any wrong input or Script will run if the web page is not cleaned 

up or encoded. Coding stops script tags from being opened and closed. 

OWASP's cheat sheet talks about XSS. Page integrity shows when a user gives 

false information. Tripwire checks the hash values of a website. If the value of 
the hash changes, the page is changed. Kirta and her coworkers made a 

defense against XSS on the client-side. They showed Boxes, a web proxy that 

can be controlled manually or automatically. It keeps XSS from leaking. 

Nunan et al. came up with a way to automatically group Cross-Site Scripting. 

We got information about how to classify things from URLs and websites. Web 
applications let users tell them what to do with files and databases. Shar and 

Tan say that what users type in can lead to security holes and attacks. 
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Experts think SQL injection and XSS vulnerabilities can be found through 

data mining. CFG SQL injection and XSS vulnerabilities for a critical time. 

Sensitive sinks can be put into groups using a data dependency tree and 

input cleaning techniques. An attack model for SQL injection and XSS was 

made with this feature vector. Later, testing became more efficient with the 
help of dynamic vectors and clustering[8][9]. 

 

Proposed Reinforcement Models for generation of XSS Adversarial 

Payload 

 

This section talks about how to use reinforcement learning to get the 
adversarial Sample of these black-box or white-box XSS categorizations and 

improve the detection designer's ability to protect against attacks. 

 

Feature Generation and Reward Function 

 
Preprocessing has an impact on both black-box and white-box detection. This 

collection of dangerous samples is employed by the black-box detection tool. If 

the confidence level for detecting adversarial attacks is sufficiently high, 

detrimental samples are preserved and used for future white-box detection. 

Data sets with tainted samples can disclose XSS attacks. 

 
Observation Space: Feature Encoding to byte/entropy histogram of Sample 
 

2D Byte Histograms encode XSS samples. Malware is defined by 2D histogram 

entropy mapping. Low-dimensional feature extraction based on entropy. Encoded 

are feature vectors with 256 elements. Figure 2 shows the likely alert bytes 
histogram. 
 

 
Figure 2: 2Byte Histogram of" alert ()" 

 

Action Space: Adversarial Manipulation 

 

Action space in RL is separate. RL does seven things. These different steps change 

the linguistic structure of the sample string without changing the way the XSS 

script is written (sample string). The adversarial Manipulation techniques or the 
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actions being taken by the RL algorithm the user to alter or change the XSS string 

structure are as follows: 

 

• Char To 10: Converts a random character to Base10. 
• Char To 16: Converts a random character to Base16[Hex] 

• Char To 10 Zero: Converts a random character to Base 10[Decimal] and 

then 

• Add Zero. 

• Add Comment: Adds a random string of alphanumeric characters [a-z, A-Z] 

of length 10. 
• Add Tab: Adds a random Tab[4spaces]to the String. 

• Add Zero: Adds a Zero to a random position of the String. 

• Add Enter: Adds an Enter [newline] character after a random location of the 

• String. 

 
Reward Shaping: Black box and White Testing 

 

The module combines black-box and white-box APIs to provide an intuitive 

interface. "Post" is used to submit the identified Sample to the website using 

the REST API. XSS assaults are thwarted. When a request is approved or 

denied, a response is sent. Before feeding them into a white-box model, this 
interface processes samples. The confidence of XSS detection samples is 

assigned, and their results are communicated. Black and white boxes receive 

different rewards. The black-box approach encourages exploration. The 

reward of the white-box model depends on confidence[10][11]. Table 1 shows 

Examples of adversarial Manipulation on XSS string 
 

rt = weight X Resultvalue\1000                          (1) 
 

Example[with XSS JSON Payload]: 

 
”name”:” <script>alert (’XSS Test’) </script>Bruce Banner”, 

” description”:” <script>alert (’XSS Test’) </script> 

Bruce Banner" 

} 

Expected Result  Resultvalue: 400 
 

Example [without XSS JSON Payload]: 

 

" name":" Bruce", 

" description": "Bruce" 
} 

Expected Result Resultvalue: 200 
weight is taken as 10. 

 
Table 1: Examples of adversarial Manipulation on XSS string 

 

Sampled XSS String Adversarial 

Method 

Changed String 

<h1/on Char To 10 ><h1/on 

{ 

{ 
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drag=confirm‘1‘)>Drag 

Me</h1> 

drag=confirm‘1‘)>Drag&#77;e</h1> 

<h1/on 

drag=confirm‘1‘)>Drag 

Me</h1> 

Char To 16 ><h1/on&#0x64;rag=confirm‘1‘)>Drag 

Me</h1> 

<h1/on 

drag=confirm‘1‘)>Drag 

Me</h1> 

Char To 10 

Zero 

><h1/on drag=confirm‘1‘)>Drag 

M&#000000101;</h1> 

<h1/on 
drag=confirm‘1‘)>Drag 

Me</h1> 

Add 
Comment 

><h1/o/*8888*/on 
drag=co/*8888*/nfirm‘1‘)>Drag 

Me</h1 

<h1/on 

drag=confirm‘1‘)>Drag 

Me</h1> 

Add Tab >< h1/on drag=confirm‘1‘)>Drag 

Me</ h1> 

<h1/on 

drag=confirm‘1‘)>Drag 
Me</h1> 

Add Zero ><h1/on drag=confirm‘1‘)>Drag 

Me</h1> 

<h1/on 

drag=confirm‘1‘)>Drag 

Me</h1> 

Add Enter ><h1/on drag=confirm‘1‘)>Drag 

Me</h1> 

 

Dataset 

 
At the beginning of February 2007, XSS was made. It has information about 

cross-site scripting and is the largest online archive of websites that are 

vulnerable to XSS. In this analysis, XSSed was used in attacks from the other 

side and as a source of dangerous XSS samples. Over the last ten years, 

www.xsed.com has used real attacks. By retraining from this dataset, we can 

make examples ready for the real world. 
 

Performance Metric 

 

The SR (success rate) indicates the proportion of potentially hazardous samples 

deemed harmless by the target recognition model or instrument after escape 

modification. The more significant the fraction of escape vectors, the greater the 
likelihood of weakening the adversarial attack model. 

 

SR =
Payloadevaded

Payloadevaded + Payloaddetected

 X 100                 (2) 

 

Reinforcement Learning Algorithms Evaluated 

 
Through reinforcement learning, good behavior is encouraged. A reinforcement 

learning agent can look at its surroundings, figure out what's going on, act, and 

learn from its mistakes[12][13]. With reinforcement learning, good actions are 

rewarded, and bad ones are punished. This method rewards good behavior and 

punishes bad behaviour. This tells the agent to think about what's best for the 

long run. Short-term goals can't be put off because of long-term goals. The agent 
has a happy attitude. AI that learns independently is controlled by penalties and 
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rewards (AI)[14][15]. RL challenges got better because of DQN policy gradient, 

TRPO, PPO, and evolutionary techniques (ES). Deep Q-learning methods come 

close to finding the best Q function for a state (DNNs). Policy gradients teach a 

DNN algorithm how likely it is that each state will behave differently. Open AI 
offers a simplified version of Natural Evolution Strategies that only know the 

mean. During training, ES was faster than DQN and A3C on challenging RL 

benchmark tasks, which led to better parallelization. Both techniques improve 

DNN parameters via stochastic gradient descent/ascent. DQN estimates loss 

gradient via backpropagation[16][17]. In the new system, policy gradients evaluate 

and confirm new ways of acting in a random way. 
 

Deep Q Networks 

 

In reinforcement learning, the use of function approximators has been shown 

to be very helpful. Most of the time, parameterized function approximators are 

used to show Q-functions.. Q =  {Qw | w ∈  Rp}, where p is the number of 

parameters. 

    Q(s, a): =  Q(s, a) +  α (r + γmaxa′∈AQ(s′, a′) −  Q(s, a)) (3) 

 

where α ∈ R is the learning rate, s is the state, r is the reward. The update 

the equation is thus given as: 

w ∶=  w +  α(r + γmaxa′∈AQ(s′, a′) −  Q(s, a))∇wQw(s, a).            (4) 

 

 
Figure 3: Deep Q-Network 

 

Algorithm1 Deep Q- Learning with Experience Replay  
 

Initialize replay memory D to capacity N 

Initialize action-value function Q with two random sets of weights θ, θ′ 

for episode = 1, M do 

for t = 1, T do 

Select a random action 𝑎𝑡 with probability ε 

Otherwise, select 𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠𝑡 , 𝑎;  𝜃) 
Execute action  𝑎𝑡 collect reward 𝑟𝑡+1 and observe next state 𝑠𝑡+1 
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Store the transition 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1 in D 

Sample mini-batch of transitions 𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗+1, 𝑠𝑗+1 

Set   𝑦𝑗 = 𝑟𝑗+1                if 𝑠𝑗+1 is terminal  

𝑦𝑗 = 𝑟𝑗+1 + γmaxa′𝑄(𝑠𝑗+1, 𝑎′;  𝜃′),       otherwise    

Perform a gradient descent step using targets 𝑦𝑗 with respect to the online 

parameters θ 

Every C step, set θ′ ← θ 

end for 
end for 

           

Double Dueling DQN 
 

One Q-value estimate tells the other one what to do. We can get unbiased Q-value 

forecasts for the other estimator's activities by using unbiased estimators that are 

not biased[18]. Keeping updates separate from wrong assumptions helps get rid of 

bias. DDQN maintains two Q-networks: 
 

• Online Network: 𝑄𝑤  terms 𝑄𝑤(𝑠, 𝑎) and ∇𝑤𝑄𝑤  (𝑠, 𝑎)  in update (4) 

• Target network: update target in update (4) 

 

The final update becomes: 

 

                     𝑤 ∶= 𝑤 + 𝑎 (𝑟 +  γmaxa′ϵ A𝑄𝑤−(𝑠′, 𝑎′) −  𝑄𝑤(𝑠, 𝑎))∇𝑤𝑄𝑤(𝑠, 𝑎).            (5) 

 
The target Q-network is put on hold until an online value is given using 

function approximators based on deep learning. Online Q-network updates 

look unstable. It helps people learn. Even though Double Q-learning has two 

Q-networks, neither of them is a clear online or target network. Every time an 

update is made, the network used is decided by a 50/50 chance. It's 

important to note that these networks 𝑄𝑤1and 𝑄𝑤2 play an equal role each time 

they are updated because their positions are decided stochastically with 
probability 0.5. The over-optimism of the goals in update (4) is reduced as a 

consequence. 
 

Trust Region Policy Optimization: TRPO 

 

 

TRPO changes policies to make them faster while ensuring that the new rules 
aren't too similar to the old ones. KL-Divergence, a measure of the distance 

between probability distributions, can be used to describe this constraint. Average 

policy gradients don't keep new policies close to old ones. Even small changes in 

size could affect how well an approach works. Large step sizes with plain slopes 

hurt the efficiency of sampling. When this happens, TRPO gracefully avoids it and 

steadily improves performance. 
 

• TRPO is a policy-compliant algorithm. 

• In both discrete and continuous action areas, TRPO can be applied. 

• TRPO's Spinning Up implementation allows for MPI parallelism. 
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Let πθ denote a policy with parameters θ. The theoretical TRPO update is: 

                        𝜃𝑘+1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃  & L(𝜃𝑘 , θ)                 (6) 
 Where  L(𝜃𝑘, θ) is the surrogate advantage, denoting a metric πθ  explicitly   

showing how these fares with policy  𝜋𝜃𝑘
    :  

 L(𝜃𝑘 , θ) =  𝐸𝑠,𝑎~𝜋𝜃𝑘
[

𝜋𝜃(𝑎|𝑠)

𝜋𝜃𝑘(𝑎|𝑠)
]𝐴

𝜋𝜃𝑘 (𝑠, 𝑎)              (7) 

 

𝐷‾𝐾𝐿(𝜃, ||𝜃𝑘)  is the average KL-divergence among all policies visited by the old 
network. 

 

𝐷‾𝐾𝐿(𝜃, ||𝜃𝑘) = 𝐸𝑠~𝜋𝜃𝑘
[𝐷𝐾𝐿(𝜋𝜃(. |𝑠)||𝜋𝜃𝑘

(. |𝑠))]          (8) 

 

Results 
 

For each RL method, we chose the following evaluation parameters: 

 

• Number of Epochs/Episodes: 100 

• Number of Runs per Epoch: 150 
• Learning rate α for both networks: 0.002 

• Greedy Parameter ϵ: 0.8 

• Memory Stack: 2000 

• Discount factor γ: 0.9 
 

Network Topology for Online and Target network: 

 

 
Figure 4: DQN Cumulative Reward 

Net ( 
(fc1): Linear (in features=256, out features=50, bias=True) 

(out): Linear (in features=50, out features=7, bias=True) 

) 
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Cumulative Reward Plots 

 

 

The following figures shows the cumulative rewards collected by each algorithm, 

in a total of 100 episodes. The cumulative rewards is also the success rate SR of 
evasion from the XSS detection method. 

The cumulative reward of DQN is shown in Fig.4 

The rewards for DQN are clipped at 80. After episode 50, the rewards have 

saturated. The Success rate Metric SR is thus: 

 

𝑆𝑅 = 𝑅𝑒𝑠𝑢𝑙𝑡𝑖𝑡𝑒𝑚/(𝑁𝑇𝑜𝑡𝑎𝑙𝑃𝑎𝑦𝑙𝑜𝑎𝑑 ∗ 100 = 49.5%)   (9) 

 

The cumulative reward of DDQN is shown in Figure 5 . 

 

 
Figure 5: DDQN Cumulative Reward 

 

The rewards for DDQN are clipped at 120. After episode 65, the rewards have 

saturated. The Success rate Metric SR is thus: 

 
𝑆𝑅 = 𝑅𝑒𝑠𝑢𝑙𝑡𝑖𝑡𝑒𝑚/(𝑁𝑇𝑜𝑡𝑎𝑙𝑃𝑎𝑦𝑙𝑜𝑎𝑑 ∗ 100 = 60.75%)   (10) 

 

The cumulative reward of TRPO is shown in Fig.6. 
The rewards for TRPO is clipped at 150. After episode 65, the rewards have 

saturated. The Success rate Metric SR is thus:  

 

𝑆𝑅 = 𝑅𝑒𝑠𝑢𝑙𝑡𝑖𝑡𝑒𝑚/(𝑁𝑇𝑜𝑡𝑎𝑙𝑃𝑎𝑦𝑙𝑜𝑎𝑑 ∗ 100 = 85.7%)   (11) 

 

Comparative analysis of the RL algorithms on the basis of their success rate 

to evade the XSS detector is shown Fig.7. TRPO has the fastest convergence 

followed by SSQN and then by DQN. However, the success rate of DQN is 
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below 50%, which is more like coin toss. Therefore, it would be safe to say 

that, DDQn and TRPo would be the better RL method for XSS detection 

evasion with Adversarial Manipulation of XSS scripts. Table.3.1 shows the 

Test Sample, the actions taken and Manipulated Sample which resulted in 
the model to evade the XSS detection. These are the evasive obfuscated 

scripts which, is then added to the training list after every 10 episodes. 

 

 
Figure 6: TRPO Cumulative Reward 

 

 

 
Figure 7: Success Rates of different models 
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Table 2: Adversarial Manipulation on XSS string, examples from Test Setwith the 

actions taken 

Test Sample/Obfuscated Sample/Action 

0 ORIGINAL: foo<script>alert (1) </script> 
OBFUSCATED: foo<sc/*8888*/ript>alert (1) 

</sc/*8888*/ript>ACTION: add Comment 

 

1 ORIGINAL: foo<sc/*8888*/ript>alert (1) </sc/*8888*/ript> 
OBFUSCATED: foo<sc/*8888*//*8888*/ript>alert (1) 

</sc/*8888*//*8888*/ript>ACTION: add Comment 

 
2 ORIGINAL: foo<sc/*8888*//*8888*/ript>alert (1) 

</sc/*8888*//*8888*/ript> 
OBFUSCATED:fo/*8888*/o/*8888*/<sc/*8888*//*8888*/ript>alert(1)</s

c/*8888*//*8888*/ript>ACTION: add Comment 

 

3 ORIGINAL: 
fo/*8888*/o/*8888*/<sc/*8888*//*8888*/ript>alert(1)</sc/*8888*//*

8888*/ript>OBFUSCATED:fo/*8888*/o/*8888*/<sc/*8888*//*8888*/rip
t>a/*8888*/lert(1)</sc/*8888*//*8888*/ript>ACTION:addComment 

 
4ORIGINAL:<inputtype=”text”value=“<div/onmouseover=’alert(1)’>X</d

iv> 
OBFUSCATED:<inputtype=”text”value=“<div/o/*8888*/nmo/*8888*/u

seo/*8888*/ver=’alert(1)’>X</div> 

ACTION: add Comment 

 
 

 
Figure 8: Percentage of Actions Taken 

 

Java script comments suggest a greedy model. Statements trick XSS scanners. To 
confirm, compare all completed operations.. Figure 8 illustrates the percentage of 

total count for each activity. Commenting is the most prevalent RL activity, as 

shown in the graph. Some websites consider anything in a comment block to be 

safe and do not remove anything, so enabling the use of Cross-Site Scripting 

vectors. The system may also include anything in comment tags for user 
protection. Specific detection engines that operate by matching pairs of 
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open/close curly braces and then examining the label within may be able to 

thwart the XSS vector (before de-obfuscation). The double slash removes the 

unnecessary bracket, preventing a JavaScript error. 

 
Conclusion 

 

Cross-Site Scripting (XSS) security systems can be bypassed in several ways. 

These ways are called "XSS filter evasion" and are used by attackers. Hackers 

must first find a weakness in the program, then avoid input validation by the 

application and the server, and finally trick advanced browser filters to add 
harmful Script to client-side web page code. This article looks at some of the most 

common ways to get around XSS filters and explains how to reduce the risk of an 

adversarial attack in existing detection tools and models. Cross-site scripting, or 

XSS, is what this article is about. It looks at some of the most common ways to 

get around XSS filters. During this study, a Reinforcement Learning XSS 
adversarial attack method was made. 

 

DQN, DDQN, and TRPO are the three methods that makeup RL. The rate of 

escaping at TRPO, 86%, was much higher than the rate at DQN (50 percent ). Use 

Discrete Domain RL algorithms like TRPO to make XSS maneuvers that an 

attacker can't predict. By adding comments to the code, the RL model made it 
harder to understand XSS. The performance of the XSS classifier can be improved 

by retraining the model with adversarial data. In this study, avoiding an attack 

isn't as important as figuring out the best way to getaway. We mined malicious 

samples of both white-box and black-box detection models at the same time while 

keeping the attack function and avoiding being caught. We were able to hack the 
system it effectively. It retrained the detection model by classifying hostile sample 

data as "malevolent. ". By doing so, it maintained its outstanding detecting 

abilities and defended itself against outside threats. On top of that, the technique 

showed how both Burp Suite and Port Swigger's XSS escape mechanisms work. 

Soon, both SQL adversarial attack analysis and DDoS challenge and response 

architecture will use new technology. 
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