
How to Cite:

Mondal, B., Banerjee, A., & Gupta, S. (2022). XSS filter evasion using reinforcement
learning to assist cross-site scripting testing. International Journal of Health
Sciences, 6(S2), 11779–11792. https://doi.org/10.53730/ijhs.v6nS2.8167

International Journal of Health Sciences ISSN 2550-6978 E-ISSN 2550-696X © 2022.

Manuscript submitted: 09 March 2022, Manuscript revised: 18 April 2022, Accepted for publication: 27 May 2022

11779

XSS filter evasion using reinforcement learning
to assist cross-site scripting testing

Biswajit Mondal

Computer Science and Engineering, Dr. B C Roy Engineering College,

Durgapur, 713206, West Bengal, India

Abhijit Banerjee
Electronics and Communication Engineering, Dr. B C Roy Engineering College,

Durgapur, 713206, West Bengal, India

Subir Gupta

Computer Science and Engineering, Dr. B C Roy Engineering College,

Durgapur, 713206, West Bengal, India
Corresponding author email: subir2276@gmail.com

Abstract---Machine learning and deep learning are widely utilized and

highly effective in attack classifiers. Little research has been
undertaken on detecting and protecting cross-site scripting, leaving

artificial intelligence systems susceptible to adversarial assaults (XSS).

It is crucial to develop a mechanism for increasing the algorithm's

resilience to assault. This study intends to utilize reinforcement

learning to enhance XSS detection and adversarial combat attacks.

Before mining the detection model's hostile inputs, the model's
information is extracted using a reinforcement learning framework.

Second, the detection technique is simultaneously trained using an

adversarial strategy. Every cycle, the classification method is educated

with freshly discovered harmful data. The proposed XSS model

effectively mines destructive inputs missed by either black-box or
white-box detection systems during the experimental phase. It is

possible to train assault and detection models to enhance their

capacity to protect themselves, leading to a lower rate of escape due to

this training.

Keywords---cyber security, reinforcement learning, machine learning,
XSS.

https://doi.org/10.53730/ijhs.v6nS2.8167
mailto:subir2276@gmail.com

11780

Introduction

Web application firewalls manage HTTP traffic (WAF)[1][2]. Two of the most

prevalent cyber attacks are cross-site scripting (XSS) and SQL injection (SQLI).

XSS vulnerabilities were examined. Even on sites that appear to be safe,
JavaScript may include potentially harmful code. This is known as cross-site

scripting (XSS). In an XSS attack, one user passes malicious code to another.

Code in a client-side script is used in cross-site scripting attacks[3][4]. Many

online programs accept user input without verifying or encrypting it, leaving them

vulnerable to attack. Unaware users may fall victim to a malicious script

distributed using cross-site scripting (XSS). Because the browser cannot
determine if the Script should be trusted, it runs it nonetheless, which may be

dangerous. The malicious script may be able to access cookies, login information,

or other sensitive data since the browser believes the feature came from a

trustworthy source. Because the browser thinks the capability is dependable.

The Internet and online application services have exacerbated network

security concerns. Cyberattacks destroy lives. SQL injection, file upload, XSS,

and CSR are instances of online attacks. Cybercriminals want sensitive

information or website administration. SQL injection, file upload, and other

online vulnerabilities are prevalent. These are susceptible to XSS in

browsers[5]. Consequently, the attacks pose a risk to user privacy and server
security, exposing information and executing orders. Multiple research groups

have integrated machine learning and deep learning into XSS detection. The

evolution of attack detection technology has included adversarial AI-based

assault strategies. An attacker evades detection models by creating aggressive

and perplexing countermeasure samples to portray malevolent activities as
innocuous. According to Generative Adversarial Networks, humans can still

discern if a panda image is actual (GAN)[6]. One pixel can influence the

classification outcome of a deep neural network (a "one-pixel assault"). The

study of malware detection is also researched as a cyberattack.

It trains its detection system using samples of malicious software. Malware may
be identified using reinforcement learning and GAN. There is insufficient research

on how to utilize this to enhance XSS identification. Enhance the detection

model's resistance to assault. Figure 1 demonstrates CSC. XSS makes use of

reinforcement learning. By classifying preventative and mitigating data as XSS

bad samples, we may be able to enhance the detection model's defense
capability[7]. The following is a list of four main contributions:

• An XSS attack can be turned into an escape plan and the best plan

because of the environment. Reinforcement learning is used to make

this happen.

• Three XSS attack evasion strategies are proposed: encoding obfuscation,

Hypersensitive word substitutions and morphological transformations.

• The detection model's ability to defend against adversarial assaults is

continually improved.

11781

Figure 1: Cross-Site Scripting, https://www.geeksforgeeks.org/what-is-cross-site-

scripting-xss

Literature Survey

Cross-site scripting and identification of vulnerabilities are crucial. Recent

research combines these subjects. XSS detectors have been designed. Using

their research, we enhance it.Ten machine learning techniques classify XSS

and non-XSS attacks. The study of XSS produces attack vectors. Miscoded.

Mohammadi developed a syntactic attack generator to assess cross-site

scripting vulnerabilities. Researcher proposed a method for extracting XSS
vulnerabilities using data from the most effective attack vectors. It may be

used to build the XSS attacker library, resource library, and mutagens rule

cat data for an attacker. Exploiting XSS vulnerabilities through attack vector

design and automated testing is complicated by the diversity and complexity

of Web applications. Classifying XSS receives less attention than identifying

vulnerabilities or assaults. This study investigates how reinforcement learning
may assist XSS in detecting attacks.

Machine Learning based XSS Classificatio Approaches

The Origin Policy limits the same Access to Netscape scripts. Only windows
and documents made with JavaScript can be read and written. Insert Mozilla

did not make any Script for Firefox, Sea Monkey, or any other browsers based

on Mozilla. Any wrong input or Script will run if the web page is not cleaned

up or encoded. Coding stops script tags from being opened and closed.

OWASP's cheat sheet talks about XSS. Page integrity shows when a user gives

false information. Tripwire checks the hash values of a website. If the value of
the hash changes, the page is changed. Kirta and her coworkers made a

defense against XSS on the client-side. They showed Boxes, a web proxy that

can be controlled manually or automatically. It keeps XSS from leaking.

Nunan et al. came up with a way to automatically group Cross-Site Scripting.

We got information about how to classify things from URLs and websites. Web
applications let users tell them what to do with files and databases. Shar and

Tan say that what users type in can lead to security holes and attacks.

11782

Experts think SQL injection and XSS vulnerabilities can be found through

data mining. CFG SQL injection and XSS vulnerabilities for a critical time.

Sensitive sinks can be put into groups using a data dependency tree and

input cleaning techniques. An attack model for SQL injection and XSS was

made with this feature vector. Later, testing became more efficient with the
help of dynamic vectors and clustering[8][9].

Proposed Reinforcement Models for generation of XSS Adversarial

Payload

This section talks about how to use reinforcement learning to get the
adversarial Sample of these black-box or white-box XSS categorizations and

improve the detection designer's ability to protect against attacks.

Feature Generation and Reward Function

Preprocessing has an impact on both black-box and white-box detection. This

collection of dangerous samples is employed by the black-box detection tool. If

the confidence level for detecting adversarial attacks is sufficiently high,

detrimental samples are preserved and used for future white-box detection.

Data sets with tainted samples can disclose XSS attacks.

Observation Space: Feature Encoding to byte/entropy histogram of Sample

2D Byte Histograms encode XSS samples. Malware is defined by 2D histogram

entropy mapping. Low-dimensional feature extraction based on entropy. Encoded

are feature vectors with 256 elements. Figure 2 shows the likely alert bytes
histogram.

Figure 2: 2Byte Histogram of" alert ()"

Action Space: Adversarial Manipulation

Action space in RL is separate. RL does seven things. These different steps change

the linguistic structure of the sample string without changing the way the XSS

script is written (sample string). The adversarial Manipulation techniques or the

11783

actions being taken by the RL algorithm the user to alter or change the XSS string

structure are as follows:

• Char To 10: Converts a random character to Base10.
• Char To 16: Converts a random character to Base16[Hex]

• Char To 10 Zero: Converts a random character to Base 10[Decimal] and

then

• Add Zero.

• Add Comment: Adds a random string of alphanumeric characters [a-z, A-Z]

of length 10.
• Add Tab: Adds a random Tab[4spaces]to the String.

• Add Zero: Adds a Zero to a random position of the String.

• Add Enter: Adds an Enter [newline] character after a random location of the

• String.

Reward Shaping: Black box and White Testing

The module combines black-box and white-box APIs to provide an intuitive

interface. "Post" is used to submit the identified Sample to the website using

the REST API. XSS assaults are thwarted. When a request is approved or

denied, a response is sent. Before feeding them into a white-box model, this
interface processes samples. The confidence of XSS detection samples is

assigned, and their results are communicated. Black and white boxes receive

different rewards. The black-box approach encourages exploration. The

reward of the white-box model depends on confidence[10][11]. Table 1 shows

Examples of adversarial Manipulation on XSS string

rt = weight X Resultvalue\1000 (1)

Example[with XSS JSON Payload]:

”name”:” <script>alert (’XSS Test’) </script>Bruce Banner”,

” description”:” <script>alert (’XSS Test’) </script>

Bruce Banner"

}

Expected Result Resultvalue: 400

Example [without XSS JSON Payload]:

" name":" Bruce",

" description": "Bruce"
}

Expected Result Resultvalue: 200
weight is taken as 10.

Table 1: Examples of adversarial Manipulation on XSS string

Sampled XSS String Adversarial

Method

Changed String

<h1/on Char To 10 ><h1/on

{

{

11784

drag=confirm‘1‘)>Drag

Me</h1>

drag=confirm‘1‘)>DragMe</h1>

<h1/on

drag=confirm‘1‘)>Drag

Me</h1>

Char To 16 ><h1/on�x64;rag=confirm‘1‘)>Drag

Me</h1>

<h1/on

drag=confirm‘1‘)>Drag

Me</h1>

Char To 10

Zero

><h1/on drag=confirm‘1‘)>Drag

Me</h1>

<h1/on
drag=confirm‘1‘)>Drag

Me</h1>

Add
Comment

><h1/o/*8888*/on
drag=co/*8888*/nfirm‘1‘)>Drag

Me</h1

<h1/on

drag=confirm‘1‘)>Drag

Me</h1>

Add Tab >< h1/on drag=confirm‘1‘)>Drag

Me</ h1>

<h1/on

drag=confirm‘1‘)>Drag
Me</h1>

Add Zero ><h1/on drag=confirm‘1‘)>Drag

Me</h1>

<h1/on

drag=confirm‘1‘)>Drag

Me</h1>

Add Enter ><h1/on drag=confirm‘1‘)>Drag

Me</h1>

Dataset

At the beginning of February 2007, XSS was made. It has information about

cross-site scripting and is the largest online archive of websites that are

vulnerable to XSS. In this analysis, XSSed was used in attacks from the other

side and as a source of dangerous XSS samples. Over the last ten years,

www.xsed.com has used real attacks. By retraining from this dataset, we can

make examples ready for the real world.

Performance Metric

The SR (success rate) indicates the proportion of potentially hazardous samples

deemed harmless by the target recognition model or instrument after escape

modification. The more significant the fraction of escape vectors, the greater the
likelihood of weakening the adversarial attack model.

SR =
Payloadevaded

Payloadevaded + Payloaddetected

 X 100 (2)

Reinforcement Learning Algorithms Evaluated

Through reinforcement learning, good behavior is encouraged. A reinforcement

learning agent can look at its surroundings, figure out what's going on, act, and

learn from its mistakes[12][13]. With reinforcement learning, good actions are

rewarded, and bad ones are punished. This method rewards good behavior and

punishes bad behaviour. This tells the agent to think about what's best for the

long run. Short-term goals can't be put off because of long-term goals. The agent
has a happy attitude. AI that learns independently is controlled by penalties and

11785

rewards (AI)[14][15]. RL challenges got better because of DQN policy gradient,

TRPO, PPO, and evolutionary techniques (ES). Deep Q-learning methods come

close to finding the best Q function for a state (DNNs). Policy gradients teach a

DNN algorithm how likely it is that each state will behave differently. Open AI
offers a simplified version of Natural Evolution Strategies that only know the

mean. During training, ES was faster than DQN and A3C on challenging RL

benchmark tasks, which led to better parallelization. Both techniques improve

DNN parameters via stochastic gradient descent/ascent. DQN estimates loss

gradient via backpropagation[16][17]. In the new system, policy gradients evaluate

and confirm new ways of acting in a random way.

Deep Q Networks

In reinforcement learning, the use of function approximators has been shown

to be very helpful. Most of the time, parameterized function approximators are

used to show Q-functions.. Q = {Qw | w ∈ Rp}, where p is the number of

parameters.

 Q(s, a): = Q(s, a) + α (r + γmaxa′∈AQ(s′, a′) − Q(s, a)) (3)

where α ∈ R is the learning rate, s is the state, r is the reward. The update

the equation is thus given as:

w ∶= w + α(r + γmaxa′∈AQ(s′, a′) − Q(s, a))∇wQw(s, a). (4)

Figure 3: Deep Q-Network

Algorithm1 Deep Q- Learning with Experience Replay

Initialize replay memory D to capacity N

Initialize action-value function Q with two random sets of weights θ, θ′

for episode = 1, M do

for t = 1, T do

Select a random action 𝑎𝑡 with probability ε

Otherwise, select 𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠𝑡 , 𝑎; 𝜃)
Execute action 𝑎𝑡 collect reward 𝑟𝑡+1 and observe next state 𝑠𝑡+1

11786

Store the transition 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1 in D

Sample mini-batch of transitions 𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗+1, 𝑠𝑗+1

Set 𝑦𝑗 = 𝑟𝑗+1 if 𝑠𝑗+1 is terminal

𝑦𝑗 = 𝑟𝑗+1 + γmaxa′𝑄(𝑠𝑗+1, 𝑎′; 𝜃′), otherwise

Perform a gradient descent step using targets 𝑦𝑗 with respect to the online

parameters θ

Every C step, set θ′ ← θ

end for
end for

Double Dueling DQN

One Q-value estimate tells the other one what to do. We can get unbiased Q-value

forecasts for the other estimator's activities by using unbiased estimators that are

not biased[18]. Keeping updates separate from wrong assumptions helps get rid of

bias. DDQN maintains two Q-networks:

• Online Network: 𝑄𝑤 terms 𝑄𝑤(𝑠, 𝑎) and ∇𝑤𝑄𝑤 (𝑠, 𝑎) in update (4)

• Target network: update target in update (4)

The final update becomes:

 𝑤 ∶= 𝑤 + 𝑎 (𝑟 + γmaxa′ϵ A𝑄𝑤−(𝑠′, 𝑎′) − 𝑄𝑤(𝑠, 𝑎))∇𝑤𝑄𝑤(𝑠, 𝑎). (5)

The target Q-network is put on hold until an online value is given using

function approximators based on deep learning. Online Q-network updates

look unstable. It helps people learn. Even though Double Q-learning has two

Q-networks, neither of them is a clear online or target network. Every time an

update is made, the network used is decided by a 50/50 chance. It's

important to note that these networks 𝑄𝑤1and 𝑄𝑤2 play an equal role each time

they are updated because their positions are decided stochastically with
probability 0.5. The over-optimism of the goals in update (4) is reduced as a

consequence.

Trust Region Policy Optimization: TRPO

TRPO changes policies to make them faster while ensuring that the new rules
aren't too similar to the old ones. KL-Divergence, a measure of the distance

between probability distributions, can be used to describe this constraint. Average

policy gradients don't keep new policies close to old ones. Even small changes in

size could affect how well an approach works. Large step sizes with plain slopes

hurt the efficiency of sampling. When this happens, TRPO gracefully avoids it and

steadily improves performance.

• TRPO is a policy-compliant algorithm.

• In both discrete and continuous action areas, TRPO can be applied.

• TRPO's Spinning Up implementation allows for MPI parallelism.

11787

Let πθ denote a policy with parameters θ. The theoretical TRPO update is:

 𝜃𝑘+1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 & L(𝜃𝑘 , θ) (6)
 Where L(𝜃𝑘, θ) is the surrogate advantage, denoting a metric πθ explicitly

showing how these fares with policy 𝜋𝜃𝑘
 :

 L(𝜃𝑘 , θ) = 𝐸𝑠,𝑎~𝜋𝜃𝑘
[

𝜋𝜃(𝑎|𝑠)

𝜋𝜃𝑘(𝑎|𝑠)
]𝐴

𝜋𝜃𝑘 (𝑠, 𝑎) (7)

𝐷‾𝐾𝐿(𝜃, ||𝜃𝑘) is the average KL-divergence among all policies visited by the old
network.

𝐷‾𝐾𝐿(𝜃, ||𝜃𝑘) = 𝐸𝑠~𝜋𝜃𝑘
[𝐷𝐾𝐿(𝜋𝜃(. |𝑠)||𝜋𝜃𝑘

(. |𝑠))] (8)

Results

For each RL method, we chose the following evaluation parameters:

• Number of Epochs/Episodes: 100

• Number of Runs per Epoch: 150
• Learning rate α for both networks: 0.002

• Greedy Parameter ϵ: 0.8

• Memory Stack: 2000

• Discount factor γ: 0.9

Network Topology for Online and Target network:

Figure 4: DQN Cumulative Reward

Net (
(fc1): Linear (in features=256, out features=50, bias=True)

(out): Linear (in features=50, out features=7, bias=True)

)

11788

Cumulative Reward Plots

The following figures shows the cumulative rewards collected by each algorithm,

in a total of 100 episodes. The cumulative rewards is also the success rate SR of
evasion from the XSS detection method.

The cumulative reward of DQN is shown in Fig.4

The rewards for DQN are clipped at 80. After episode 50, the rewards have

saturated. The Success rate Metric SR is thus:

𝑆𝑅 = 𝑅𝑒𝑠𝑢𝑙𝑡𝑖𝑡𝑒𝑚/(𝑁𝑇𝑜𝑡𝑎𝑙𝑃𝑎𝑦𝑙𝑜𝑎𝑑 ∗ 100 = 49.5%) (9)

The cumulative reward of DDQN is shown in Figure 5 .

Figure 5: DDQN Cumulative Reward

The rewards for DDQN are clipped at 120. After episode 65, the rewards have

saturated. The Success rate Metric SR is thus:

𝑆𝑅 = 𝑅𝑒𝑠𝑢𝑙𝑡𝑖𝑡𝑒𝑚/(𝑁𝑇𝑜𝑡𝑎𝑙𝑃𝑎𝑦𝑙𝑜𝑎𝑑 ∗ 100 = 60.75%) (10)

The cumulative reward of TRPO is shown in Fig.6.
The rewards for TRPO is clipped at 150. After episode 65, the rewards have

saturated. The Success rate Metric SR is thus:

𝑆𝑅 = 𝑅𝑒𝑠𝑢𝑙𝑡𝑖𝑡𝑒𝑚/(𝑁𝑇𝑜𝑡𝑎𝑙𝑃𝑎𝑦𝑙𝑜𝑎𝑑 ∗ 100 = 85.7%) (11)

Comparative analysis of the RL algorithms on the basis of their success rate

to evade the XSS detector is shown Fig.7. TRPO has the fastest convergence

followed by SSQN and then by DQN. However, the success rate of DQN is

11789

below 50%, which is more like coin toss. Therefore, it would be safe to say

that, DDQn and TRPo would be the better RL method for XSS detection

evasion with Adversarial Manipulation of XSS scripts. Table.3.1 shows the

Test Sample, the actions taken and Manipulated Sample which resulted in
the model to evade the XSS detection. These are the evasive obfuscated

scripts which, is then added to the training list after every 10 episodes.

Figure 6: TRPO Cumulative Reward

Figure 7: Success Rates of different models

11790

Table 2: Adversarial Manipulation on XSS string, examples from Test Setwith the

actions taken

Test Sample/Obfuscated Sample/Action

0 ORIGINAL: foo<script>alert (1) </script>
OBFUSCATED: foo<sc/*8888*/ript>alert (1)

</sc/*8888*/ript>ACTION: add Comment

1 ORIGINAL: foo<sc/*8888*/ript>alert (1) </sc/*8888*/ript>
OBFUSCATED: foo<sc/*8888*//*8888*/ript>alert (1)

</sc/*8888*//*8888*/ript>ACTION: add Comment

2 ORIGINAL: foo<sc/*8888*//*8888*/ript>alert (1)

</sc/*8888*//*8888*/ript>
OBFUSCATED:fo/*8888*/o/*8888*/<sc/*8888*//*8888*/ript>alert(1)</s

c/*8888*//*8888*/ript>ACTION: add Comment

3 ORIGINAL:
fo/*8888*/o/*8888*/<sc/*8888*//*8888*/ript>alert(1)</sc/*8888*//*

8888*/ript>OBFUSCATED:fo/*8888*/o/*8888*/<sc/*8888*//*8888*/rip
t>a/*8888*/lert(1)</sc/*8888*//*8888*/ript>ACTION:addComment

4ORIGINAL:<inputtype=”text”value=“<div/onmouseover=’alert(1)’>X</d

iv>
OBFUSCATED:<inputtype=”text”value=“<div/o/*8888*/nmo/*8888*/u

seo/*8888*/ver=’alert(1)’>X</div>

ACTION: add Comment

Figure 8: Percentage of Actions Taken

Java script comments suggest a greedy model. Statements trick XSS scanners. To
confirm, compare all completed operations.. Figure 8 illustrates the percentage of

total count for each activity. Commenting is the most prevalent RL activity, as

shown in the graph. Some websites consider anything in a comment block to be

safe and do not remove anything, so enabling the use of Cross-Site Scripting

vectors. The system may also include anything in comment tags for user
protection. Specific detection engines that operate by matching pairs of

S
p

rin
g

e
rN

a
tu

re
2

0
2
1

1
6

X

S
S

F
ilte

r
E

v
a

s
io

n

11791

open/close curly braces and then examining the label within may be able to

thwart the XSS vector (before de-obfuscation). The double slash removes the

unnecessary bracket, preventing a JavaScript error.

Conclusion

Cross-Site Scripting (XSS) security systems can be bypassed in several ways.

These ways are called "XSS filter evasion" and are used by attackers. Hackers

must first find a weakness in the program, then avoid input validation by the

application and the server, and finally trick advanced browser filters to add
harmful Script to client-side web page code. This article looks at some of the most

common ways to get around XSS filters and explains how to reduce the risk of an

adversarial attack in existing detection tools and models. Cross-site scripting, or

XSS, is what this article is about. It looks at some of the most common ways to

get around XSS filters. During this study, a Reinforcement Learning XSS
adversarial attack method was made.

DQN, DDQN, and TRPO are the three methods that makeup RL. The rate of

escaping at TRPO, 86%, was much higher than the rate at DQN (50 percent). Use

Discrete Domain RL algorithms like TRPO to make XSS maneuvers that an

attacker can't predict. By adding comments to the code, the RL model made it
harder to understand XSS. The performance of the XSS classifier can be improved

by retraining the model with adversarial data. In this study, avoiding an attack

isn't as important as figuring out the best way to getaway. We mined malicious

samples of both white-box and black-box detection models at the same time while

keeping the attack function and avoiding being caught. We were able to hack the
system it effectively. It retrained the detection model by classifying hostile sample

data as "malevolent. ". By doing so, it maintained its outstanding detecting

abilities and defended itself against outside threats. On top of that, the technique

showed how both Burp Suite and Port Swigger's XSS escape mechanisms work.

Soon, both SQL adversarial attack analysis and DDoS challenge and response

architecture will use new technology.

References

1. A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, "Toward developing a

systematic approach to generate benchmark datasets for intrusion detection,"
Comput. Secur., vol. 31, no. 3, pp. 357–374, May 2012, doi:

10.1016/j.cose.2011.12.012.

2. Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and S. Venkataraman,
"Identifying diverse usage behaviors of smartphone apps," in Proceedings of
the ACM SIGCOMM Internet Measurement Conference, IMC, 2011, pp. 329–

344, doi: 10.1145/2068816.2068847.

3. B. Mondal, A. Banerjee, and S. Gupta, "review of SQLI detection strategies
using machine learning," Int. J. Health Sci. (Qassim)., pp. 9663–9676, May

2022, doi: 10.53730/ijhs.v6nS2.7519.

4. B. Mondal, C. Koner, M. Chakraborty, and S. Gupta, "Detection and

Investigation of DDoS Attacks in Network Traffic using Machine Learning
Algorithms," Int. J. Innov. Technol. Explor. Eng., vol. 11, no. 6, pp. 1–6, May

2022, doi: 10.35940/ijitee.F9862.0511622.

11792

5. L. Erdődi, Å. Å. Sommervoll, and F. M. Zennaro, "Simulating SQL injection
vulnerability exploitation using Q-learning reinforcement learning agents," J.
Inf. Secur. Appl., vol. 61, no. July, p. 102903, 2021, doi:

10.1016/j.jisa.2021.102903.

6. D. Chen, P. Wawrzynski, and Z. Lv, "Cyber security in smart cities: A review
of deep learning-based applications and case studies," Sustain. Cities Soc.,
vol. 66, p. 102655, Mar. 2021, doi: 10.1016/j.scs.2020.102655.

7. M. Baş Seyyar, F. Ö. Çatak, and E. Gül, "Detection of attack-targeted scans
from the Apache HTTP Server access logs," Appl. Comput. Informatics, vol. 14,

no. 1, pp. 28–36, 2018, doi: 10.1016/j.aci.2017.04.002.

8. H. Hanif, M. H. N. Md Nasir, M. F. Ab Razak, A. Firdaus, and N. B. Anuar,

"The rise of software vulnerability: Taxonomy of software vulnerabilities
detection and machine learning approaches," J. Netw. Comput. Appl., vol.

179, no. August 2020, p. 103009, 2021, doi: 10.1016/j.jnca.2021.103009.

9. K. Natarajan and S. Subramani, "Generation of Sql-injection Free Secure
Algorithm to Detect and Prevent Sql-Injection Attacks," Procedia Technol., vol.

4, pp. 790–796, 2012, doi: 10.1016/j.protcy.2012.05.129.

10. H. Gao, S. Cheng, and W. Zhang, "GDroid: Android malware detection and
classification with graph convolutional network," Comput. Secur., vol. 106,

Jul. 2021, doi: 10.1016/j.cose.2021.102264.

11. M. Breeding, "Current and future trends in information technologies for
information units," Prof. la Inf., vol. 21, no. 1, pp. 9–15, 2012, doi:

10.3145/epi.2012.ene.02.

12. S. Gupta, J. Sarkar, A. Banerjee, N. R. Bandyopadhyay, and S. Ganguly,

"Grain Boundary Detection and Phase Segmentation of SEM Ferrite–Pearlite
Microstructure Using SLIC and Skeletonization," J. Inst. Eng. Ser. D, vol. 100,

no. 2, pp. 203–210, Oct. 2019, doi: 10.1007/s40033-019-00194-1.

13. S. Gupta, J. Sarkar, M. Kundu, N. R. Bandyopadhyay, and S. Ganguly,

"Automatic recognition of SEM microstructure and phases of steel using LBP
and random decision forest operator," Measurement, vol. 151, p. 107224,

Feb. 2020, doi: 10.1016/j.measurement.2019.107224.
14. S. Gupta et al., "Modelling the steel microstructure knowledge for in-silico

recognition of phases using machine learning," Mater. Chem. Phys., vol. 252,

no. May, p. 123286, Sep. 2020, doi: 10.1016/j.matchemphys.2020.123286.

15. S. Gupta, "Chan-vese segmentation of SEM ferrite-pearlite microstructure
and prediction of grain boundary," Int. J. Innov. Technol. Explor. Eng., vol. 8,

no. 10, pp. 1495–1498, 2019, doi: 10.35940/ijitee.A1024.0881019.
16. D. A. Linkens et al., "Materials discovery and design using machine learning,"

Comput. Mater. Sci., vol. 3, no. 3, pp. 1661–1668, 2016, doi:

10.1016/j.commatsci.2016.05.034.

17. S. Rao, A. K. Verma, and T. Bhatia, "A review on social spam detection:
Challenges, open issues, and future directions," Expert Systems with
Applications, vol. 186. 2021, doi: 10.1016/j.eswa.2021.115742.

18. A. Mchergui, T. Moulahi, and S. Zeadally, "Survey on Artificial Intelligence
(AI) techniques for Vehicular Ad-hoc Networks (VANETs)," Veh. Commun., vol.

1, p. 100403, 2021, doi: 10.1016/j.vehcom.2021.100403.

