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Abstract. Predictive medicine for a holistic and proactive approach to health management is steadily replacing the reactive
healthcare model as the dominant paradigm in the twenty-first century. The Ayurvedic medical system, which incorporates
all parts of predictive medicine, divides people into seven constitution types, or Prakriti, to help practitioners determine their
initial homeostatic conditions. This article uses data on the phenotypic characteristics of 217 healthy people who fall into
three extreme Prakriti types to conduct a study for predicting Prakriti classes. Those who fit the Prakriti type are drawn from
two genetically different northern and western India cohorts. In order to dichotomize inter-individual variability in various
individuals, eight machine learning (ML) classifiers are used. The prediction skills of the ML algorithms are evaluated here
using ten pairs of predefined training and testing datasets for each cohort. Lastly, a performance comparison of various ML
algorithms is carried out using six crucial performance criteria.

The study aims to investigate and appraise using artificial intelligence (AI) to evaluate Prakriti in Ayurveda. The use of AI
in Prakriti assessment may have several advantages, including enhancing the consistency and accuracy of assessments and
minimizing reliance on subjective judgements. This study aims to further our knowledge of how technology can be applied
to enhance the practice of Ayurveda and possibly improve patient outcomes.
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1. Introduction

According to Panday et al. [1], Ayurveda is a com-
prehensive, all-natural system of medicine that has
its roots in ancient India’s Vedic era. The words
“Ayurveda” and “Veda,” which denote science and
knowledge, respectively, come from the Sanskrit lan-
guage. Ayurveda, when taken as a whole, is known

∗Corresponding author. Samarjit Kar, E-mail: samarjit.kar@
maths.nitdgp.ac.in.

as “the science of life” or “the science of lifes-
pan.” Regrettably, many Ayurveda and Vedic notions
lack adequate definitions considering current under-
standing, which leads to divergent interpretations in
contemporary discourse [2].

Ayurveda, the oldest holistic medical system in
India that has been documented and used since
1500 B.C., uses a tailored approach to care for
patients along with a focus on health promotion [3–6].
Individuals are categorized in this medical system
according to their Prakriti constitution kinds. Every
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individual has a unique genetic makeup, or Prakriti
[7]. These constitution types are divided into seven
groups based on how susceptible they are to certain
diseases and environmental factors. This approach
effectively shows promise for predicting a person’s
trajectory. The three groups Vata (V), Pitta (P), and
Kapha (K) are at the extremes of the phenotypic spec-
trum among the seven constitution types. A person
can be classified as belonging to a certain Dosha
type depending on the attributes that each Dosha
bestows upon them [8–10]. They are said to be more
susceptible to many diseases [11]. A Prakriti clas-
sification like this enables practitioners to identify
the causes of patients’ homeostatic states, evaluate
disturbances caused by illness states (Vikriti), and
suggest individualised therapy for reestablishing bal-
ance [4,5]. For optimum health, these three Doshas
must be in harmony [12]. In this context, the Prakriti
types V, P, and K are referred to as extreme (distinct)
Prakriti, whereas VP, PK, VK, and VPK are non-
extreme Prakriti. This is because research [13, 14,
2] has shown that the extreme Prakriti kinds differ
molecularly from one another. Prakriti and tridoshas
include the fundamentals of unique ayurvedic princi-
ples that can be applied in prognosis treatments, but it
is essential to develop their molecular underpinnings
[15]. As a result, Prakriti’s phenotypic classifica-
tion is based on anatomical characteristics such as
body build, physiology, and physical stamina as well
as size and symmetry of body components [16,17].
Researchers from the Ministry of Science and Tech-
nology’s CSIR-Institute of Genomics and Integrative
Biology (CSIR-IGIB) in New Delhi believe there is
a chance to examine whether the Prakriti-based clas-
sification of people has a genetic basis [18].

One of the key features of the Ayurvedic medi-
cal system is its ability to divide people into groups
depending on their prevailing Prakriti. This aids in
promoting health, preventing disease, and treating
illness by assisting in understanding a person’s sus-
ceptibility to diseases in addition to their mental and
physical makeup. It should be noted that the Ayurveda
system works to detect the imbalance of the Tri-
doshas to cure the disease’s root cause rather than
just its symptoms [19]. The present classification
of human phenotypes, which considers individual
system qualities such as somatotypes for anthropo-
metric attributes, phototypes for skin phenotypes, and
chronotypes for early and late risers, is consider-
ably different from this method. We have created a
new framework called Ayurgenomics that combines
Ayurvedic philosophy with genomics. To determine

the common correlates of Prakriti, ayurgenomics-
based phenotyping has been carried out in numerous
ethnic populations along with other objective mea-
surements. The development of analytical techniques
for the impartial evaluation of Prakriti is one of the
goals. This might make it possible to apply it in con-
texts with varied populations both domestically and
abroad. Our study uses a questionnaire based on accu-
rate textual descriptions to assess Prakriti formally.
The questionnaire offers numerous possibilities for
each aspect, each mapped to V, P, or K based on tex-
tual descriptions. In this line, Datar and Murthy [20]
developed a Prakriti-issuing questionnaire and pre-
sented it as a reliable validity instrument for Prakriti
prediction.

Today, ML has gotten much traction thanks to
improvements in processing power and the acces-
sibility of an unprecedented amount of data in the
public domain. As a result, ML approaches have been
used in various fields, including science, engineer-
ing, medicine, finance, and academia. ML is mainly
used in medicine to assist doctors in identifying and
diagnosing diseases and developing individualized
remedies [21,22]. Nevertheless, Tiwari et al. [23]
conducted a study in two genetically homogenous
cohorts from northern and western India that focused
on most Prakriti individuals. Powerful, dense neural
network deep learning methods have recently been
utilized for the first time by Khatua et al. [24] to pre-
dict Prakriti courses. Here, the authors have classified
the individuals using K, V, or P for the first time using
three ML models. The regression framework of the
LASSO model is utilized for extreme Prakriti mod-
elling in their study. In their study, the scientists also
utilized an elastic net method for keeping correlated
data and predicting non-redundant factors that might
not be able to distinguish severe Prakriti persons from
non-extreme ones on their own. To the best of our
knowledge, there has yet to be any research com-
paring the effectiveness of various ML classifiers for
identifying an individual’s dominant Prakriti. As a
result, we compare eight supervised machine learn-
ing methods on two genetically homogenous cohorts
from northern and western India in this research. Fig-
ure 1 shows a pipeline diagram of the whole study. We
then briefly discuss our study’s primary contributions,
which are listed below.

(i) Eight ML classifiers, including the ridge clas-
sifier (RC), multinomial nave Bayes classifier
(MNBC), random forest classifier (RFC), extra
tree classifier (ETC), v-support vector classi-
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Fig. 1. A pipeline diagram of the study.

fier (v-SVC), the passive-aggressive classifier
(PAC), stochastic gradient descent classifier
(SGDC), and logistic regression with cross-
validation classifier (LRCVC), are used on the
North and West Indian cohorts of people for the
comparative study.

(ii) These ML classifiers are validated with a cross-
dataset setup.

(iii) The performance of these classifiers is analyzed
concerning six performance metrics, includ-
ing accuracy, precision, f1-score, area under
the receiver operating characteristic curve score
(AUROCCS) score, Matthews correlation coef-
ficient (MCC) and hamming loss (HL).

The rest of the article is organized as follows. In
section 2, discussed about the aims and motivation
of our work. In section 3, we briefly discuss eight
different machine learning models. Consequently, in
section 4, the performance metrics used in our study
are discussed concisely. A detailed discussion of the
results and their analysis are provided in sections 5
and 6. Finally, the culmination of the study is pre-
sented in section 7.

2. Aims and motivations

The study project aims to examine the Ayurvedic
notion of Prakriti and compare conventional methods
of Prakriti assessment with contemporary computa-
tional methodologies. A person’s individual set of
physical, mental, and emotional traits are referred
to as their Prakriti, and it is thought that both their
genetic make-up and their environment have a role in
this.

The research aims to close the knowledge gap
between conventional Ayurveda wisdom and con-
temporary scientific evaluation techniques. The goal
of the project is to create an intelligent Prakriti
evaluation system that blends modern computational
methods like machine learning and artificial intelli-

gence with knowledge of Ayurveda. This would make
it possible to diagnose and treat patients with greater
precision and individualization depending on their
Prakriti.

The goal of this research project is to increase the
efficacy of Ayurveda treatment by giving its tradi-
tional practices a scientific foundation and making
them more approachable to a larger audience. It also
seeks to advance customized medicine by investigat-
ing the application of ancient knowledge systems in
concert with contemporary scientific methods.

3. Machine learning models

With the progressive improvement of computa-
tional capability of processing units and availability
of an unprecedented amount of data in the public
domain, machine learning has gained colossal atten-
tion in applications across diverse fields. One of the
essential concepts of ML is supervised learning. In
supervised learning, we use an ML algorithm to learn
the mapping function between the input (X) and out-
put (Y ) variables such that Y = f (X). Here, the goal
is to approximate the mapping function so that the
algorithm can predict the out variables (Y ) for a new
input data (X).

In this article, we have compared the performance
of eight supervised machine learning models on the
datasets of North and West Indian cohorts. We have
used these following models:

Ridge classifier (RC) uses the concept of ridge
regression [25] which eventually opened the door
of penalty estimators based on Tikhonov [26] reg-
ularization. This method solves a regression model,
where the minimization of least squares is done sub-
ject to l2 penalty.

Multinomial naı̈ve Bayes classifier (MNBC) [27,
28] is one of the variants of Naı̈ve Bayes classifier
[29]. This classifier models the data by assuming the
underline distribution of the data follows the multi-
nomial distribution.

A random forest classifier (RFC) [30] is an ensem-
ble of decision trees where a prediction is made
collectively by several decision trees. Here, each tree
in the ensemble is formed from a sample of the train-
ing set, which is drawn with replacement.

Extremely randomized trees or extra trees classifier
(ETC) [31] is an ensemble of decision trees like ran-
dom forests which essentially creates many unpruned
decision trees from the training data and performs
predictions employing a majority vote of decision
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trees. The extra trees algorithm fits each decision tree
on the whole training data, which is very much differ-
ent from the random forest, where each decision tree
is created from a bootstrap sample of training data.

nu-Support Vector Classifier(ν-SVC) is one of
the variants of a support vector classifier, which is
introduced by Scholkopf et al. [32]. This variant
of the support vector machine (SVM) algorithm is
essentially used to govern the maximum separation
between the subsets of the convex hulls of the data,
which are usually known as soft convex hulls. These
soft convex hulls are generally controlled by the value
of the parameter.

Passive aggressive algorithms [33] are a family of
algorithms that perform online learning of massive
streams of data. In online machine learning algo-
rithms like Passive Aggressive Classifier (PAC), the
ML model is updated in a step-by-step fashion with
respect to the sequential arrival of the input streams
of data.

Stochastic gradient descent classifier (SGDC) [34]
algorithm is an optimization technique which is used
to train an ML model and essentially does not corre-
spond to a specific family of ML models. In situations
where there is a large amount of data in-hand, the
stochastic gradient descent (SGD) algorithm is gen-
erally used.

Logistic Regression with Cross Validation Classi-
fier (LRCVC) [35] is considered as the linear model
of classification, which help us to explore the relation-
ships between dependent and independent variables.

In Fig. 2, details our overall study methodology for
the paper.

4. Performance metrics for classification

In this section, we briefly discuss six performance
metrics which are used to measure the performance
of the classifiers.

Accuracy: Accuracy measures the ability of a clas-
sifier to classify all instances correctly. It is calculated
as the ratio of the number of correct predictions and
the total predictions made by a classifier. Accuracy
may not be useful for large class imbalance prob-
lems, where a classifier can achieve higher accuracy
by predicting the majority class values for all the pre-
dictions. The mathematical expression of accuracy
as

accuracy (c, ĉ) = 1

n

n−1∑

k=0

1 (ĉk = ck) , (2)

where n is the total number of samples predicted,
ck and ĉk are the actual and predicted values of the

Fig. 2. Study method diagram of the modelling strategies of the eight ML estimators.
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kth sample, and 1 (·) is the indicator function. Higher
value of accuracy is desirable.

Precision: Precision measures the ability of a clas-
sifier to correctly classify the positive labels among
all the instances predicted as positive. In other words,
precision can be expressed as the accuracy of the
predictions of positive levels. It is expressed as

Precision = TP

TP + FP
, (3)

where TP and FP are the number of true positive
instances and number of false positive instances,
respectively. A classifier with higher precision value
is always preferred.

f1-score: f1-score is the measure which combines
precision and recall. It is to be mentioned that recall
is also known as true positive rate, i.e., the ratio of the
correctly predicted positive instances, and the sum of
falsely predicted negative instances and the correctly
predicted positive instances, i.e.,

Recall = TP

FN + TP
, (4)

where FN is the number of false negative instances.
Accordingly, the f1-score is determined by calcu-

lating the harmonic mean of precision and recall.
Since the harmonic mean gives more weightage
to minority class values, therefore a classifier will
achieve a higher value only when both the precision
and recall of the classifier are high. A higher value
of f1-score is preferable. The f1-score is expressed as
follows.

f1 − score = TP

TP + FN+FP
2

. (5)

Area under the Receiver Operating Characteris-
tic Curve score (AUROCCS): The receiver operating
characteristic (ROC) curve measures a classifier’s
performance by plotting the true positive rate (TPR)

corresponding to false positive rate (FPR) by varying
the discrimination threshold. Subsequently, the area
under the ROC curve is computed by the AUROCCS
in the form of a numeric value. The AUROCCS varies
between 0 and 1. Here, a value close to 1 is always
preferable, which implies a near perfect prediction of
the classifier.

Matthews Correlation Coefficient (MCC): The
Matthews correlation coefficient considers all the true
and false positives and negatives to measure the pre-
diction quality of a classifier. This metric works well
even if the classification classes have indifferent sizes.
Being a correlation coefficient, the value of MCC lies
within the interval [−1, +1]. For a perfect prediction,
the MCC takes the value+1. An average random pre-
diction is implied if the value of MCC is 0. Whereas,
for an inverse prediction value of MCC becomes –1.
MCC can be expressed as

MCC =
((TP × TN) − (FP × FN))√

(TP + FP) (TP + FN) (TN + FP) (TN + FN)
.

(6)

Hamming Loss (HL): Hamming loss determines
the fraction of labels that are incorrectly predicted.
The hamming loss is expressed as,

HL (c, ĉ) = 1

n

n−1∑

k=0

1 (ĉk /= ck) . (7)

A smaller value of HL is always desirable.

5. Results

In this section, we conduct a comparative study
of eight ML classifiers on ten predetermined training
and testing datasets of two cohorts. Consequently,

Table 1
List of highly correlated features eliminated from the jth training and its testing datasets of North and Vadu cohorts

# Training and its
corresponding testing dataset

Features eliminated from the dataset
of North Indian cohort

Features eliminated from the dataset
of Vadu cohort

Fold1 F18, F31, F77, F99, F117, F118 F5, F27, F101
Fold2 F18, F31, F77, F99, F117
Fold3 F13, F18, F31, F77, F99, F117, F118
Fold4 F18, F31, F77, F99, F117, F118
Fold5 F18, F31, F99, F117
Fold6 F18, F31, F77, F99, F117, F118
Fold7 F13, F18, F31, F77, F99, F117, F118
Fold8 F18, F31, F77, F99, F117, F118
Fold9 F13, F18, F31, F77, F99, F117
Fold10 F18, F31, F77, F99, F117, F118
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the performance of the classifiers is analysed with
respect to six performance metrics, as discussed
in section 3. A detailed discussion related to this
comparative study is provided in the subsequent
subsections.

5.1. Dataset Creation

The datasets considered in this study are devel-
oped from the predominant Prakriti of the individuals
belonging to two genetically homogeneous rural
cohorts of northern and western India. Here, the
cohort representing the Prakriti of the individuals
from western India is referred to as Vadu cohort.
The details about the formation of the North and
Vadu cohorts can be found in the respective stud-
ies of Prasher et al. [13] and Tiwari et al. [23]. The
original datasets of North Indian and Vadu cohorts
are provided as supplementary documents, North-
ern India.csv and Westerrn India.csv, respectively.
Here, the North Indian cohort consists of one hun-
dred and five features and eighty-six individuals.
Whereas the Vadu cohort comprises one hundred and
thirty-one individuals, each having one hundred and

thirty-three features. The feature set of the North
cohorts is the proper subset of the feature set of the
Vadu cohort. Apart from the feature GENDER, which
is there in the west cohort, a feature of both the North
and the Vadu cohorts is expressed as Fi, which corre-
sponds to the ith feature of an individual belonging to
a cohort. The mapping of eachFi with that of an actual
feature name is reported in the supplementary doc-
ument, Supplementary IV.docx. Subsequently, from
each dataset of North and Vadu cohorts, ten dif-
ferent combinations of predetermined training and
testing datasets are considered for the prediction
purpose of the ML models. Each of these training
and testing pairs of datasets of the North Indian
cohort consists of seventy-six instances and sixteen
instances of the individuals, respectively. Moreover,
for the Vadu cohort, each of the training and test-
ing datasets correspondingly contains one hundred
and six instances and twenty-five instances. This
information can be well observed from the supple-
mentary document, Supplementary I.docx. For each
of the Table’s SI-1 and SI-2 provided in this file, the
first column gives information about the instances
number of a particular dataset. Whereas the data pre-

Table 2
Number of optimal features selected from the jth training and its testing dataset of north train test for all the eight classifiers. Red

represents highest and blue represents lowest number of features

# Training and its corresponding Optimal number of features
testing dataset RC MNBC RFC ETC ν-SVC PAC SGDC LRCVC

Fold1 10 91 42 50 18 15 08 13
Fold2 19 97 03 86 18 16 59 14
Fold3 07 75 06 62 18 23 20 21
Fold4 66 95 03 29 21 43 39 12
Fold5 36 93 14 06 16 18 13 14
Fold6 30 94 03 49 25 10 89 11
Fold7 57 96 03 51 29 05 08 04
Fold8 42 96 18 11 19 04 51 57
Fold9 83 94 06 85 62 09 27 48
Fold10 13 91 06 31 22 21 17 14

Table 3
List of optimal features selected from the jth training and its testing dataset of vadu train test for all the eight classifiers. Red represents

highest and blue represents lowest number of features

# Training and its corresponding Optimal number of features
testing dataset RC MNBC RFC ETC ν-SVC PAC SGDC LRCVC

Fold1 25 109 28 23 77 55 17 45
Fold2 34 129 23 12 74 52 45 25
Fold3 14 128 15 28 31 11 38 18
Fold4 22 77 19 41 50 12 15 118
Fold5 15 126 07 101 97 03 129 76
Fold6 40 113 14 117 32 73 85 47
Fold7 43 130 15 71 15 64 82 28
Fold8 07 127 06 47 20 101 13 70
Fold9 11 103 14 46 46 31 03 114
Fold10 05 96 34 22 18 104 113 39
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Table 4
List of optimal features selected from the jth training and its testing dataset of north vadu train test for all the eight classifiers. Red

represents highest and blue represents lowest number of features

# Training and its corresponding Optimal number of features
testing dataset RC MNBC RFC ETC ν-SVC PAC SGDC LRCVC

Fold1 24 91 42 50 51 49 36 13
Fold2 14 97 03 86 17 40 62 14
Fold3 12 76 06 62 36 23 21 06
Fold4 09 95 03 29 21 55 39 27
Fold5 38 89 14 81 32 18 13 17
Fold6 23 94 03 49 80 19 89 32
Fold7 12 96 03 56 57 06 33 19
Fold8 49 96 03 41 64 28 50 57
Fold9 78 94 69 44 62 47 27 48
Fold10 11 91 06 40 60 29 17 44

Table 5
List of common features selected by considering all the ten folds of training and testing datasets of north train test. Purple (F74) is the

most important feature

Classifier Selected features common to all the ten pairs of training and testing datasets

RC F74
MNBC F1, F3, F4, F6, F7, F9, F10, F11, F14, F15, F16, F17, F19, F20, F22, F23, F24, F25, F26, F28, F29, F30, F32,

F33, F34, F35, F36, F37, F41, F42, F43, F44, F45, F46, F47, F48, F50, F51, F53, F54, F55, F59, F68, F69, F71,
F72, F73, F75, F76, F78, F79, F80, F81, F82, F83, F84, F87, F88, F89, F90, F91, F92, F93, F100, F102, F104,
F105, F106, F110, F113, F114, F115, F127, F131, F132

RFC F5, F59, F74
ETC F5, F34, F74, F85
ν-SVC F5, F25, F33, F34, F37, F44, F74, F82, F85, F86, F101
PAC F37, F44, F74, F86
SGDC F5, F37, F44, F59, F74
LRCVC F5, F37, F59, F74

Table 6
List of common features selected by considering all the ten folds of training and testing datasets of vadu train test. Purple (F2) is the most

important feature

Classifier Selected features common to all the ten pairs of training and testing datasets

RC F2
MNBC GENDER, F1, F3, F6, F7, F9, F10, F11, F12, F13, F15, F17, F18, F19, F21, F22, F23, F24, F25, F28, F29, F31,

F35, F37, F42, F43, F46, F47, F49, F54, F58, F59, F60, F63, F64, F67, F68, F69, F70, F72, F73, F75, F76, F78,
F79, F80, F81, F83, F84, F87, F88, F89, F90, F91, F92, F93, F94, F95, F96, F97, F98, F100, F102, F103, F104,
F105, F107, F110, F115, F117, F118, F120, F131, F132

RFC F2, F29, F59, F74, F77
ETC F30, F37, F59, F77, F126
ν-SVC F2, F22, F25, F31, F37, F59, F68, F74, F81, F96, F126
PAC F2, F126
SGDC F2, F81
LRCVC F2, F22, F29, F30, F31, F34, F37, F57, F59, F68, F74, F80, F81, F96, F126

sented in the second column through the eleventh
column provide information about which instance
is to be considered as the training or the testing
instance. Particularly, if a dataset instance ds from
the first column has the value 1 in the corresponding
jth column, then the instance ds of the North Indian
(Vadu) cohort will be included in the training dataset
of the jth pair of predetermined training and test-
ing dataset, where j ∈ {Fold1, Fold2, . . . , Fold10}
and each Foldk, k = 1, 2, . . . 10 is considered as

one of the ten predetermined pairs of training and
testing dataset of a particular cohort. Similarly, if
ds has the value 0 in the corresponding jth col-
umn, then ds will be included in the jth testing
dataset.

5.2. Data Preprocessing and Feature Selection

In this section, we discuss the preprocessing tech-
niques which are applied to our considered datasets.
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Table 7
List of common features selected by considering all the ten folds of training and testing datasets of north vadu train test. Purple (F59,

F74) are the most important features

Classifier Selected features common to all the ten pairs of training and testing datasets

RC F59, F74
MNBC F1, F3, F4, F6, F7, F9, F10, F11, F14, F15, F16, F17, F19, F20, F22, F23, F24, F25, F26, F28, F29, F30, F32,

F33, F34, F35, F36, F37, F41, F42, F43, F44, F45, F46, F47, F48, F50, F51, F53, F54, F55, F59, F68, F69, F71,
F72, F73, F75, F76, F78, F79, F80, F81, F82, F83, F84, F87, F88, F89, F90, F91, F92, F93, F100, F101, F102,
F104, F105, F106, F110, F113, F114, F115, F127, F131, F132

RFC F5, F59, F74
ETC F5, F10, F45, F68, F74, F85, F86, F101
ν-SVC F5, F25, F28, F33, F34, F37, F44, F59, F68, F74, F82, F85, F86, F101
PAC F37, F44, F59, F74, F86, F106
SGDC F5, F25, F37, F44, F59, F74, F82, F101, F106
LRCVC F37, F59, F74, F86

Table 8
Accuracy, precision and f1-score generated by RC, MNBC, RFC, ETC, ν-SVC, PAC, SGDC and LRCVC for ten pairs of training and
testing datasets for north train test. Highest mean accuracy achieved by using MNBC in terms of accuracy, precision, and f1-score

(highlighted in red color)

Classifier 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Mean
T&P1 T&P T&P T&P T&P T&P T&P T&P T&P T&P

set set set set set set set set set set

RC
Accuracy 0.938 0.875 0.813 0.938 0.875 0.813 0.938 0.813 1.000 0.813 0.881
Precision 0.944 0.905 0.833 0.944 0.878 0.833 0.952 0.889 1.000 0.875 0.905
f1-score 0.939 0.878 0.816 0.933 0.878 0.816 0.937 0.79 1.000 0.78 0.877
MNBC
Accuracy 1.000 1.000 0.875 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.988
Precision 1.000 1.000 0.878 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.988
f1-score 1.000 1.000 0.878 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.988
RFC
Accuracy 1.000 1.000 0.937 0.937 0.937 0.937 0.937 0.937 1.000 0.875 0.949
Precision 1.000 1.000 0.944 0.944 0.944 0.944 0.944 0.944 1.000 0.867 0.953
f1-score 1.000 1.000 0.932 0.932 0.932 0.932 0.932 0.932 1.000 0.868 0.946
ETC
Accuracy 0.938 1.000 0.937 1.000 0.937 0.937 0.937 1.000 1.000 0.812 0.949
Precision 0.944 1.000 0.952 1.000 0.944 0.952 0.944 1.000 1.000 0.875 0.961
f1-score 0.939 1.000 0.937 1.000 0.932 0.937 0.932 1.000 1.000 0.780 0.945
ν-SVC
Accuracy 1.000 1.000 0.937 1.000 0.937 0.875 0.937 0.937 1.000 0.937 0.956
Precision 1.000 1.000 0.945 1.000 0.945 0.905 0.945 0.945 1.000 0.945 0.963
f1-score 1.000 1.000 0.933 1.000 0.939 0.877 0.933 0.933 1.000 0.933 0.955
PAC
Accuracy 0.937 0.937 0.875 0.937 0.937 0.937 0.875 0.813 0.937 0.937 0.913
Precision 0.945 0.952 0.905 0.945 0.945 0.945 0.905 0.833 0.952 0.945 0.927
f1-score 0.939 0.937 0.877 0.933 0.933 0.933 0.877 0.817 0.938 0.933 0.912
SGDC
Accuracy 1.000 0.938 0.813 0.938 0.938 1.000 0.938 0.938 0.938 0.938 0.937
Precision 1.000 0.945 0.875 0.945 0.952 1.000 0.945 0.945 0.945 0.945 0.950
f1-score 1.000 0.933 0.809 0.933 0.937 1.000 0.933 0.933 0.933 0.933 0.934
LRCVC
Accuracy 0.938 0.938 0.875 0.813 0.875 0.875 0.875 0.875 0.938 0.875 0.887
Precision 0.945 0.945 0.905 0.821 0.879 0.905 0.905 0.886 0.945 0.867 0.899
f1-score 0.939 0.939 0.877 0.803 0.873 0.877 0.877 0.871 0.933 0.868 0.885

T&P: jth testing and prediction set.

Furthermore, in subsection 4.1, we also discuss the
recursive feature elimination with cross validation
(RFECV) which is used on our datasets to reduce
their corresponding dimensions.

The datasets of North Indian and Vadu cohorts
considered in this study contain all categorical data.
Among these, the Vadu dataset contains some val-
ues that need to be added. Here, in Vadu dataset, if
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Table 9
Accuracy, precision and f1-score generated by RC, MNBC, RFC, ETC, ν-SVC, PAC, SGDC and LRCVC for ten pairs of training and

testing datasets for vadu train test. Highest mean accuracy achieved by using ν-SVC in terms of accuracy, precision, and f1-score
(highlighted in red color)

Classifier 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Mean
T&P T&P T&P T&P T&P T&P T&P T&P T&P T&P
set set set set set set set set set set

RC
Accuracy 0.880 0.880 0.880 0.920 0.840 0.800 0.920 0.960 0.840 0.880 0.880
Precision 0.889 0.912 0.893 0.935 0.831 0.815 0.914 0.952 0.800 0.889 0.883
f1-score 0.879 0.842 0.869 0.899 0.827 0.800 0.914 0.958 0.798 0.870 0.866
MNBC
Accuracy 0.880 0.920 0.960 0.960 1.000 0.840 0.960 1.000 0.960 0.920 0.940
Precision 0.867 0.935 0.952 0.952 1.000 0.889 0.972 1.000 0.944 0.933 0.944
f1-score 0.856 0.899 0.952 0.952 1.000 0.806 0.955 1.000 0.950 0.896 0.927
RFC
Accuracy 1.000 0.920 0.960 0.920 0.920 0.960 0.960 0.880 0.880 0.920 0.932
Precision 1.000 0.935 0.952 0.917 0.917 0.952 0.972 0.874 0.852 0.907 0.928
f1-score 1.000 0.899 0.952 0.908 0.914 0.952 0.955 0.871 0.856 0.909 0.922
ETC
Accuracy 0.960 0.880 0.920 0.960 0.920 0.880 0.960 0.920 0.920 0.960 0.928
Precision 0.963 0.882 0.917 0.972 0.949 0.866 0.972 0.933 0.900 0.952 0.931
f1-score 0.950 0.859. 0.908 0.955 0.920 0.859 0.955 0.917 0.900 0.958 0.918
ν-SVC
Accuracy 0.960. 0.920 0.920 0.960 1.000 0.920 0.960 0.960 0.960 0.960 0.952
Precision 0.972 0.935 0.917 0.972 1.000 0.917 0.972 0.952 0.944 0.963 0.954
f1-score 0.955 0.899 0.908 0.955 1.000 0.908 0.955 0.952 0.950 0.950 0.943
PAC
Accuracy 0.880 0.880 0.840 0.880 0.840 0.880 0.920 1.000 0.920 0.880 0.892
Precision 0.899 0.912 0.817 0.889 0.853 0.866 0.935 1.000 0.905 0.878 0.894
f1-score 0.879 0.842 0.817 0.870 0.818 0.859 0.899 1.000 0.911 0.874 0.877
SGDC
Accuracy 0.920 0.800 0.920 0.880 1.000 0.880 0.960 0.960 0.920 0.880 0.912
Precision 0.914 0.769 0.949 0.889 1.000 0.906 0.972 0.972 0.939 0.878 0.919
f1-score 0.914 0.763 0.920 0.878 1.000 0.837 0.955 0.955 0.885 0.874 0.898
LRCVC
Accuracy 0.920 0.840 0.880 1.000 0.960 0.880 0.920 1.000 0.960 0.880 0.924
Precision 0.914 0.824 0.893 1.000 0.963 0.906 0.949 1.000 0.944 0.867 0.926
f1-score 0.914 0.797 0.869 1.000 0.950 0.837 0.920 1.000 0.954 0.856 0.910

a particular feature f contains a missing value, it is
replaced with the modal value of f .

From the perspective of machine learning, the pre-
processing of data is very important as far as the
overfitting problem of the ML estimators is con-
cerned. Here, it is to be mentioned that one of
the causes of the overfitting problem is due to the
presence of highly correlated features in a dataset.
Accordingly, in our work, we have eliminated the
highly correlated features from each pair of the
training and the testing datasets. In this perspective,
we have calculated the Pearson correlation coeffi-
cient between a pair of features in the jth training
dataset, and essentially eliminated the features hav-
ing a correlation coefficient more than |c| from the
training dataset and its corresponding testing dataset,
where c takes the value of either −0.8 or +0.8. The
highly correlated features which are eliminated from

the datasets of North Indian and Vadu cohorts are
reported in Table 1.

Moreover, to facilitate the training process of the
ML models, the categorical data of our dataset is
transformed into numerical data and is rescaled using
the in-build scikit-learn’s LabelEncoder and Min-
MaxScaler classes, respectively.

5.2.1. Recursive Feature Elimination with Cross
Validation (RFECV)

To reduce the dimension of the feature matrices,
in this study, we have considered scikit-learn’s in-
built class RFECV, which is popularly used to select
those features from a training dataset that are most
pertinent as far as a prediction of the target vari-
able is concerned. Usually, some ML algorithms
can be deceived by irrelevant features, resulting in
shoddier performance in their predictive capabilities.
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Table 10
Accuracy, precision and f1-score generated by RC, MNBC, RFC, ETC, ν-SVC, PAC, SGDC and LRCVC for ten pairs of training and
testing datasets for north vadu train test. Highest mean accuracy achieved by using ETC in terms of accuracy, precision, and f1-score

(highlighted in red color)

Classifier 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Mean
T&P T&P T&P T&P T&P T&P T&P T&P T&P T&P
set set set set set set set set set set

RC
Accuracy 0.880 0.960 0.920 0.880 0.760 0.800 0.800 0.800 0.840 0.880 0.852
Precision 0.889 0.972 0.911 0.878 0.833 0.783 0.810 0.848 0.852 0.867 0.864
f1-score 0.856 0.955 0.917 0.866 0.769 0.780 0.801 0.802 0.830 0.856 0.843
MNBC
Accuracy 0.960 0.920 0.800 0.920 0.880 0.840 0.840 0.880 0.920 0.840 0.880
Precision 0.972 0.914 0.836 0.917 0.889 0.833 0.844 0.889 0.905 0.833 0.883
f1-score 0.963 0.914 0.775 0.919 0.878 0.830 0.840 0.881 0.903 0.830 0.873
RFC
Accuracy 0.920 0.840 0.960 0.960 0.960 0.840 0.800 0.800 0.880 0.920 0.888
Precision 0.917 0.827 0.963 0.972 0.952 0.856 0.769 0.848 0.875 0.935 0.891
f1-score 0.914 0.822 0.965 0.955 0.952 0.838 0.768 0.792 0.866 0.899 0.877
ETC
Accuracy 0.960 0.920 0.960 0.920 0.920 0.880 0.920 0.880 0.880 0.880 0.912
Precision 0.972 0.949 0.972 0.911 0.949 0.889 0.914 0.889 0.875 0.868 0.919
f1-score 0.955 0.905 0.963 0.917 0.920 0.869 0.914 0.878 0.865 0.870 0.906
ν-SVC
Accuracy 0.960 0.880 0.880 0.800 0.840 0.840 0.880 0.920 0.920 0.880 0.880
Precision 0.963 0.863 0.889 0.776 0.833 0.833 0.874 0.907 0.905 0.863 0.871
f1-score 0.950 0.866 0.870 0.763 0.830 0.830 0.871 0.909 0.909 0.866 0.866
PAC
Accuracy 0.920 0.880 0.840 0.920 0.760 0.840 0.840 0.840 0.880 0.840 0.856
Precision 0.931 0.867 0.842 0.907 0.726 0.829 0.836 0.833 0.856 0.815 0.844
f1-score 0.914 0.856 0.823 0.909 0.727 0.820 0.824 0.819 0.840 0.793 0.832
SGDC
Accuracy 0.880 0.920 0.920 0.960 0.840 0.840 0.880 0.920 0.920 0.880 0.896
Precision 0.869 0.907 0.933 0.952 0.813 0.838 0.866 0.935 0.900 0.906 0.892
f1-score 0.863 0.909 0.896 0.958 0.808 0.833 0.859 0.899 0.900 0.837 0.876
LRCVC
Accuracy 0.840 0.880 0.760 0.960 0.840 0.840 0.800 0.920 0.880 0.880 0.860
Precision 0.867 0.906 0.733 0.952 0.838 0.817 0.819 0.903 0.852 0.909 0.860
f1-score 0.836 0.837 0.727 0.958 0.833 0.817 0.794 0.903 0.856 0.836 0.840

In such contexts, feature selection becomes useful
which selects only a subset of features to enhance the
effectiveness and efficiency of the ML algorithms.
RFECV uses recursive feature selection (RFE) with
cross validation loop to find the optimal features.

Using RFECV, we determine the number of opti-
mal features for all the ten combinations of training
and testing datasets of the North Indian and Vadu
cohorts. For the sake of convenience, hereafter, we
categorize ten pairs of predetermined training and
testing datasets into three groups and address each
of these groups of ten pairs of datasets as follows.

(i) Training and testing dataset of North Indian
cohort as north train test.

(ii) Training and testing dataset of Vadu cohort as
vadu train test.

(iii) Training and testing datasets of North
Indian and Vadu cohorts, respectively as
north vadu train test.

The total number of optimal features obtained
by applying RFECV along with each of the eight
classifiers on the ten predetermined training and
testing datasets of north train test, vadu train test

and north vadu train test are respectively reported
in Tables 2, 3 and 4. Furthermore, for each of the
ten pairs of training and testing datasets, all the
optimal features for north train test, vadu train test

and north vadu train test are presented in the
supplementary document Supplementary II.docx.
Subsequently, based on those selected features, we
have also identified the list of optimal features
which are common to all the ten pairs of training
and testing datasets as far as the feature selection
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Table 11
AUROCCS, MCC and HL generated by RC, MNBC, RFC, ETC, ν-SVC, PAC, SGDC and LRCVC for ten pairs of training and testing
datasets for north train test. Highest mean value achieved by using MNBC in terms of AUROCCS, MCC, and HL (highlighted in red

color)

Classifier 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Mean
T&P T&P T&P T&P T&P T&P T&P T&P T&P T&P
set set set set set set set set set set

RC
AUROCCS 0.957 0.914 0.859 0.952 0.907 0.859 0.950 0.850 1.000 0.855 0.910
MCC 0.912 0.833 0.722 0.911 0.812 0.722 0.911 0.755 1.000 0.759 0.834
HL 0.063 0.125 0.188 0.063 0.125 0.188 0.063 0.188 0.000 0.188 0.119
MNBC
AUROCCS 1.000 1.000 0.907 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.991
MCC 1.000 1.000 0.812 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.981
HL 0.000 0.000 0.125 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013
RFC
AUROCCS 1.000 1.000 0.952 0.952 0.952 0.952 0.952 0.952 1.000 0.903 0.961
MCC 1.000 1.000 0.911 0.911 0.911 0.911 0.911 0.911 1.000 0.812 0.928
HL 0.000 0.000 0.063 0.063 0.063 0.063 0.063 0.063 0.000 0.125 0.050
ETC
AUROCCS 0.957 1.000 0.950 1.000 0.952 0.950 0.952 1.000 1.000 0.855 0.961
MCC 0.912 1.000 0.911 1.000 0.911 0.911 0.911 1.000 1.000 0.759 0.931
HL 0.063 0.000 0.063 0.000 0.063 0.063 0.063 0.000 0.000 0.188 0.050
ν-SVC
AUROCCS 1.000 1.000 0.952 1.000 0.957 0.909 0.952 0.952 1.000 0.952 0.967
MCC 1.000 1.000 0.911 1.000 0.912 0.827 0.911 0.911 1.000 0.911 0.938
HL 0.000 0.000 0.063 0.000 0.063 0.125 0.063 0.063 0.000 0.063 0.044
PAC
AUROCCS 0.957 0.950 0.909 0.952 0.952 0.952 0.909 0.859 0.950 0.952 0.934
MCC 0.912 0.911 0.827 0.911 0.911 0.911 0.827 0.722 0.911 0.911 0.876
HL 0.063 0.063 0.125 0.063 0.063 0.063 0.125 0.188 0.063 0.063 0.088
SGDC
AUROCCS 1.000 0.952 0.860 0.952 0.950 1.000 0.952 0.952 0.952 0.952 0.952
MCC 1.000 0.911 0.751 0.911 0.911 1.000 0.911 0.911 0.911 0.911 0.913
HL 0.000 0.063 0.188 0.063 0.063 0.000 0.063 0.063 0.063 0.063 0.063
LRCVC
AUROCCS 0.957 0.957 0.909 0.860 0.909 0.909 0.909 0.902 0.952 0.903 0.916
MCC 0.912 0.912 0.827 0.732 0.818 0.827 0.827 0.816 0.911 0.812 0.839
HL 0.063 0.063 0.125 0.188 0.125 0.125 0.125 0.125 0.063 0.125 0.113

of RFECV for a particular classifier is concerned.
Considering north train test, vadu train test and
north vadu train test, it is observed that maximum
and minimum number of optimal features, which are
common in all the ten training and testing datasets
are selected respectively by MNBC and RC (cf.
Tables 5, 6 and 7). Furthermore, from Table 5, we
observe that F74 is selected by seven out of eight
classifiers, including RC, RFC, ETC, ν-SVC, PAC,
SGDC and LRCVC when north train test is con-
sidered. Similarly, from Table 6, the feature F2 of
vadu train test is selected by six classifiers, namely
RC, RFC, ν-SVC, PAC, SGDC and LRCVC. More-
over, as far as Table 7 is concerned, F59 and F74
of north vadu train test are selected by seven clas-
sifiers. Here, F59 is selected by RC, MNBC, RFC,
ν-SVC, PAC, SGDC and LRCVC, and F74 is selected
by RC, RFC, ETC, ν-SVC, PAC, SGDC and LRCVC.

5.3. Performance analysis of the Machine
Learning Classifiers

In this section, we analyze the performance of the
eight ML classifiers on the datasets corresponding
to the North Indian and Vadu cohorts. For training
the ML algorithms efficiently, some important hyper-
parameters of the classifiers are tuned. Accordingly,
we have used the in-built class of scikit-learn library,
RandomizedSearchCV to determine the optimal val-
ues of the hyperparameters of the classifiers for each
of the ten predetermined training datasets of the two
cohorts. The optimal values of the associated hyper-
parameter of all the eight classifiers corresponding to
each of the ten training datasets are reported in the
supplementary document Supplementary III.docx.

In this study, the north vadu train test implies a
cross-dataset setup, where the prediction capabilities
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Table 12
AUROCCS, MCC and HL generated by RC, MNBC, RFC, ETC, ν-SVC, PAC, SGDC and LRCVC for ten pairs of training and testing

datasets for vadu train test. Highest mean value achieved by using ν-SVC in terms of AUROCCS, MCC, and HL (highlighted in red color)

Classifier 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Mean
T&P T&P T&P T&P T&P T&P T&P T&P T&P T&P
set set set set set set set set set set

RC
AUROCCS 0.904 0.883 0.898 0.923 0.883 0.859 0.936 0.976 0.862 0.917 0.904
MCC 0.815 0.824 0.82 0.881 0.762 0.712 0.876 0.941 0.752 0.833 0.822
HL 0.120 0.120 0.120 0.080 0.160 0.200 0.080 0.040 0.160 0.120 0.120
MNBC
AUROCCS 0.901 0.923 0.970 0.970 1.000 0.862 0.960 1.000 0.973 0.925 0.949
MCC 0.821 0.881 0.941 0.941 1.000 0.776 0.940 1.000 0.940 0.884 0.912
HL 0.120 0.080 0.040 0.040 0.000 0.160 0.040 0.000 0.040 0.080 0.060
RFC
AUROCCS 1.000 0.923 0.970 0.931 0.946 0.970 0.960 0.907 0.906 0.938 0.945
MCC 1.000 0.881 0.941 0.878 0.885 0.941 0.940 0.817 0.816 0.879 0.898
HL 0.000 0.080 0.040 0.080 0.080 0.040 0.040 0.120 0.120 0.080 0.068
ETC
AUROCCS 0.962 0.891 0.931 0.960 0.928 0.899 0.960 0.937 0.933 0.976 0.938
MCC 0.940 0.817 0.878 0.940 0.881 0.815 0.940 0.883 0.877 0.941 0.891
HL 0.040 0.120 0.080 0.040 0.080 0.120 0.040 0.080 0.080 0.040 0.072
ν-SVC
AUROCCS 0.960 0.923 0.931 0.960 1.000 0.931 0.960 0.970 0.973 0.962 0.957
MCC 0.940 0.881 0.878 0.940 1.000 0.878 0.940 0.941 0.940 0.940 0.928
HL 0.040 0.080 0.080 0.040 0.000 0.080 0.040 0.040 0.040 0.040 0.048
PAC
AUROCCS 0.904 0.883 0.869 0.917 0.868 0.899 0.923 1.000 0.953 0.914 0.913
MCC 0.815 0.824 0.752 0.833 0.764 0.815 0.881 1.000 0.887 0.825 0.840
HL 0.120 0.120 0.160 0.120 0.160 0.120 0.080 0.000 0.080 0.120 0.108
SGDC
AUROCCS 0.936 0.830 0.928 0.923 1.000 0.885 0.960 0.960 0.911 0.914 0.925
MCC 0.876 0.689 0.881 0.834 1.000 0.825 0.940 0.940 0.878 0.825 0.869
HL 0.080 0.200 0.080 0.120 0.000 0.120 0.040 0.040 0.080 0.120 0.088
LRCVC
AUROCCS 0.936 0.853 0.898 1.000 0.962 0.885 0.928 1.000 0.977 0.901 0.934
MCC 0.876 0.754 0.820 1.000 0.940 0.825 0.881 1.000 0.941 0.821 0.886
HL 0.080 0.160 0.120 0.000 0.040 0.120 0.080 0.000 0.040 0.120 0.076

Fig. 3. The confusion matrices for north train test generated by MNBC for (a) first, second and fourth through tenth testing datasets (b)
third testing dataset. From this confusion matrix we can say, (a) all results are true positive, i.e. all 6 were Vata, 5 were Kapha and 5 were
Pitta but in (b) the model incorrectly predicted that 1 were Kapha when it were actually Vata (False Positive, FP), and incorrectly predicted
that 1 was Vata when it was actually Kapha. (False Negative, FN).
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Fig. 4. The confusion matrices for vadu train test generated by ν-SVC for (a) first testing dataset, (b) second testing dataset, (c) third testing
dataset, (d) forth testing dataset, (e) fifth testing dataset, (f) sixth testing dataset, (g) seventh testing dataset, (h) eighth testing dataset, (i)
ninth testing dataset and (j) tenth testing dataset. From the confusion matrices we can say the percentage of false negative answers is very
less.
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Table 13
AUROCCS, MCC and HL generated by RC, MNBC, RFC, ETC, ν-SVC, PAC, SGDC and LRCVC for ten pairs of training and testing

datasets for north vadu train test. Highest mean value achieved by using ETC in terms of AUROCCS, MCC, and HL (highlighted in red
color)

Classifier 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Mean
T&P T&P T&P T&P T&P T&P T&P T&P T&P T&P
set set set set set set set set set set

RC
AUROCCS 0.911 0.960 0.945 0.897 0.851 0.847 0.865 0.869 0.899 0.901 0.895
MCC 0.835 0.940 0.880 0.814 0.703 0.702 0.717 0.738 0.783 0.821 0.793
HL 0.120 0.040 0.080 0.120 0.240 0.200 0.200 0.200 0.160 0.120 0.148
MNBC
AUROCCS 0.967 0.936 0.855 0.952 0.923 0.885 0.880 0.928 0.946 0.885 0.916
MCC 0.940 0.876 0.725 0.888 0.834 0.766 0.756 0.839 0.886 0.766 0.828
HL 0.040 0.080 0.200 0.080 0.120 0.160 0.160 0.120 0.080 0.160 0.120
RFC
sAUROCCS 0.946 0.879 0.975 0.960 0.970 0.890 0.835 0.863 0.923 0.923 0.917
MCC 0.885 0.762 0.941 0.940 0.941 0.771 0.691 0.736 0.832 0.881 0.838
HL 0.080 0.160 0.040 0.040 0.040 0.160 0.200 0.200 0.120 0.080 0.112
ETC
AUROCCS 0.960 0.921 0.967 0.945 0.928 0.917 0.936 0.923 0.923 0.915 0.933
MCC 0.940 0.883 0.940 0.880 0.881 0.833 0.876 0.834 0.832 0.824 0.872
HL 0.040 0.080. 0.040 0.080 0.080 0.120 0.080 0.120 0.120 0.120 0.088
ν-SVC
AUROCCS 0.962 0.909 0.917 0.839 0.885 0.885 0.907 0.938 0.950 0.909 0.910
MCC 0.940 0.819 0.833 0.706 0.766 0.766 0.817 0.879 0.884 0.819 0.823
HL 0.040 0.120 0.120 0.200 0.160 0.160 0.120 0.080 0.080 0.120 0.120
PAC
AUROCCS 0.930 0.901 0.876 0.938 0.808 0.868 0.866 0.870 0.889 0.856 0.880
MCC 0.877 0.821 0.768 0.879 0.633 0.753 0.751 0.759 0.817 0.754 0.781
HL 0.080 0.120 0.160 0.080 0.240 0.160 0.160 0.160 0.120 0.160 0.144
SGDC
AUROCCS 0.900 0.938 0.925 0.976 0.864 0.891 0.899 0.923 0.933 0.885 0.913
MCC 0.815 0.879 0.884 0.941 0.753 0.773 0.815 0.881 0.877 0.825 0.844
HL 0.120 0.080 0.080 0.040 0.160 0.160 0.120 0.080 0.080 0.120 0.104
LRCVC
AUROCCS 0.893 0.885 0.807 0.976 0.891 0.869 0.853 0.933 0.906 0.887 0.890
MCC 0.783 0.825 0.634 0.941 0.773 0.752 0.709 0.876 0.816 0.831 0.794
HL 0.160 0.120 0.240 0.040 0.160 0.160 0.200 0.080 0.120 0.120 0.140

of all the classifiers are studied by training them on
the dataset of North Indian cohort and testing them
on the dataset corresponding to Vadu cohort. For
each of the three groups of datasets, we analyze the
performance of the ML classifiers by studying six
performance metrics which are reported in Table 8
through Table 13. Among these tables, the accuracy,
precision and f1-score are presented in Tables 8, 9 and
10, respectively for north train test, vadu train test

and north vadu train test. Whereas, AUROCCS,
MCC and HL are reported in Tables 11, 12 and 13
when the classifiers are executed on north train test,
vadu train test and north vadu train test, respec-
tively. In each of these tables, the best values are
highlighted in bold. Considering the accuracy, preci-
sion, and f1-score, MNBC, ν-SVC and ETC become
superior in Tables 8, 9 and 10, respectively. Among
all the ten pairs of training and testing datasets, in

Table 8, MNBC generates better results for nine
training and testing combinations of north train test

with respect to the accuracy, precision and f1-score,
and therefore the mean of each of these perfor-
mance metrics also becomes better. In Table 9, we
observe that RFC generates better accuracy, preci-
sion, and f1-score in five out of the ten pairs of
training and testing datasets. However, ν-SVC gen-
erates better mean for each of the accuracy precision
and f1-score. As a matter of fact, considering all the
ten combinations of training and testing datasets of
vadu train test, ν-SVC eventually emerges as supe-
rior compared to all its competitors with respect to
the mean values of accuracy, precision, and f1-score.
In Table 10, ETC generates better accuracy, preci-
sion, and f1-score in four out of ten pairs of training
and testing datasets, which is the maximum num-
ber of training and testing pairs for any classifier by
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Fig. 5. The confusion matrices for north vadu train test generated by ETC for (a) first testing dataset, (b) second testing dataset, (c) third
testing dataset, (d) forth testing dataset, (e) fifth testing dataset, (f) sixth testing dataset, (g) seventh testing dataset, (h) eighth testing dataset,
(i) ninth testing dataset and (j) tenth testing dataset. In this method the percentage of false negative answers is more than the above method.
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considering north vadu train test. Like Table 8, in
Table 11, MNBC generates better AUROCCS, MCC
and HL in nine out of ten training and testing pairs of
datasets of north train test. Hence, the mean values
of AUROCCS, MCC and HL also become supe-
rior for MNBC. In Table 12, for vadu train test,
MNBC emerges as superior in six out of ten train-
ing and testing datasets for AUROCCS and MCC,
and seven out of ten training and testing datasets for
HL. However, so far, the mean values of AUROCCS,
MCC and HL are concerned ν-SVC emerges as the
superior classifier. Subsequently, in Table 13, for
north vadu train test, MCC and HL become better
for RFC in four out of ten training and testing pairs
of datasets, whereas, for AUROCCS, three out of ten
training and testing pairs of datasets becomes better
in RFC. However, considering the mean values of all
the AUROCCS, MCC and HL, ETC outperforms all
its competitors.

Furthermore, analysing the performances of the
eight classifiers based on all the six performance
metrics as reported in Table 8 through Table 13, it
is observed that each of the performance metrics
becomes better for MNBC, ν-SVC and ETC with
respect to their mean values for north train test,
vadu train test and north vadu train test, respec-
tively. Consequently, we provide the RFECV
visualization plots corresponding to each of the
ten training datasets for MNBC, ν-SVC and ETC,
respectively in Fig. SII-1, Fig. SII-2 and Fig-II.3
of the Supplementary II.docx. These visualization
plots are used to graphically represent the smallest
number of features for which a classifier gener-
ates a highest percentage of correct classification
of instances. Moreover, we present the confusion
matrices of each testing dataset corresponding to
the Foldi, i = 1, 2, . . . , 10 for each of these three
classifiers for north train test, vadu train test and
north vadu train test, respectively. These confusion
matrices are depicted in Fig. 3 through Fig. 5.

6. Discussion of the results

Here we discuss the conclusive outcomes of the
analysis reported in Section 5. From Table 1, it is
observed that F5, F27, F101 are least important to
AI and that can be removed from the dataset of Vadu
cohort. From Tables 2 and 3, it is observed that the
standard deviation of the number of optimal features
is very high. We conclude that this is a drawback
of the dataset in terms of the number of records.

From Tables 5, 6 and 7, we found the most important
feature(s) for the datasets are F2, F59, F74.

Metric is an important parameter to judge the
capability of an AI. Here we have used 6 metrics
namely accuracy, precision, f1-score, AUROCCS,
MCC, and HL to evaluate the proposed method. From
Tables 8, 9, 10, 11, 12, and 13, we observed that
MNBC given the best mean value for North dataset,
ν-SVC for Vadu dataset and ETC for the North-Vadu
dataset.

Figure 3 shows the evidence of the performance of
MNBC for the North dataset. Similarly Figs. 4 and 5
shows superiority of ν-SVC and ETC for Vadu and
North-Vadu dataset respectively. This study argues
for the uses of MNBC, ν-SVC, and ETC combined
for better result.

7. Conclusion

This study conducts a comparative analysis of eight
ML classifiers on clinical methods of Prakriti classi-
fication of Ayurveda system of medicine. Here, we
consider two genetically homogeneous northern and
western India cohorts for Prakriti predictions. Fur-
ther, these classifiers are also applied on cross-dataset
setup, where each of these classifiers is trained on
datasets of the North Indian cohort and used for
prediction in the West Indian or Vadu cohort. The
comparative analysis of the algorithms suggests that
out of eight classifiers MNBC, ν-SVC and ETC
become superior in north train test, vadu train test

and north vadu train test, respectively for all the
performance metrics. It is also observed from this
study that a reduced feature set can efficiently train a
classifier while predicting Prakriti of an individual.
This, in fact, can be useful in the decision-making
process of a trained Ayurveda physician.

In the future, the study can be extended to predict
non-extreme Prakriti types. Furthermore, these ML
classifiers will also help in heterogeneous populations
and eventually help decode a novel link of genotypes
to multisystem phenotypes in associated studies.
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