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Abstract

Fused deposition modeling (FDM) is renowned as a prominent approach in the realm of 3D printing,
where objects are built layer by layer using a heated nozzle to extrude melted materials. This research
was conducted to identify the most effective FDM process variables to enhance tensile strength while
simultaneously reducing surface roughness. Polylactic Acid (PLA) was chosen to fabricate test
samples, showcasing the applications of 3D printing. In the course of this research, we conducted a
series of 27 experiments to investigate the fundamental relationship between the parameters and the
corresponding responses. The central aim of this study lies in optimizing the input variables viz.
printing speed, layer thickness, and carbon deposition (C-deposition) for the technological
manufacturing process of embossing parts in the context of Industry 4.0. To enhance both tensile
strength and surface roughness simultaneously, a new hybrid method has been suggested. This
approach integrates grey relational analysis (GRA) with principal component analysis (PCA) to
determine the optimal combination of process parameters in the 3D printing process. Notably, the
experiment trial exhibited the highest grey relational grade (GRG), indicating optimal process
parameter settings at a printing speed of 100 mm s~ ', layer thickness of 0.1 mm, and C-deposition of
15 mg respectively. Additionally, mathematical models are created through response surface
methodology to explore the impact of FDM parameters on the grey relational grade. The findings
from this study can be utilized in various industries and applications where FDM 3D printing is
employed.

1. Introduction

In today’s dynamic and consumer-oriented world, there is a growing demand for flexible, fast, and dependable
production technologies. Among these technologies, additive manufacturing stands out as its applications
continue to expand daily [1]. Additive manufacturing (AM) encompasses a range of advanced techniques, with
3-D printing being one of them, used to create a variety of products. First introduced around 1987, additive
manufacturing involves creating a 3D object layer by layer using a computer-controlled printing program [2, 3].
These cutting-edge methods allow for the production of highly intricate products while significantly reducing
waste during the manufacturing process [4, 5].

One of the diverse methods within additive manufacturing is fused deposition modeling (FDM), which
utilizes melted thermoplastic filaments to build structures. Its simplicity, accessibility, and adaptability have led
to aresurgence in its use. Over nearly forty years of development, FDM technology has progressed to the point
where it can be employed to produce reinforced composite structures with a range of materials, such as
nanomaterials, ceramics [6], polymeric materials [7], and different fibers. Although commonly used with
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thermoplastics like nylon [8], and polylactic acid [9], promising results have been achieved by using thermoset
matrix materials [10, 11], which tend to offer higher strength.

Scientists have been investigating a range of processing variables to elucidate their impact on the
characteristics of 3D-printed components fabricated using Fused Deposition Modeling (FDM). Several prior
studies have delved into examining how processing parameters affect the functionality of 3D-printed parts are
summarized in table 1.

The accuracy of FDM techniques poses a challenge due to the interdependence of numerous variables
involved in the process. Altering one parameter can lead to significant changes in other aspects, making it
difficult to predict the outcome accurately. This lack of predictability may hinder precise process control,
thereby affecting the quality and cost-effectiveness of the final printed products. To keep up with the growing
demand and explore new possibilities, it is crucial to delve further into 3D printing. This entails fine-tuning
process parameters to enhance product quality and achieve cost efficiency [4]. Hybrid optimization techniques
stand out as highly effective methods [36], This is because they harness the unique capabilities of two or more
individual methods. By emphasizing these facets, we can greatly propel the future of 3D printing.

Numerous diverse hybrid approaches have been employed in recent decades to enhance the optimization of
3D printing process parameters. In a recent study, the use of GRA and fuzzy TOPSIS was explored for selecting
3D printing techniques. The results obtained from GRA were compared with those from fuzzy TOPSIS, and it
was determined that SLS emerged as the most suitable process due to its exceptional performance in both
dimensional accuracy and surface quality [37], In a separate investigation, researchers employed the grey-based
Taguchi technique to refine the build orientation, part fill style, and slice height of FDM. This comprehensive
analysis considered various response parameters, such as hardness, surface roughness, and build time, and the
optimization results were further validated using a hybrid approach involving AHP and TOPSIS [38],
Meanwhile, another group of researchers delved into examining the influence of gas flow rate, welding speed,
and current on SS308L sample properties produced via wire arc 3D printing-cold metal transfer process. They
pursued optimal process parameters through an integrated MADM approach, incorporating fuzzy MARCOS,
fuzzy AHP, and analysis of means [39]. Also,a MADM technique based on VIKOR and AHP was introduced to
facilitate the selection of the most appropriate process parameters for FDM. This method concurrently
optimized infill percentage, printing speed, layer thickness, and zig-zag pattern for FDM [40].

Drawing from existing literature, there is much research on optimizing 3D printing process parameters
using a variety of methods. Nonetheless, little is known about the optimization of FDM using a hybrid multi-
objective approach. Henceforth, the unique aspect of this study lies in the optimizing method used to enhance
the process parameters. This novel approach offers potential advantages for professionals in the fields of 3D
printing and other rapid prototyping techniques, allowing them to apply the methodology demonstrated here to
various processes. This paper employs a novel hybrid method, combining GRA with PCA, to determine the most
suitable 3D printing process parameters, aiming to enhance mechanical and surface texture properties. These
processing parameters include the printing speed, layer thickness, and carbon deposition (C-deposition). Each
of these elements has a notable impact on establishing the robustness, longevity, and exterior characteristics of
the produced items.

2. Materials and methods

Polylactic Acid (PLA) serves as a commonly used thermoplastic polymer in fused deposition modeling (FDM)
technique [41]. This entirely eco-friendly substance is sourced from sustainable raw materials, like corn starch,
making it environmentally friendly. Additionally, PLA is affordable and comes in various colors. The strength of
PLA parts depends on numerous interconnected factors. The submicron-sized carbon particles can improve the
mechanical characteristics of the 3D-printed parts [31]. In this study, the focus was on three controllable
variables: printing speed, layer thickness, and C-deposition, which were carefully selected based on previous
literature and the capabilities of the Ender-3 V2 FDM 3D printer. The diagram illustrating the experimental
layout can be found in figure 1.

Different levels of these process parameters, as shown in table 2, were set to conduct the experimental work,
and the parts were fabricated using the chosen 3D printing machine. Table 3 presents the outcomes of the
experiments. Following the experiments, the average surface roughness (R,) of all machined surfaces was
assessed using Taylor Hobson’s Talysurf, employing a cutoff length of 0.8 mm.

3. Hybrid optimization methodology

In this research article, a novel approach to optimizing multiple responses has been presented, which
encompasses a combination of various multi-criteria decision-making techniques, namely grey relational
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Table 1. Overview of the factors influencing the characteristics of 3D printed components.

Authors (year) Process parameters Findings/ results Reference

Sood et al (2010) Raster angle & width, layer thickness, air gap, The investigation and enhancement of the mechanical characteristics are examined through the application of RSM [12]
orientation

Durgun et al (2014) Raster angles, orientations Proposed that the orientation has a greater impact compared to the angle of the raster on both the surface texture and mechanical [13]

characteristics

Onwubolu etal (2014) Raster angle & width, layer thickness, air gap, Documented the ideal procedural conditions for enhancing tensile strength [14]
orientation

Nunez et al (2015) Layer thickness, infill density The dimensional precision as well as surface characteristics can be influenced by altering the layer thickness and infill density [15]

Baich etal (2015) Infill density A greater infill density not only boosts strength but also influences production expenses [16]

Wueral (2015) Raster angle, layer thickness Best mechanical characteristics were observed when the layer thickness was set to 300 yzm and the raster angle was 0°. [17]

Behzadnasab et al Nozzle temperature The nozzle temperature setting determines the quality of the printed components. [18]

(2016)

Christiyan et al (2016) Printing speed, layer thickness Proposed that reducing the printing speed and minimizing the layer thickness could enhance the material’s mechanical characteristics. [19]

Dawoud et al (2016) Raster angle, air gap Proposed by carefully choosing FDM parameters, it was possible to achieve mechanical characteristics [20]

Chacén etal (2017) Layer thickness, feed rate, orientation Determined that the upright position led to the least favorable mechanical outcome, while the edge and flat orientations yielded the greatest [21]

strength and stiffness.

Dengetal (2018) Filling density, layer thickness, printing temp- Best tensile characteristics when printed at filling density 40%, layer thickness 0.2mm, speed 60mm s~ ' at 370°C temperature [22]
erature, printing speed

Khatwani et al (2019) Part bed temperature, layer thickness, nozzle Tensile and flexural strength improved with higher part bed temperature but showed opposite trends with layer thickness and nozzle [23]
diameter diameter changes.

Yadav et al (2020) Infill density, printing temperature The GA-ANN improved tensile strength by 4.54%, confirmed through experimental validation. [24]

Selvam et al (2020) Printing speed, printing temperature, layer Used spline interlock suture in CF-PLA enhances 3D-printed strength versus pure PLA, optimized with PSO [25]
thickness

Kafshgar et al (2021) Printing temperature, layer thickness, infill Applied Taguchi optimization for best results in mechanical properties [26]
density, raster angle

Choudhary et al (2021) Addition of bio-ceramics Demonstrated that adding bioceramics to PLA reduced wear, COF, and enhanced mechanical characteristics. [27]

Xuetal (2021) Printing temperature, infill density, layer Alterations in nozzle temperature, layer thickness, and infill density impact flexural properties [28]
thickness

Mani et al (2022) Printing temperature, infill density, layer Taguchi Design applied to optimized Surface Roughness, Tensile, and Hardness. [29]
thickness

Heidari-Rarani et al Printing speed, infill density, layer thickness The best settings for elasticity and tensile strength were found at 80% infill, 40mm.s ™~ speed, and 0.1mm layer thickness in experiments [30]

(2022)

Rajuetal (2022) C-deposition, printing speed Taguchi’s method optimized tensile strength, toughness, and surface roughness [31]

Maguluri et al (2023) Printing speed, infill density, printing The findings highlighted that nozzle temperature impacts PLA tensile properties, followed by infill density. [32]
temperature

Nagarjun et al (2023) Addition of composites Discovered the composite improved performance with a constant 2% filler concentration. [33]
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Table 1. (Continued.)

Authors (year) Process parameters Findings/ results Reference

Beylergil et al (2023) Printing speed, infill density, printing temper- Charpy-impact strength surges by 150% at 100% infill, 60° raster, 260 °C temp, and 30 mm.s ™' speed. [34]
ature, raster angle

Yao etal (2023) Printing speed, infill density, printing Tensile strength increased when temperature reached 190 °C, density was 50%, and speed was 20mm.s . [35]

temperature
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Figure 1. Experimental layout.

Table 2. Processing variables against different levels.

S1. No. Symbol Parameter Unit
1 2 3
A Printing speed mm/s 50 75 100
2 B Layer thickness mm 0.10 0.20 0.30
3 C C-deposition mg 5 10 15

analysis (GRA) and principal component analysis (PCA). The methodology consists of several well-defined steps
[42—46], outlined below:

Step 1: Development of the decision matrix
The procedure begins by establishing a decision matrix and systematically enumerating both the criteria and
alternatives. To evaluate how each alternative performs concerning each criterion, a distinct equation is utilized:
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Table 3. Experimental observations.

Tensile Surface roughness
Exp. No. A B C strength (MPa) (microns)
1 1 1 1 7.68 0.006
2 1 1 2 8.08 0.006
3 1 1 3 7.98 0.005
4 1 2 1 8.02 0.007
5 1 2 2 8.52 0.007
6 1 2 3 8.05 0.005
7 1 3 1 7.27 0.006
8 1 3 2 8.15 0.005
9 1 3 3 7.92 0.005
10 2 1 1 8.74 0.007
11 2 1 2 8.98 0.005
12 2 1 3 8.69 0.005
13 2 2 1 9.02 0.005
14 2 2 2 7.88 0.006
15 2 2 3 8.85 0.005
16 2 3 1 8.88 0.008
17 2 3 2 9.15 0.005
18 2 3 3 9.11 0.005
19 3 1 1 8.18 0.007
20 3 1 2 8.52 0.006
21 3 1 3 10.05 0.004
22 3 2 1 8.22 0.007
23 3 2 2 8.65 0.005
24 3 2 3 8.06 0.005
25 3 3 1 7.64 0.007
26 3 3 2 8.94 0.006
27 3 3 3 8.42 0.005
X111 X122 ... Xin
Dy =7 2 o B )
Xl Xmd -eeee Xonn

In the above context, D;; represents the evaluation of the ith option concerning the jth set of criteria. The variable
mi signifies the total count of experiments, while n denotes the quantity of response parameters.

Step 2: Preparing the data

Data preprocessing plays a crucial role, especially when dealing with data series that have varying ranges and
units. It becomes particularly important when there is a significant scatter range among the series or when the
target directions within the sequence are dissimilar. The objective of data preprocessing is to convert the initial
sequence into a similar one. Diverse approaches for preparing data exist when conducting grey relational
analysis, depending on the specific characteristics of the data sequence, such as its quality or productivity

If the goal value of the initial sequence has no limit and follows the principle of ‘higher is better,’
normalization can be implemented in the following manner:

x)(k) — minx! (k)

xj'(k) = @)
maxx; (k) — minx] (k)
In cases where the original sequence exhibits a ‘lower is better’ characteristic, to address factors like surface
texture, normalization can be achieved by employing the subsequent approach:
0 0
Pk — x;'(k
xith = s B = 4 (0 ()

maxx; (k) — minx] (k)

Conversely, when aiming to achieve a particular desired value, the initial sequence will undergo standardization
commencing at:

lx2(k) — x?1

*h)y=1—
* () maxx (k) — x

(C))

Alternatively, the initial sequence can be essentially standardized using the fundamental method of dividing each
value by the first element of the sequence.
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_ xio(k)
xio(l)

x;" (k) )
For the given indices, wheni ranges from 1 to m and k ranges from 1 to 1, we have m representing the count of
experimental data items, and 7 representing the count of parameters. The symbol x{ (k) signifies the initial
sequence, while x (k) denotes the sequence after data preprocessing. The maximum value within x{' (k) is
denoted as max. x{ (k), and the minimum value within x{ (k)is denoted as min. x{ (k). Meanwhile, x{ represents
the target value for x{ (k).

Step 3:Assessment of Grey correlation factors

In this stage, the assessment revolves around the analysis of grey relational coefficients. When there’s a
solitary sequence, x °(k), functioning as the reference, and all remaining sequences are utilized for comparative
purposes, this is referred to as alocal measurement of grey relations. Following the completion of data
preprocessing, the computation of the grey relation coefficient £i(k) for the kth performance attribute in the ith
experiment is undertaken to illustrate the correlation between the optimal and normalized outcomes. This
expression can be presented as follows.

Amin + S-Amax
Aoi(k) + gAmax

Where, A,;(k)_lx, (k) — x (k)| and Apax = 1.00, Appin = 0.00

The deviation sequence, denoted as A,,;(k)signifies the difference between the reference sequence x,, (k) and
the comparability sequence x;"(k). The distinguishing coefficient, £, which ranges from 0 to 1, serves to identify
the relationship between x, (k) and x;"(k). A smaller &i (k) value indicates a higher level of distinction. The
purpose of this coefficient is to measure the extent of correlation between the two sequences. In the context of
this study, a value of 0.5 has been assigned to &, which signifies an optimistic estimate derived from the normal
distribution.

&k = (6)

Step 4: Evaluation of the weighting of responses through principal component analysis

Itinvolves assessing the response weights through principal component analysis (PCA) is a statistical
method employed to convert a collection of potentially interrelated variables into a fresh set of variables that lack
correlations. Significantly, the various responses from individuals vary, suggesting varying degrees of
significance within the GRA, as determined in this research through the application of PCA.

The initial phase commences with the choice of several outcomes from n trials and m characteristics. In our
particular study, the outcome parameters acquired through the computation of the Global Ranking Coefficient
(GRC) constitute a multi-result array utilized to ascertain the criteria weights. The subsequent stage
encompasses the assessment of the correlation coefficient derived from the GRC using the subsequent formula:

Ry = [cov(x,-u), x,() ]

oxi(j)*oxi(]) @

The evaluation of each response’s GRC symbolized as x;(j), involves the consideration of the covariance (cov)
between response variables j and /, which is represented as x;(1). Furthermore, we also factor in the standard
deviation (o) of each response variable, which is denoted as ox;(j) and ox;(1). Consequently, we calculate
eigenvalues and their associated eigenvectors using equation (8).

Where A, eigenvalues, >}, A\ = n,k=1,2,....... n, and Vi[ag diz ag,]" are the eigenvectors associated

with eigenvalues.

........

Asaresult, the primary elements are derived from the equation (9)

n
Yok = Y %m(i) Vik ©)
i=1

The initial principal component is denoted as Y,,,;, followed by Y,,,, as the second component, and so forth.
These components are arranged in descending order based on their variance, meaning that Y,,,;, being the first
principal component, captures the highest variance within the data.

Step 5: Assessment of the comprehensive grey relational grades

The gray relational grades (GRG) are determined by assessing the average GRC value associated with each of
the process responses, as indicated by the subsequent formula:

%‘Zl 2.8 &k (10)
no0

In this context, the grey relational grade 7; indicates the degree of correlation between the reference sequence
and the comparability sequence. The weights 3(j) for the process parameters are computed using the formula in

7
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Table 4. Details calculations of the GRA-PCA Method.

Grey relational generation Deviation sequence Grey relational coefficient
Exp.No.

Tensile Tensile Tensile

strength Surface rough- strength Surface rough- strength Surface rough- Grey rela-

(MPa) ness (microns) (MPa) ness (microns) (MPa) ness (microns)  tionalgrades  Rank

1 0.15 0.50 0.85 0.50 0.37 0.50 0.217 22
2 0.29 0.50 0.71 0.50 0.41 0.50 0.228 18
3 0.26 0.75 0.74 0.25 0.40 0.67 0.267 13
4 0.27 0.25 0.73 0.75 0.41 0.40 0.202 26
5 0.45 0.25 0.55 0.75 0.48 0.40 0.219 21
6 0.28 0.75 0.72 0.25 0.41 0.67 0.269 12
7 0.00 0.50 1.00 0.50 0.33 0.50 0.208 23
8 0.32 0.75 0.68 0.25 0.42 0.67 0.272 10
9 0.23 0.75 0.77 0.25 0.39 0.67 0.265 14
10 0.53 0.25 0.47 0.75 0.51 0.40 0.229 17
11 0.62 0.75 0.38 0.25 0.57 0.67 0.308 5
12 0.51 0.75 0.49 0.25 0.51 0.67 0.293 7
13 0.63 0.75 0.37 0.25 0.57 0.67 0.310 4
14 0.22 0.50 0.78 0.50 0.39 0.50 0.223 19
15 0.57 0.75 0.43 0.25 0.54 0.67 0.301 6
16 0.58 0.00 0.42 1.00 0.54 0.33 0.219 20
17 0.68 0.75 0.32 0.25 0.61 0.67 0.318 2
18 0.66 0.75 0.34 0.25 0.60 0.67 0.316 3
19 0.33 0.25 0.67 0.75 0.43 0.40 0.207 25
20 0.45 0.50 0.55 0.50 0.48 0.50 0.244 16
21 1.00 1.00 0.00 0.00 1.00 1.00 0.500 1
22 0.34 0.25 0.66 0.75 0.43 0.40 0.208 24
23 0.50 0.75 0.50 0.25 0.50 0.67 0.291 8
24 0.28 0.75 0.72 0.25 0.41 0.67 0.269 11
25 0.13 0.25 0.87 0.75 0.37 0.40 0.191 27
26 0.60 0.50 0.40 0.50 0.56 0.50 0.264 15
27 0.41 0.75 0.59 0.25 0.46 0.67 0.282 9

equation (9). The evaluation of the best multi-response parameter design depends on the GRG values. The test
with the highest GRG value is regarded as the most advantageous option among all the conducted tests.

4. Results and discussion

In this study, we explored how various machining parameters impact the tensile strength and surface roughness
of a 3D-printed component. Typically, higher tensile strength and lower surface roughness were considered
desirable. To achieve this, we first normalized the experimental results (table 3) on a scale from zero to one using
equation (2) and equation (3), as indicated in table 4. Subsequently, we determined deviational sequences for all
quality characteristics in each experimental run. Next, we calculated the grey relational coefficients (GRC) using
equation (6) and presented the GRC results in table 4.

In the following step, we utilized the principal component analysis method to assess the relative importance
of each performance characteristic, as per equation (8). Following the PCA, the weights assigned to tensile
strength and surface roughness were found to be 0.4998 each. This indicates that within the investigated range of
input parameters, both attributes carry equal significance.

Ultimately, the calculation of grey relational grades (GRG) involved the averaging of GRC values derived
from the corresponding process response, as determined by equation (10). Assessment of multiple quality
characteristics relied on the GRG, with a preference for higher GRG values among the experimental runs. The
GRG values were graphed for different trials (see figure 2), revealing that the experiment numbered 21 recorded
the highest GRG value. Therefore, the best combination of process parameters is identified with a printing speed
of 100mm.s~*, layer thickness of 0.1mm, and C-deposition of 15mg.

4.1. Confirmation test

Once the optimal machining parameters have been determined, the subsequent phase involves confirming the
enhancement of performance characteristics through the utilization of this optimal combination. The
calculation of the estimated grey relational grade using the optimal levels of these parameters is as follows:

8
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Figure 2. GRG values plot for the various experimental trials.

Table 5. Results of machining performance using initial and optimal machining parameters.

Optimal machining parameters

Initial machining parameters Prediction Experiment
Setting Level AB,C, AsBCs AsB,Cs
Tensile strength (MPa) 7.68 10.05 11.54
Surface roughness R,(1um) 0.006 0.004 0.003
Grey relational grade 0.217 0.500 0.653
o
'?Z'Ym'*'Z('?j = Ym) (11)

i=0

Here, ,, represents the overall mean of the grey relational grade, ; denotes the mean of the grey relational grade
at the optimal level, and ‘0’ represents the number of machining parameters significantly influencing multiple
performance characteristics.

The results of the confirmation experiment employing the optimal machining parameters are presented in
table 5. The confirmation experiment yielded response values, with tensile strength = 10.05MPa and surface
roughness = 0.004 microns. The tensile strength shows an increased value of 10.05MPa to 11.54Mpa and the
Surface roughness R, shows a reduced value of 0.004m to 0.003 zm. This study unequivocally demonstrates
significant enhancements in various performance attributes within the 3D printing process.

4.2. Input-output in process parameter relationship model
Response Surface Methodology (RSM) was utilized to create a mathematical link between various input
variables and outcomes. A quadratic model (a second-order polynomial equation) was developed to investigate
the impacts of these variables on the overall assessment value. Employing MINITAB 17, the model coefficients
were evaluated through the least square method. Equation (11) represents the anticipated quadratic model for
predicting the hybrid methods mentioned earlier within the experimental region.

Equation (11) depicts the quadratic representation of the hybrid GRA-PCA model in the following manner:

Grey relational grades = 0.085 + 0.1081 Printing speed + 0.0050 Layer thickness

+ 0.0209 C-deposition — 0.0238 Printing speed*Printing speed

+ 0.0136 Layer thickness Layer thickness

+ 0.0010 C-deposition*C-deposition

—0.0205 Printing speed“Layer thickness

+ 0.0226 Printing speed”C-deposition

— 0.0136 Layer thickness"C-deposition

To evaluate how well the multivariate approach worked, a residual analysis was carried out to verify the
suitability of the model. This analysis serves as an essential diagnostic tool to evaluate model performance.
Figure 3 illustrates the results of the analysis, involving various graphical representations, such as a normal
probability plot depicting standardized residuals, a scatter plot illustrating standardized residuals against the

9
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Figure 3. Residual plots for overall assessment value for suggested GRA-PCA technique.

order of observations and their corresponding fitted values, and a histogram. The absence of outliers and
adherence to a normal distribution in these plots indicate the fitness of the proposed model. Furthermore, there
is no discernible pattern or structure in the standardized residuals and observation orders, which serves to affirm
the effective performance of the suggested model.

5. Conclusions

In this study, an innovative approach was developed to improve the mechanical performance and surface quality
of parts produced using fused deposition modeling (FDM) technology. The research successfully achieved its
objective by determining the most effective set of processing parameters for FDM through a hybrid multi-
objective method, combining grey relational analysis (GRA) with principal component analysis (PCA). The
study revealed that GRA and PCA offer a reliable approach to addressing multi-attribute optimization problems.
The experimental findings indicate that carbon deposition (C-deposition) has the most significant influence on
surface roughness, followed by layer thickness and printing speed. Similarly, when it comes to tensile strength,
printing speed is the most influential factor, followed by C-deposition and layer thickness. Significantly, the
experimental trial demonstrated the highest grey relational grade, suggesting that the optimal process
parameters were achieved at a printing speed of 100mm.s ', layer thickness of 0.1mm, and C-deposition of
15mg respectively.

The implications of these findings extend to various industries and applications utilizing FDM 3D printing,
promising stronger and more durable end products. Future research can explore the application of different
hybrid optimization methods to further enhance the qualities of FDM-printed components. In addition,
investigations should focus on characterizing surface hardness, residual stress, and microstructure.
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