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Abstract
Fused depositionmodeling (FDM) is renowned as a prominent approach in the realmof 3Dprinting,
where objects are built layer by layer using a heated nozzle to extrudemeltedmaterials. This research
was conducted to identify themost effective FDMprocess variables to enhance tensile strengthwhile
simultaneously reducing surface roughness. Polylactic Acid (PLA)was chosen to fabricate test
samples, showcasing the applications of 3Dprinting. In the course of this research, we conducted a
series of 27 experiments to investigate the fundamental relationship between the parameters and the
corresponding responses. The central aimof this study lies in optimizing the input variables viz.
printing speed, layer thickness, and carbon deposition (C-deposition) for the technological
manufacturing process of embossing parts in the context of Industry 4.0. To enhance both tensile
strength and surface roughness simultaneously, a newhybridmethod has been suggested. This
approach integrates grey relational analysis (GRA)with principal component analysis (PCA) to
determine the optimal combination of process parameters in the 3Dprinting process. Notably, the
experiment trial exhibited the highest grey relational grade (GRG), indicating optimal process
parameter settings at a printing speed of 100mm s−1, layer thickness of 0.1 mm, andC-deposition of
15mg respectively. Additionally,mathematicalmodels are created through response surface
methodology to explore the impact of FDMparameters on the grey relational grade. Thefindings
from this study can be utilized in various industries and applications where FDM3Dprinting is
employed.

1. Introduction

In today’s dynamic and consumer-orientedworld, there is a growing demand forflexible, fast, and dependable
production technologies. Among these technologies, additivemanufacturing stands out as its applications
continue to expand daily [1]. Additivemanufacturing (AM) encompasses a range of advanced techniques, with
3-Dprinting being one of them, used to create a variety of products. First introduced around 1987, additive
manufacturing involves creating a 3Dobject layer by layer using a computer-controlled printing program [2, 3].
These cutting-edgemethods allow for the production of highly intricate products while significantly reducing
waste during themanufacturing process [4, 5].

One of the diversemethodswithin additivemanufacturing is fused depositionmodeling (FDM), which
utilizesmelted thermoplastic filaments to build structures. Its simplicity, accessibility, and adaptability have led
to a resurgence in its use. Over nearly forty years of development, FDM technology has progressed to the point
where it can be employed to produce reinforced composite structures with a range ofmaterials, such as
nanomaterials, ceramics [6], polymericmaterials [7], and different fibers. Although commonly usedwith
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thermoplastics like nylon [8], and polylactic acid [9], promising results have been achieved by using thermoset
matrixmaterials [10, 11], which tend to offer higher strength.

Scientists have been investigating a range of processing variables to elucidate their impact on the
characteristics of 3D-printed components fabricated using FusedDepositionModeling (FDM). Several prior
studies have delved into examining howprocessing parameters affect the functionality of 3D-printed parts are
summarized in table 1.

The accuracy of FDM techniques poses a challenge due to the interdependence of numerous variables
involved in the process. Altering one parameter can lead to significant changes in other aspects,making it
difficult to predict the outcome accurately. This lack of predictabilitymay hinder precise process control,
thereby affecting the quality and cost-effectiveness of the final printed products. To keep upwith the growing
demand and explore newpossibilities, it is crucial to delve further into 3Dprinting. This entails fine-tuning
process parameters to enhance product quality and achieve cost efficiency [4]. Hybrid optimization techniques
stand out as highly effectivemethods [36], This is because they harness the unique capabilities of two ormore
individualmethods. By emphasizing these facets, we can greatly propel the future of 3Dprinting.

Numerous diverse hybrid approaches have been employed in recent decades to enhance the optimization of
3Dprinting process parameters. In a recent study, the use ofGRA and fuzzy TOPSISwas explored for selecting
3Dprinting techniques. The results obtained fromGRAwere comparedwith those from fuzzy TOPSIS, and it
was determined that SLS emerged as themost suitable process due to its exceptional performance in both
dimensional accuracy and surface quality [37], In a separate investigation, researchers employed the grey-based
Taguchi technique to refine the build orientation, part fill style, and slice height of FDM.This comprehensive
analysis considered various response parameters, such as hardness, surface roughness, and build time, and the
optimization results were further validated using a hybrid approach involving AHP andTOPSIS [38],
Meanwhile, another group of researchers delved into examining the influence of gasflow rate, welding speed,
and current on SS308L sample properties produced via wire arc 3Dprinting-coldmetal transfer process. They
pursued optimal process parameters through an integratedMADMapproach, incorporating fuzzyMARCOS,
fuzzy AHP, and analysis ofmeans [39]. Also, aMADM technique based onVIKOR andAHPwas introduced to
facilitate the selection of themost appropriate process parameters for FDM.Thismethod concurrently
optimized infill percentage, printing speed, layer thickness, and zig-zag pattern for FDM [40].

Drawing from existing literature, there ismuch research on optimizing 3Dprinting process parameters
using a variety ofmethods. Nonetheless, little is known about the optimization of FDMusing a hybridmulti-
objective approach.Henceforth, the unique aspect of this study lies in the optimizingmethod used to enhance
the process parameters. This novel approach offers potential advantages for professionals in the fields of 3D
printing and other rapid prototyping techniques, allowing them to apply themethodology demonstrated here to
various processes. This paper employs a novel hybridmethod, combiningGRAwith PCA, to determine themost
suitable 3Dprinting process parameters, aiming to enhancemechanical and surface texture properties. These
processing parameters include the printing speed, layer thickness, and carbon deposition (C-deposition). Each
of these elements has a notable impact on establishing the robustness, longevity, and exterior characteristics of
the produced items.

2. Materials andmethods

Polylactic Acid (PLA) serves as a commonly used thermoplastic polymer in fused depositionmodeling (FDM)
technique [41]. This entirely eco-friendly substance is sourced from sustainable rawmaterials, like corn starch,
making it environmentally friendly. Additionally, PLA is affordable and comes in various colors. The strength of
PLAparts depends on numerous interconnected factors. The submicron-sized carbon particles can improve the
mechanical characteristics of the 3D-printed parts [31]. In this study, the focuswas on three controllable
variables: printing speed, layer thickness, andC-deposition, whichwere carefully selected based on previous
literature and the capabilities of the Ender-3V2 FDM3Dprinter. The diagram illustrating the experimental
layout can be found infigure 1.

Different levels of these process parameters, as shown in table 2, were set to conduct the experimental work,
and the parts were fabricated using the chosen 3Dprintingmachine. Table 3 presents the outcomes of the
experiments. Following the experiments, the average surface roughness (Ra) of allmachined surfaces was
assessed using TaylorHobson’s Talysurf, employing a cutoff length of 0.8 mm.

3. Hybrid optimizationmethodology

In this research article, a novel approach to optimizingmultiple responses has been presented, which
encompasses a combination of variousmulti-criteria decision-making techniques, namely grey relational
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Table 1.Overview of the factors influencing the characteristics of 3Dprinted components.

Authors (year) Process parameters Findings/ results Reference

Sood et al (2010) Raster angle &width, layer thickness, air gap,

orientation

The investigation and enhancement of themechanical characteristics are examined through the application of RSM [12]

Durgun et al (2014) Raster angles, orientations Proposed that the orientation has a greater impact compared to the angle of the raster on both the surface texture andmechanical

characteristics

[13]

Onwubolu et al (2014) Raster angle &width, layer thickness, air gap,

orientation

Documented the ideal procedural conditions for enhancing tensile strength [14]

Nunez et al (2015) Layer thickness, infill density The dimensional precision aswell as surface characteristics can be influenced by altering the layer thickness and infill density [15]
Baich et al (2015) Infill density A greater infill density not only boosts strength but also influences production expenses [16]
Wu et al (2015) Raster angle, layer thickness Bestmechanical characteristics were observedwhen the layer thickness was set to 300 μmand the raster angle was 0º. [17]
Behzadnasab et al

(2016)
Nozzle temperature The nozzle temperature setting determines the quality of the printed components. [18]

Christiyan et al (2016) Printing speed, layer thickness Proposed that reducing the printing speed andminimizing the layer thickness could enhance thematerial’smechanical characteristics. [19]
Dawoud et al (2016) Raster angle, air gap Proposed by carefully choosing FDMparameters, it was possible to achievemechanical characteristics [20]
Chacón et al (2017) Layer thickness, feed rate, orientation Determined that the upright position led to the least favorablemechanical outcome, while the edge and flat orientations yielded the greatest

strength and stiffness.

[21]

Deng et al (2018) Filling density, layer thickness, printing temp-

erature, printing speed

Best tensile characteristics when printed atfilling density 40%, layer thickness 0.2mm, speed 60mm s−1 at 370°C temperature [22]

Khatwani et al (2019) Part bed temperature, layer thickness, nozzle

diameter

Tensile and flexural strength improvedwith higher part bed temperature but showed opposite trendswith layer thickness and nozzle

diameter changes.

[23]

Yadav et al (2020) Infill density, printing temperature TheGA-ANN improved tensile strength by 4.54%, confirmed through experimental validation. [24]
Selvam et al (2020) Printing speed, printing temperature, layer

thickness

Used spline interlock suture inCF-PLA enhances 3D-printed strength versus pure PLA, optimizedwith PSO [25]

Kafshgar et al (2021) Printing temperature, layer thickness, infill

density, raster angle

Applied Taguchi optimization for best results inmechanical properties [26]

Choudhary et al (2021) Addition of bio-ceramics Demonstrated that adding bioceramics to PLA reducedwear, COF, and enhancedmechanical characteristics. [27]
Xu et al (2021) Printing temperature, infill density, layer

thickness

Alterations in nozzle temperature, layer thickness, and infill density impact flexural properties [28]

Mani et al (2022) Printing temperature, infill density, layer

thickness

TaguchiDesign applied to optimized Surface Roughness, Tensile, andHardness. [29]

Heidari-Rarani et al

(2022)
Printing speed, infill density, layer thickness The best settings for elasticity and tensile strengthwere found at 80% infill, 40mm.s−1 speed, and 0.1mm layer thickness in experiments [30]

Raju et al (2022) C-deposition, printing speed Taguchi’smethod optimized tensile strength, toughness, and surface roughness [31]
Maguluri et al (2023) Printing speed, infill density, printing

temperature

The findings highlighted that nozzle temperature impacts PLA tensile properties, followed by infill density. [32]

Nagarjun et al (2023) Addition of composites Discovered the composite improved performancewith a constant 2% filler concentration. [33]
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Table 1. (Continued.)

Authors (year) Process parameters Findings/ results Reference

Beylergil et al (2023) Printing speed, infill density, printing temper-

ature, raster angle

Charpy-impact strength surges by 150%at 100% infill, 60° raster, 260 °C temp, and 30 mm.s−1 speed. [34]

Yao et al (2023) Printing speed, infill density, printing

temperature

Tensile strength increasedwhen temperature reached 190 °C, densitywas 50%, and speedwas 20mm.s−1. [35]
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analysis (GRA) and principal component analysis (PCA). Themethodology consists of several well-defined steps
[42–46], outlined below:

Step 1:Development of the decisionmatrix
The procedure begins by establishing a decisionmatrix and systematically enumerating both the criteria and

alternatives. To evaluate how each alternative performs concerning each criterion, a distinct equation is utilized:

Figure 1.Experimental layout.

Table 2.Processing variables against different levels.

Sl. No. Symbol Parameter Unit

1 2 3

1 A Printing speed mm/s 50 75 100

2 B Layer thickness mm 0.10 0.20 0.30

3 C C-deposition mg 5 10 15

5
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In the above context,Dij represents the evaluation of the ith option concerning the jth set of criteria. The variable
m signifies the total count of experiments, while n denotes the quantity of response parameters.

Step 2: Preparing the data
Data preprocessing plays a crucial role, especially when dealingwith data series that have varying ranges and

units. It becomes particularly important when there is a significant scatter range among the series or when the
target directions within the sequence are dissimilar. The objective of data preprocessing is to convert the initial
sequence into a similar one. Diverse approaches for preparing data exist when conducting grey relational
analysis, depending on the specific characteristics of the data sequence, such as its quality or productivity

If the goal value of the initial sequence has no limit and follows the principle of ‘higher is better,’
normalization can be implemented in the followingmanner:

x k
x k x k

x k x k
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max min
?2i

i i

i i

0 0

0 0
( ) ( ) ( )

( ) ( )
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-
-
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In cases where the original sequence exhibits a ‘lower is better’ characteristic, to address factors like surface
texture, normalization can be achieved by employing the subsequent approach:
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Conversely, when aiming to achieve a particular desired value, the initial sequence will undergo standardization
commencing at:

x k
x k x

x k x
1
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4i

i i

i i
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0 0
( ) | ( ) |

( )
( )= -

-
-

*

Alternatively, the initial sequence can be essentially standardized using the fundamentalmethod of dividing each
value by thefirst element of the sequence.

Table 3.Experimental observations.

Exp.No. A B C

Tensile

strength (MPa)
Surface roughness

(microns)

1 1 1 1 7.68 0.006

2 1 1 2 8.08 0.006

3 1 1 3 7.98 0.005

4 1 2 1 8.02 0.007

5 1 2 2 8.52 0.007

6 1 2 3 8.05 0.005

7 1 3 1 7.27 0.006

8 1 3 2 8.15 0.005

9 1 3 3 7.92 0.005

10 2 1 1 8.74 0.007

11 2 1 2 8.98 0.005

12 2 1 3 8.69 0.005

13 2 2 1 9.02 0.005

14 2 2 2 7.88 0.006

15 2 2 3 8.85 0.005

16 2 3 1 8.88 0.008

17 2 3 2 9.15 0.005

18 2 3 3 9.11 0.005

19 3 1 1 8.18 0.007

20 3 1 2 8.52 0.006

21 3 1 3 10.05 0.004

22 3 2 1 8.22 0.007

23 3 2 2 8.65 0.005

24 3 2 3 8.06 0.005

25 3 3 1 7.64 0.007

26 3 3 2 8.94 0.006

27 3 3 3 8.42 0.005
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For the given indices, wheni ranges from1 tom and k ranges from1 to n, we havem representing the count of
experimental data items, and n representing the count of parameters. The symbol xi

o(k) signifies the initial
sequence, while xi

*(k) denotes the sequence after data preprocessing. Themaximumvaluewithin xi
o(k) is

denoted asmax. xi
o(k), and theminimumvaluewithin xi

o(k)is denoted asmin. xi
o(k).Meanwhile, xi

o represents
the target value for xi

o(k).
Step 3:Assessment ofGrey correlation factors
In this stage, the assessment revolves around the analysis of grey relational coefficients.When there’s a

solitary sequence, x o(k), functioning as the reference, and all remaining sequences are utilized for comparative
purposes, this is referred to as a localmeasurement of grey relations. Following the completion of data
preprocessing, the computation of the grey relation coefficient ξi(k) for the kth performance attribute in the ith
experiment is undertaken to illustrate the correlation between the optimal and normalized outcomes. This
expression can be presented as follows.

k
k

.

.
6
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i

min max

max
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∆ ( ) ∆

( )x
x
x
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+
+

Where, koi∆ ( )= x k x ki0| ( ) ( )|-* * and max∆ = 1.00, 0.00min∆ =
The deviation sequence, denoted asΔoi(k)signifies the difference between the reference sequence xo

*(k) and
the comparability sequence xi

*(k). The distinguishing coefficient, ξ, which ranges from0 to 1, serves to identify
the relationship between xo

*(k) and xi
*(k). A smaller ξi (k) value indicates a higher level of distinction. The

purpose of this coefficient is tomeasure the extent of correlation between the two sequences. In the context of
this study, a value of 0.5 has been assigned to ξ, which signifies an optimistic estimate derived from the normal
distribution.

Step 4:Evaluation of theweighting of responses through principal component analysis
It involves assessing the response weights through principal component analysis (PCA) is a statistical

method employed to convert a collection of potentially interrelated variables into a fresh set of variables that lack
correlations. Significantly, the various responses from individuals vary, suggesting varying degrees of
significancewithin theGRA, as determined in this research through the application of PCA.

The initial phase commences with the choice of several outcomes fromn trials andm characteristics. In our
particular study, the outcome parameters acquired through the computation of theGlobal RankingCoefficient
(GRC) constitute amulti-result array utilized to ascertain the criteria weights. The subsequent stage
encompasses the assessment of the correlation coefficient derived from theGRCusing the subsequent formula:

R
x j x l

x j x l

cov ,
7jl

i i

i i

⎡
⎢⎢

⎤
⎥⎥

( ( ) ( ))
( ) ( )

( )
s s

=
*

The evaluation of each response’s GRC symbolized as xi(j), involves the consideration of the covariance (cov)
between response variables j and l, which is represented as xi(l). Furthermore, we also factor in the standard
deviation (σ) of each response variable, which is denoted asσxi(j) andσxi(l). Consequently, we calculate
eigenvalues and their associated eigenvectors using equation (8).

R I V 0 8x m ik( ) ( )l- =

Whereλx eigenvalues, n,k
n

k1 lå == k=1,2,KK.n, andVik a a ak k km
T

1, 2 .,[ ]¼¼ are the eigenvectors associated
with eigenvalues.

As a result, the primary elements are derived from the equation (9)

Y x i V 9mk
i

n

m ik
1

( ) ( )å=
=

The initial principal component is denoted asYm1, followed byYm2 as the second component, and so forth.
These components are arranged in descending order based on their variance,meaning thatYm1, being thefirst
principal component, captures the highest variancewithin the data.

Step 5: Assessment of the comprehensive grey relational grades
The gray relational grades (GRG) are determined by assessing the average GRC value associatedwith each of

the process responses, as indicated by the subsequent formula:

n
k

1
10i

j

n

j i
1

( ) ( )åg b x=
=

In this context, the grey relational grade γi indicates the degree of correlation between the reference sequence
and the comparability sequence. Theweightsβ(j) for the process parameters are computed using the formula in
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equation (9). The evaluation of the bestmulti-response parameter design depends on theGRG values. The test
with the highest GRGvalue is regarded as themost advantageous option among all the conducted tests.

4. Results and discussion

In this study, we explored how variousmachining parameters impact the tensile strength and surface roughness
of a 3D-printed component. Typically, higher tensile strength and lower surface roughness were considered
desirable. To achieve this, wefirst normalized the experimental results (table 3) on a scale from zero to one using
equation (2) and equation (3), as indicated in table 4. Subsequently, we determined deviational sequences for all
quality characteristics in each experimental run.Next, we calculated the grey relational coefficients (GRC) using
equation (6) and presented theGRC results in table 4.

In the following step, we utilized the principal component analysismethod to assess the relative importance
of each performance characteristic, as per equation (8). Following the PCA, theweights assigned to tensile
strength and surface roughness were found to be 0.4998 each. This indicates that within the investigated range of
input parameters, both attributes carry equal significance.

Ultimately, the calculation of grey relational grades (GRG) involved the averaging ofGRC values derived
from the corresponding process response, as determined by equation (10). Assessment ofmultiple quality
characteristics relied on theGRG,with a preference for higherGRG values among the experimental runs. The
GRGvalues were graphed for different trials (see figure 2), revealing that the experiment numbered 21 recorded
the highest GRG value. Therefore, the best combination of process parameters is identifiedwith a printing speed
of 100mm.s−1, layer thickness of 0.1mm, andC-deposition of 15mg.

4.1. Confirmation test
Once the optimalmachining parameters have been determined, the subsequent phase involves confirming the
enhancement of performance characteristics through the utilization of this optimal combination. The
calculation of the estimated grey relational grade using the optimal levels of these parameters is as follows:

Table 4.Details calculations of theGRA-PCAMethod.

Exp.No.
Grey relational generation Deviation sequence Grey relational coefficient

Tensile

strength

(MPa)
Surface rough-

ness (microns)

Tensile

strength

(MPa)
Surface rough-

ness (microns)

Tensile

strength

(MPa)
Surface rough-

ness (microns)
Grey rela-

tional grades Rank

1 0.15 0.50 0.85 0.50 0.37 0.50 0.217 22

2 0.29 0.50 0.71 0.50 0.41 0.50 0.228 18

3 0.26 0.75 0.74 0.25 0.40 0.67 0.267 13

4 0.27 0.25 0.73 0.75 0.41 0.40 0.202 26

5 0.45 0.25 0.55 0.75 0.48 0.40 0.219 21

6 0.28 0.75 0.72 0.25 0.41 0.67 0.269 12

7 0.00 0.50 1.00 0.50 0.33 0.50 0.208 23

8 0.32 0.75 0.68 0.25 0.42 0.67 0.272 10

9 0.23 0.75 0.77 0.25 0.39 0.67 0.265 14

10 0.53 0.25 0.47 0.75 0.51 0.40 0.229 17

11 0.62 0.75 0.38 0.25 0.57 0.67 0.308 5

12 0.51 0.75 0.49 0.25 0.51 0.67 0.293 7

13 0.63 0.75 0.37 0.25 0.57 0.67 0.310 4

14 0.22 0.50 0.78 0.50 0.39 0.50 0.223 19

15 0.57 0.75 0.43 0.25 0.54 0.67 0.301 6

16 0.58 0.00 0.42 1.00 0.54 0.33 0.219 20

17 0.68 0.75 0.32 0.25 0.61 0.67 0.318 2

18 0.66 0.75 0.34 0.25 0.60 0.67 0.316 3

19 0.33 0.25 0.67 0.75 0.43 0.40 0.207 25

20 0.45 0.50 0.55 0.50 0.48 0.50 0.244 16

21 1.00 1.00 0.00 0.00 1.00 1.00 0.500 1

22 0.34 0.25 0.66 0.75 0.43 0.40 0.208 24

23 0.50 0.75 0.50 0.25 0.50 0.67 0.291 8

24 0.28 0.75 0.72 0.25 0.41 0.67 0.269 11

25 0.13 0.25 0.87 0.75 0.37 0.40 0.191 27

26 0.60 0.50 0.40 0.50 0.56 0.50 0.264 15

27 0.41 0.75 0.59 0.25 0.46 0.67 0.282 9
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Here, mg represents the overallmean of the grey relational grade, j̅g denotes themean of the grey relational grade
at the optimal level, and ‘o’ represents the number ofmachining parameters significantly influencingmultiple
performance characteristics.

The results of the confirmation experiment employing the optimalmachining parameters are presented in
table 5. The confirmation experiment yielded response values, with tensile strength= 10.05MPa and surface
roughness= 0.004microns. The tensile strength shows an increased value of 10.05MPa to 11.54Mpa and the
Surface roughness Ra shows a reduced value of 0.004μmto 0.003μm.This study unequivocally demonstrates
significant enhancements in various performance attributes within the 3Dprinting process.

4.2. Input-output in process parameter relationshipmodel
Response SurfaceMethodology (RSM)was utilized to create amathematical link between various input
variables and outcomes. A quadraticmodel (a second-order polynomial equation)was developed to investigate
the impacts of these variables on the overall assessment value. EmployingMINITAB 17, themodel coefficients
were evaluated through the least squaremethod. Equation (11) represents the anticipated quadraticmodel for
predicting the hybridmethodsmentioned earlier within the experimental region.

Equation (11) depicts the quadratic representation of the hybridGRA-PCAmodel in the followingmanner:
Grey relational grades= 0.085+ 0.1081 Printing speed+ 0.0050 Layer thickness
+ 0.0209C-deposition− 0.0238 Printing speed*Printing speed
+ 0.0136 Layer thickness*Layer thickness
+ 0.0010C-deposition*C-deposition
− 0.0205 Printing speed*Layer thickness
+ 0.0226 Printing speed*C-deposition
− 0.0136 Layer thickness*C-deposition
To evaluate howwell themultivariate approachworked, a residual analysis was carried out to verify the

suitability of themodel. This analysis serves as an essential diagnostic tool to evaluatemodel performance.
Figure 3 illustrates the results of the analysis, involving various graphical representations, such as a normal
probability plot depicting standardized residuals, a scatter plot illustrating standardized residuals against the

Figure 2.GRG values plot for the various experimental trials.

Table 5.Results ofmachining performance using initial and optimalmachining parameters.

Optimalmachining parameters

Initialmachining parameters Prediction Experiment

Setting Level A1B1C2 A3B1C3 A3B1C3

Tensile strength (MPa) 7.68 10.05 11.54

Surface roughness Ra(μm) 0.006 0.004 0.003

Grey relational grade 0.217 0.500 0.653
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order of observations and their corresponding fitted values, and a histogram. The absence of outliers and
adherence to a normal distribution in these plots indicate the fitness of the proposedmodel. Furthermore, there
is no discernible pattern or structure in the standardized residuals and observation orders, which serves to affirm
the effective performance of the suggestedmodel.

5. Conclusions

In this study, an innovative approachwas developed to improve themechanical performance and surface quality
of parts produced using fused depositionmodeling (FDM) technology. The research successfully achieved its
objective by determining themost effective set of processing parameters for FDM through a hybridmulti-
objectivemethod, combining grey relational analysis (GRA)with principal component analysis (PCA). The
study revealed that GRA and PCAoffer a reliable approach to addressingmulti-attribute optimization problems.
The experimental findings indicate that carbon deposition (C-deposition) has themost significant influence on
surface roughness, followed by layer thickness and printing speed. Similarly, when it comes to tensile strength,
printing speed is themost influential factor, followed byC-deposition and layer thickness. Significantly, the
experimental trial demonstrated the highest grey relational grade, suggesting that the optimal process
parameters were achieved at a printing speed of 100mm.s−1, layer thickness of 0.1mm, andC-deposition of
15mg respectively.

The implications of thesefindings extend to various industries and applications utilizing FDM3Dprinting,
promising stronger andmore durable end products. Future research can explore the application of different
hybrid optimizationmethods to further enhance the qualities of FDM-printed components. In addition,
investigations should focus on characterizing surface hardness, residual stress, andmicrostructure.

Data availability statement

All data that support thefindings of this study are includedwithin the article (and any supplementary files).

Funding

Not applicable

Figure 3.Residual plots for overall assessment value for suggestedGRA-PCA technique.

10

Eng. Res. Express 6 (2024) 015080 RRanjan andA Saha



Conflicts of interest/Competing interests

The authors declare that there is no conflict of interest.

Availability of data andmaterial

All data that support thefindings of this study are includedwithin the article (and any supplementary files).

Authors’ contributions

RajeevRanjan:Conceptualization, writing -review& editing,Abhijit Saha:Methodology& visualization.

ORCID iDs

Rajeev Ranjan https://orcid.org/0000-0003-1294-4765
Abhijit Saha https://orcid.org/0000-0001-9995-6288

References

[1] ThompsonMS 2022Current status and future roles of additives in 3Dprinting—a perspective J. Vinyl Add. Tech. 28 3–16
[2] Bahnini I, RivetteM, Rechia A, Siadat A and Elmesbahi A 2018Additivemanufacturing technology: the status, applications, and

prospects Int. J. Adv.Manuf. Technol. 97 147–61
[3] Parandoush P and LinD2017A review on additivemanufacturing of polymer-fiber compositesCompos. Struct. 182 36–53
[4] RanjanR, KumarD,KunduMandChandraMoi S 2022A critical review on classification ofmaterials used in 3Dprinting process

Mater. Today Proc. 61 43–9
[5] Odera R S and IdumahC I 2023Novel advancements in additivemanufacturing of PLA: a review Polymer Engineering& Science 63

3189–208
[6] KimH, FernandoT, LiM, Lin Y andTseng T-LB 2017 Fabrication and characterization of 3Dprinted BaTiO3/PVDFnanocomposites

J. Compos.Mater. 52 197–206
[7] ShanmugamV, PavanMV, BabuK andKarnanB 2021 Fused depositionmodeling based polymericmaterials and their performance: a

reviewPolym. Compos. 42 5656–77
[8] DerKlift FV, Koga Y, Todoroki A,UedaM,Hirano Y andMatsuzaki R 2016 3DPrinting of continuous carbon fibre reinforced

thermo-plastic (CFRTP) tensile test specimensOpen Journal of CompositeMaterials 06 18–27
[9] Matsuzaki R, UedaM,NamikiM, JeongT-K, AsaharaH,Horiguchi K,Nakamura T, Todoroki A andHiranoY 2016Three-

dimensional printing of continuous-fiber composites by in-nozzle impregnation Sci. Rep. 6 1–7
[10] HaoW, Liu Y, ZhouH,ChenHand FangD2018 Preparation and characterization of 3Dprinted continuous carbon fiber reinforced

thermosetting compositesPolym. Test. 65 29–34
[11] Monticeli FM,Neves RM,OrnaghiHL andAlmeida JH S 2021A systematic review onhigh-performance fiber-reinforced 3Dprinted

thermoset compositesPolym. Compos. 42 3702–15
[12] SoodAK,Ohdar RK andMahapatra S S 2010 Parametric appraisal ofmechanical property of fused depositionmodelling processed

partsMater. Des. 31 287–95
[13] Durgun I and ErtanR 2014 Experimental investigation of FDMprocess for improvement ofmechanical properties and production cost

Rapid Prototyping Journal 20 228–35
[14] OnwuboluGC andRayegani F 2014Characterization and optimization ofmechanical properties of ABS partsmanufactured by the

fused depositionmodelling process International Journal ofManufacturing Engineering 2014 1–13
[15] Nuñez P J, Rivas A,García-Plaza E, BeamudE and Sanz-Lobera A 2015Dimensional and surface texture characterization in fused

depositionmodelling (FDM)withABS plusProcedia Engineering 132 856–63
[16] Baich L,ManogharanG andMarieH2015 Study of infill print design on production cost-time of 3Dprinted ABS parts International

Journal of RapidManufacturing 5 308
[17] WuW,Geng P, Li G, ZhaoD, ZhangH andZhao J 2015 Influence of layer thickness and raster angle on themechanical properties of

3D-printed PEEK and a comparativemechanical study between PEEK andABSMaterials 8 5834–46
[18] BehzadnasabMandYousefiAA2016 Effects of 3Dprinter nozzle head temperature on the physical andmechanical properties of PLA

based product In12th international seminar on polymer science and technology 2–5
[19] ChristiyanKG J, ChandrasekharU andVenkateswarlu K 2016A study on the influence of process parameters on themechanical

properties of 3Dprinted ABS composite IOPConference Series:Materials Science and Engineering 114 012109
[20] DawoudM, Taha I and Ebeid S J 2016Mechanical behaviour of ABS: an experimental study using FDMand injectionmoulding

techniques J.Manuf. Processes 21 39–45
[21] Chacón JM,CamineroMA,García-Plaza E andNúñez P J 2017Additivemanufacturing of PLA structures using fused deposition

modelling: effect of process parameters onmechanical properties and their optimal selectionMater. Des. 124 143–57
[22] DengX, Zeng Z, Peng B, Yan S andKeW2018Mechanical properties optimization of poly-ether-ether-ketone via fused deposition

modelingMaterials 11 216
[23] Khatwani J and Srivastava V 2018 Effect of process parameters onmechanical properties of solidified pla parts fabricated by 3Dprinting

process 3DPrinting andAdditiveManufacturing Technologies 95–104
[24] YadavD,ChhabraD, KumarGarg R, Ahlawat A and Phogat A 2020Optimization of FDM3Dprinting process parameters formulti-

material using artificial neural networkMater. Today Proc. 21 1583–91
[25] SelvamA,Mayilswamy S andWhenish R 2020 Strength Improvement of additivemanufacturing components by reinforcing carbon

fiber and by employing bioinspired interlock sutures J. Vinyl Add. Tech. 26 511–23

11

Eng. Res. Express 6 (2024) 015080 RRanjan andA Saha

https://orcid.org/0000-0003-1294-4765
https://orcid.org/0000-0003-1294-4765
https://orcid.org/0000-0003-1294-4765
https://orcid.org/0000-0003-1294-4765
https://orcid.org/0000-0001-9995-6288
https://orcid.org/0000-0001-9995-6288
https://orcid.org/0000-0001-9995-6288
https://orcid.org/0000-0001-9995-6288
https://doi.org/10.1002/vnl.21887
https://doi.org/10.1002/vnl.21887
https://doi.org/10.1002/vnl.21887
https://doi.org/10.1007/s00170-018-1932-y
https://doi.org/10.1007/s00170-018-1932-y
https://doi.org/10.1007/s00170-018-1932-y
https://doi.org/10.1016/j.compstruct.2017.08.088
https://doi.org/10.1016/j.compstruct.2017.08.088
https://doi.org/10.1016/j.compstruct.2017.08.088
https://doi.org/10.1016/j.matpr.2022.03.308
https://doi.org/10.1016/j.matpr.2022.03.308
https://doi.org/10.1016/j.matpr.2022.03.308
https://doi.org/10.1002/pen.26450
https://doi.org/10.1002/pen.26450
https://doi.org/10.1002/pen.26450
https://doi.org/10.1002/pen.26450
https://doi.org/10.1002/pc.26275
https://doi.org/10.1002/pc.26275
https://doi.org/10.1002/pc.26275
https://doi.org/10.4236/ojcm.2016.61003
https://doi.org/10.4236/ojcm.2016.61003
https://doi.org/10.4236/ojcm.2016.61003
https://doi.org/10.1038/srep23058
https://doi.org/10.1038/srep23058
https://doi.org/10.1038/srep23058
https://doi.org/10.1016/j.polymertesting.2017.11.004
https://doi.org/10.1016/j.polymertesting.2017.11.004
https://doi.org/10.1016/j.polymertesting.2017.11.004
https://doi.org/10.1002/pc.26133
https://doi.org/10.1002/pc.26133
https://doi.org/10.1002/pc.26133
https://doi.org/10.1016/j.matdes.2009.06.016
https://doi.org/10.1016/j.matdes.2009.06.016
https://doi.org/10.1016/j.matdes.2009.06.016
https://doi.org/10.1108/RPJ-10-2012-0091
https://doi.org/10.1108/RPJ-10-2012-0091
https://doi.org/10.1108/RPJ-10-2012-0091
https://doi.org/10.1155/2014/598531
https://doi.org/10.1155/2014/598531
https://doi.org/10.1155/2014/598531
https://doi.org/10.1016/j.proeng.2015.12.570
https://doi.org/10.1016/j.proeng.2015.12.570
https://doi.org/10.1016/j.proeng.2015.12.570
https://doi.org/10.1504/IJRAPIDM.2015.074809
https://doi.org/10.3390/ma8095271
https://doi.org/10.3390/ma8095271
https://doi.org/10.3390/ma8095271
https://doi.org/10.1088/1757-899X/114/1/012109
https://doi.org/10.1016/j.jmapro.2015.11.002
https://doi.org/10.1016/j.jmapro.2015.11.002
https://doi.org/10.1016/j.jmapro.2015.11.002
https://doi.org/10.1016/j.matdes.2017.03.065
https://doi.org/10.1016/j.matdes.2017.03.065
https://doi.org/10.1016/j.matdes.2017.03.065
https://doi.org/10.3390/ma11020216
https://doi.org/10.1016/j.matpr.2019.11.225
https://doi.org/10.1016/j.matpr.2019.11.225
https://doi.org/10.1016/j.matpr.2019.11.225
https://doi.org/10.1002/vnl.21766
https://doi.org/10.1002/vnl.21766
https://doi.org/10.1002/vnl.21766


[26] Kafshgar AR, Rostami S, AlihaMandBerto F 2021Optimization of properties for 3Dprinted PLAmaterial using taguchi, ANOVA and
multi-objectivemethodologies Procedia Structural Integrity 34 71–7

[27] ChoudharyN, SharmaV andKumar P 2021Reinforcement of polylactic acidwith bioceramics (alumina andYSZ composites) and
their thermomechanical and physical properties for biomedical application J. Vinyl Add. Tech. 27 612–25

[28] XuC,ChengK, Liu Y,WangR, Jiang X,DongX andXuX2020 Effect of processing parameters on flexural properties of 3D-printed
polyetherketoneketone using fused depositionmodeling Polymer Engineering& Science 61 465–76

[29] ManiM,KarthikeyanAG,KalaiselvanK,MuthusamyP andMuruganandhan P 2022Optimization of FDM3-Dprinter process
parameters for surface roughness andmechanical properties using PLAmaterialMater. Today Proc. 66 1926–31

[30] Heidari-RaraniM, Ezati N, Sadeghi P andBadrossamayM2020Optimization of FDMprocess parameters for tensile properties of
polylactic acid specimens using Taguchi design of experimentmethod J. Thermoplast. Compos.Mater. 35 2435–52

[31] Raju R,M.K. VarmaMMandKumar Baghel P 2022Optimization of process parameters for 3Dprinting process using Taguchi based
grey approachMater. Today Proc. 68 1515–20

[32] MaguluriN, SureshG andRaoKV2021Assessing the effect of FDMprocessing parameters onmechanical properties of PLA parts
using taguchimethod Journal of Thermoplastic CompositeMaterials 36 1472–88

[33] Nagarjun J, Kanchana J, RajeshkumarG andAntoDilip A 2023 Enhancedmechanical characteristics of polylactic acid/tamarind
kernel filler green compositefilament for 3Dprinting Polymer Composites 44 7925–40

[34] Beylergil B, Al-Nadhari A andYildizM2023Optimization of charpy-impact strength of 3D-printed carbon fiber/polyamide
composites by taguchimethod Polym. Compos. 44 2846–59

[35] YaoB, ZhuY, XuZ,WuY, Yang L, Liu J, Shang J, Fan J, Ouyang L and FanHS 2023Taguchi design and optimization of the PLA/PCL
composite filamentwith plasticizer and compatibilizer additives for optimal 3Dprinting Polymer Engineering&Science 63 3743–61

[36] QinY,QiQ, Shi P, Lou S, Scott P J and Jiang X 2023Multi-attribute decision-makingmethods in additivemanufacturing: the state of
the artProcesses 11 497

[37] Mahapatra S S and Panda BN2013 Benchmarking of rapid prototyping systems using grey relational analysis International Journal of
Services andOperationsManagement 16 460

[38] SakthivelMuruganR andVinodh S 2020 Parametric optimization of fused depositionmodelling process using grey based taguchi and
TOPSISmethods for an automotive componentRapid Prototyping Journal 27 155–75

[39] Koli Y, Arora S, Ahmad S, Priya, Yuvaraj N andKhanZA2022 Investigations andmulti-response optimization of wire arc additive
manufacturing coldmetal transfer process parameters for fabrication of SS308L samples J.Mater. Eng. Perform. 32 2463–75

[40] Patil P, SinghD, Raykar S J and Bhamu J 2022Multi-objective optimisation and analysis of fused depositionmodelling parameters: best
infill patterns International Journal of Six Sigma andCompetitive Advantage 14 18

[41] Yilmaz S, GulO, Eyri B, GamzeKarsli YilmazN andYilmaz T 2023Comprehensive characterization of 3D-printed bamboo/poly
(lactic acid) bio composites Polymer Engineering& Science 63 2958–72

[42] MukherjeeD, Ranjan R andMoi SC 2022Multi-response optimization of surface roughness andMRR in turning using taguchi grey
relational analysis (TGRA) International Research Journal ofMultidisciplinary Scope 03 01–07

[43] SahaA andMajumderH 2020Multi-attribute optimisation of submerged arcwelding process parameters using taguchi GRA-PCA
hybrid approachAustralian Journal ofMechanical Engineering 20 1207–12

[44] RanjanR, SahaA andKumarDasA 2022Comparison ofmulti-criteria decisionmakingmethods formulti optimization ofGTAC
process parameters Periodica PolytechnicaMechanical Engineering 66 166–74

[45] Unnikrishna Pillai J, ShunmugavelM, ThangarajM,GoldbergM, SinghR and Littlefair G 2022 Effects ofmachining parameters on
enhancing alpha-beta titanium alloy using taguchi-grey relational analysis for aerospace applications Proc. Inst.Mech. Eng. Part E J.
ProcessMech. Eng. 237 118–27

[46] SahaA andMondal SC 2016Multi-objective optimization inWEDMprocess of nanostructured hardfacingmaterials through hybrid
techniquesMeasurement 94 46–59

12

Eng. Res. Express 6 (2024) 015080 RRanjan andA Saha

https://doi.org/10.1016/j.prostr.2021.12.011
https://doi.org/10.1016/j.prostr.2021.12.011
https://doi.org/10.1016/j.prostr.2021.12.011
https://doi.org/10.1002/vnl.21837
https://doi.org/10.1002/vnl.21837
https://doi.org/10.1002/vnl.21837
https://doi.org/10.1016/j.matpr.2022.05.422
https://doi.org/10.1016/j.matpr.2022.05.422
https://doi.org/10.1016/j.matpr.2022.05.422
https://doi.org/10.1016/j.matpr.2022.07.163
https://doi.org/10.1016/j.matpr.2022.07.163
https://doi.org/10.1016/j.matpr.2022.07.163
https://doi.org/10.1002/pc.27676
https://doi.org/10.1002/pc.27676
https://doi.org/10.1002/pc.27676
https://doi.org/10.1002/pc.27285
https://doi.org/10.1002/pc.27285
https://doi.org/10.1002/pc.27285
https://doi.org/10.1002/pen.26481
https://doi.org/10.1002/pen.26481
https://doi.org/10.1002/pen.26481
https://doi.org/10.3390/pr11020497
https://doi.org/10.1504/IJSOM.2013.057509
https://doi.org/10.1504/IJSSCA.2022.124295
https://doi.org/10.1002/pen.26419
https://doi.org/10.1002/pen.26419
https://doi.org/10.1002/pen.26419
https://doi.org/10.47857/irjms.2022.v03i02.068
https://doi.org/10.47857/irjms.2022.v03i02.068
https://doi.org/10.47857/irjms.2022.v03i02.068
https://doi.org/10.3311/PPme.19835
https://doi.org/10.3311/PPme.19835
https://doi.org/10.3311/PPme.19835
https://doi.org/10.1016/j.measurement.2016.07.087
https://doi.org/10.1016/j.measurement.2016.07.087
https://doi.org/10.1016/j.measurement.2016.07.087

	1. Introduction
	2. Materials and methods
	3. Hybrid optimization methodology
	4. Results and discussion
	4.1. Confirmation test
	4.2. Input-output in process parameter relationship model

	5. Conclusions
	Data availability statement
	Funding
	Conflicts of interest/Competing interests
	Availability of data and material
	Authors’ contributions
	References



