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Abstract
The proposed effort aims to investigate efficient power generation while minimizing emissions, voltage deviations, and
maintaining transmission line voltage stability. The combined heat and power of economic dispatch (CHPED) system is
incorporated in the IEEE-57 bus in this presentation to ensure the best possible power flow in the transmission line while
meeting the load demand. It is crucial to incorporate renewable energy sources for efficient power generation because fossil
fuel sources are evolving daily. The main contribution of the proposed work is firstly, to find optimal solution for optimal
power flow (OPF)-based combined heat and power economic dispatch (CHPED) problem with wind, solar and electric
vehicles (EVs). The target is to find out maximum utilization of renewable energy sources for economic power generation,
less emission and reduced transmission losses with maintaining the permissible voltage deviation at load buses. Thus, a
new approach of electric vehicle to grid has been adopted with wind–solar-CHPED-based OPF system for improving grid
reliability and resilience. Secondly, there is a requirement to overcome the local optima problems having low convergence
speed. This is obtained by employing a relatively newmethodology, known as chaotic-opposition-based driving training-based
optimization (DTBO) (CODTBO). Due to the presence of wind, solar, EVs uncertainties, valve point effect, and transmission
losses, the system grew more complex. For three different test systems for CHPED-based OPF with and without RESs, the
proposed CODTBO algorithm has been put to the test. Results from the tested DTBO, ODTBO approach and the proposed
CODTBO have been compared. After integrating wind–solar–EVs with CHPED–OPF, the total fuel cost and emission are
reduced by 3.48% and 5.1%, respectively, as well as L-index is improved by 21.6%. Hence, it has been proved that proposed
CODTBO has the capability to easily cope up with nonlinear functions. After adding chaotic-oppositional-based learning
(CO) with DTBO (CODTBO), the fuel cost is further reduced by 1.65% and computational time is improved by 45% as
compared to DTBO. Henceforth, CODTBO has the better exploration capability and better searching ability as compared
to DTBO. The above numerical analysis demonstrated the superiority of the suggested CODTBO technique over DTBO,
ODTBO in terms of convergence rate and best-possible solution. Moreover, by doing statistical analysis on IEEE CEC 2017
benchmark functions, the robustness of the suggested CODTBO optimization technique has been assessed.

Keywords Combined heat and power economic dispatch (CHPED) · Optimal power flow (OPF) · IEEE-57 bus · Wind
energy · Solar energy · Electrical vehicle (EV) · Driving training based optimization (DTBO) · Chaotic-oppositional based
DTBO (CODTBO)

List of symbols
Vwind Wind initial velocity
k > 0 Shape factor
CDF Cumulative density function
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Pwrated Rated wind power
Vin Cut-in wind velocity
TotalCostwind Total wind cost
CostOwindm Overestimation wind cost
PfUwindm Underestimationwind cost coef-

ficient
ird Solar irradiance
S Output solar power
RC Specific irradiance point
Psolaravl Average power
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Psrl Rated solar power
Nl Number of vehicles
EEV,t Power to charge
socinitial Initial value of state of charging
ηcharging Charging efficiency

Edriving
EV,q Driving power of vehicle

m Mean
dEVl Direct cost coefficients
G f (∗) Function of Gauss error
PFUEVl Underestimated penalty factor

of EV
Costpoui

(
Ppoui

)
Fuel cost of the power generator

Costhoui (Hhoui) Generation cost of heat
Npou Number of power units
Nhou Number of heat units
δpoui and εpoui Valve point coefficients
Costwindi (Pwindi) Wind generation cost
P t
poui Thermal power output

NL Total number of transmission
line

ε1, ε2 Penalty factor
PLc Active power demand of cth

bus
Ycd Admittanceof transmission line
Pmin
poui, P

max
poui Minimumandmaximumpower

limits
Pmin
windi, P

max
windi Wind minimum and maximum

power
Vmin
Gb , Vmax

Gb Lower and upper voltage limits
Qmin

Gb , Qmax
Gb Minimum and maximum reac-

tive power
SLbmin, Smax

Lb Minimumandmaximumappar-
ent power

Z p pth Member of the population
Z st2
p Modified pth candidate solu-

tion
a and b Minimum and maximum limits

of search space’s
jR,Min, jR,Max Minimum andmaximum jump-

ing rate
fMax Maximum iteration
ran Random value
d > 0 Scale factor
Pwind wind output power
Vrated Rated wind velocity
Vout Cut-out wind velocity
Nwind Total number of wind units
CostUwindm Underestimation wind cost
PfOwindm Overestimation wind cost co-

efficient
SR Rated solar power
ird,sd Solar standard irradiance

Psolarshl Scheduled solar power
PFOsolarl Penalty cost coefficient
PFUsl Penalty cost coefficient
I Fleet index
SOC State of charging
CEV Capacity of EV battery
ηdischarging discharging efficiency
fPEV (PEV) PDF power output of EV

σ standard deviation
PEVshl scheduled power of EV
PEVl output power
PFOEVl Overestimated panalty factor
Costci

(
Pchpi, Hchpi

)
Generation cost of co-generation

Ppoui Power of i th unit
Nchp Number of CHP units
αpoui, βpoui and γpoui Coefficients of thermal units
Costwindi (Pwindi) Wind generation cost
bi0, bi1, bi2, bi3 and bi4 Emission coefficients
Gn(pq) Transfer conductance of nth

line
φpq voltage angle between buses p

and q
HD and Bim , Bi j , Bjr Power loss coefficients
QLc Reactive power demand of cth

bus
ϕcd Admittance angle of transmis-

sion line
Pmin
chpi

(
Hchpi

)
, Pmax

chpi

(
Hchpi

)
Minimumandmaximumpower

Hmin
chpi, H

max
chpi Minimum and maximum heat

Pmin
Gb , Pmax

Gb Lower and upper bounds
Vmin
Lb , Vmax

Lb Smallest and highest voltage
edges

bth Transformer
N Population size
ξ Patterning index
jR Jumping rate
f Function for current iteration
t Time index

1 Introduction

At all thermal power plants, heat is discharged into the
environment during the production of electricity, either by
flue gas, cooling towers, or another method. Because of the
byproducts produced during heating, such as NOX, SOX,
SO2, and CO2, the power developing units’ energy effi-
ciency plummets to an extremely poor value (between 50%
and 60%), and the environment is subsequently polluted. In
the field of power system research, issues with combined
heat and power economic dispatch (CHPED) are crucial.
The amount of pollutants emitted into the atmosphere is
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reduced and manufacturing costs are decreased by using
the waste heat from the steam. In CHPED, the heat recov-
ery steam generator uses chillers to recover the heat lost
during the production of steam and cooling. The CHPED
is a co-generation system that concurrently generates heat
and electricity. Despite requiring additional capital, CHPED
boosts thermal generating station efficiency to above 75%.

The CHPED mainly focused on economic power gener-
ation not on the power flow of transmission line. In power
systems, optimal power flow (OPF) is a well-researched opti-
mization issue. Carpentier [2] originally presented this issue
in 1962. Finding a steady-state operating point (OPF) that sat-
isfies operating limitations andmeets demandwhile reducing
the cost of electric power generation is the goal of OPF. So, it
is required to coupled CHPED with OPF to address the need
for affordable power generation with optimized power flow
in transmission lines. Researchers studying electrical power
systems have been concentrating on finding various opti-
mization strategies to solve the optimal power flow (OPF)
problem during the past few decades. OPF strives to find
a solution that is workable from various critical elements
including economics, the environment, dependability, secu-
rity, and power quality, among others, while keeping in mind
all of the various power system constraints.

Researchers were employed in the early stages of OPF
problems to attain the lowest fuel cost, using thermal gener-
ators as the only option. However, as time goes on, a number
of circumstances, including increasing power consumption,
environmental regulations, the depletion of fossil fuels, the
need for a carbon price, etc., force the integration of an
increasingnumber of renewable energy sources into the exist-
ing power networks. Trying to use unconventional energy
sources undoubtedly makes the network much more diffi-
cult. Numerous evolutionary techniques have been applied
in the literature to address the severely non-convex and non-
linear OPF problem. By adjusting the generators’ schedules,
terminal voltages, tap settings, and VAR compensation, it
is possible to minimize the cost of generation, active power
loss, fuel emission, and voltage deviation while still meeting
network capability, generator capacity, network security, and
power balance constraints.

1.1 Literature review

During the last two decades various researchers have pre-
sented lots of research on single- and multi-objective func-
tions using different optimization techniques with satisfying
all constraints. Different classical techniques had been tested
on CHPED and OPF including the Lagrangian relaxation
(LR) [1], the statistical process control method [2], linear
programming [3], nonlinear programming [4] and quadratic
programming [5]. Since classical approaches are based on
differential calculus and numerical methods, they are unable

to handle non-differentiable and nonlinear functions. In order
to resolve the local optimum problem of nonlinear-based dif-
ficulties, several authors applied various evolutionary-based
optimisation methodologies to arrive at the global optimal
solution. In order to find the best solution, Paul et al. [6] used
the whale optimisation approach (WOA) to take nonlineari-
ties such valve point loading (VL) and the banned operating
zone (POZ) of thermal units into consideration. Betar et al.
[7] recommended hybrid Harris Hawks for the economic
load dispatch (ELD) problem with notable performances. To
evaluate the effectiveness of the proposed algorithm on a
real-world base system,

Dutta et al. [8] utilized chemical reaction optimization
technique (CRO) to find the optimal location of UPFC for
economic power generation with maintained the constraints
of power systemofOPFproblem.Roy andPaul [9] illustrated
the krill heard algorithm (KHA) to evaluate the superiority of
the KHA approach on the OPF problem. The KHA approach
was tested on several IEEE bus systems, and comparisons
were performed with alternative optimization strategies.
Shahhen et al. [10] implemented heap-based optimization on
different buses of integrated feeder-based distribution gen-
erator for OPF with various objective functions. Fergany
and Hasanien [11] tested tree seed algorithm on different
buses with various multi-objective functions with optimal
flow through transmission lines. Xiao et al. [12] suggested
meta-model-based optimization technique to investigate the
superiority of the applied method on OPF. Mukherjee et al.
[13] proposed krill heard algorithm (KHA) to solve the OPF
problem with considering the constraint of transient stability
which helps to simultaneously balanced cost and dynamic
stability. Mandal et al. [14] recommended TLBO optimiza-
tion technique incorporated with quasi-oppositional-based
learning to obtain global optimal solution for OPF problem
of different single- and multi-objective functions.

In the present scenario fuel is improvising day by day,
so it is an important aspect use of renewable energy sources
for economic power generation. Lots of researchers used the
renewable energy sources with conventional power gener-
ating units to reduce the use of fuel for economic power
generation. Hazra and Roy [15] recommended moth flame
optimization (MFO) onHTS problem integrated with renew-
able energy for economic and emission less operation. Paul
et al. [16] testedWOA incorporatedwith chaotic-based learn-
ing (CWOA) on two test systems of CHPED problem with
consideration of wind energy source for economic power
generation. Paul et al. [17] suggested quasi-oppositional-
based learning WOA (QOWOA) on CHPED system with
considering the VL and POZ and to reduce the use of ther-
mal power unit renewable energy sources also incorporated
with the CHPED problem. Further, chaotic-based learning
is combined with QOWOA (CQOWOA) by Paul et al. [18]
to achieve the best results in order to deal with increased
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nonlinearity brought on by the increased number of non-
conventional energy sources with CHPED system.

Zhang et al. [19] proposed the gradient tracking optimiza-
tion technique to study the short-term OPF problem on IEEE
39 bus and 118 bus system with taking into account the wind
power generation to accomplish the realistic optimization
control. Evangeline and Rathika [20] presented the horse
herd algorithm (HHA) for the multi-objective OPF problem
to obtain the best results in terms of economic operation
and reducing green house effect. concentrated on regulating
voltage deviation and transmission losses as well for ideal
power flow in the transmission line. The system incorpo-
rates wind power generation, which reduced fuel usage and
emissions. For the IEEE-30 and 57 bus OPF challenge, Li
et al. [21] incorporated non-conventional energy sourceswith
the suggested solution. Weibull and lognormal PDF have
been used to reduce the uncertainty of wind speed and solar
intensity. For the 39-bus system, Chen et al. [22] suggested
semidefineprogramming (SDP) tohandle the effect of renew-
able energy sources on the OPF problem while taking into
account transient stability limitations. Sulaiman et al. [23]
presented teaching-learning-based optimization (TLBO) on
the wind–solar-based OPF issue to get the best response
for single and multi-objective cost and emission functions.
Basu [24]suggested elephant clan optimization (ECO) for
renewable-based dynamic OPF problem on different IEEE
buses and 15 bus micro-grid for validation of the proposed
technique over cost minimization.

Naderi et al. [25] implemented shuffled frog leaping algo-
rithm (SFLA) on OPF problem to solve multi-objective
functions where FACTS devices have been used to get
optimal solution over cost, emission, transmission losses
and voltage deviation. In [26], Naderi et al. analyzed opti-
mal active power dispatch (OAPD) problem integrated with
FACTS devices to obtain optimal solution over cost mini-
mization using hybrid fuzzy-based technique. Furthermore,
Naderi et al. [27] proposed self-adaptive approach for solving
OPF problem on IEEE 30-, 57- 118-bus for optimal solution.
Alizadeh et al. in their recent endeavor proposed transac-
tive control approach in microgrid [28] for energy governing
policy using different renewable energy sources. Recently,
He et al. [29] utilized FACTS devices on renewable energy-
based integrated power system to improve the stability by
suppressing the low order frequency using PSO-GA-based
optimization technique. Kumar and Sharma [30] in their
recent work, introduced FOPID-PR controller to improve the
stability of the power system by controlling frequency and
power deviation during disturbances.

1.2 Research gaps of the existing algorithms

After thorough literature survey, the merits and demerits of
different optimization algorithms used in different power

system area for solving single and multi-objective func-
tions to obtain effective solution of are summarized and
displayed in Table 1. It has been observed from Table 1
that most of the existing optimization techniques suffer
from local optima problem, sensitive to initial population,
poor convergence rate, less accuracy, inability to deal with
high dimensional problem. The limitation of the existing
techniques is overcome by integrating chaotic-opposition-
(CO) based learning approach with DTBO (CODTBO). The
CO learning enhances the searching ability of the proposed
approach which tunes the coefficient of the control variable
to reach the optimal solution.

1.3 Motivation and incitement

This article throws light on the following motivating factors
of research

(a) Improvising of the fossil fuels in the present scenario.
(b) Environmental concerns resulting in the implementation

of incentive measures to reduce the pollution from fossil
fuels.

(c) For energy utilities, balancing supply and demand effec-
tively and economically has become a challenge task due
to the increase in electricity demand.

(d) Importance of combined scheduling of thermal generat-
ing unit with renewable energy sources.

(e) Presence of nonlinearity namely, uncertainty of wind
speed, solar irradiation and PEV uncertainties etc. of the
renewable energy sources.

(f) The above literature review reveals that there are still
some gaps in the research work. Most of these optimiza-
tion techniques suffer from local optima problems, less
convergence speed and are taking more computational
time resulting in unsatisfactory outcomes.

1.4 Contribution

The main contributions of the paper are as follows:

(a) In the proposed work, optimal power flow (OPF)-based
combined heat and power economic dispatch (CHPED)
which is a new approach in the present scenario, is
successfully introduced to supply electric power with
maintaining the permissible load bus voltage.

(b) Secondly, to reduce the fuel consumption in the thermal
power plant, the renewable energy sources like wind,
solar and electric vehicle have been integratedwithOPF-
based CHPED system which is not attempted earlier in
the existing research works. The scheduling model of
IEEE 57-bus system is displayed in Fig. 1.

(c) From the literature review it has been observed that
existing optimization techniques have several limita-
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tions. To overcome the existing research gaps, a newly
developed driving-training-based-optimization (DTBO)
technique and its improved version namely, chaotic-
oppositional-based DTBO (CODTBO) have been tested
on the proposed systems to obtain the best possible solu-
tion for the power system.

(d) Different single objective functions like cost minimiza-
tion, emission minimization, voltage stability minimiza-
tion and various multi-objective functions like cost with
emission and cost with voltage stability have been dis-
cussed .

(e) Statistical analysis has been performed to judge the
robustness of the proposed optimization technique.

1.5 Limitation of the proposed technique

In this research work, the suggested algorithm is not carried
out on a real-time environment.

1.6 Paper organization

Here is how the remainder of the paper is organized: Sect. 2
includes the details of wind, solar and electric vehicle (EV)
for power generation. In Sect. 3, the proposed system’s prob-
lem formulation is shown. The different steps of proposed
optimization technique with flowchart has been discussed in
Sect. 4. Implementation of the proposed technique in solv-
ing benchmark functions and OPF-based CHPED have been
illustrated in Sect. 4. Section 6 of the proposed system reports
its conclusion.

2 Details of wind power

Due to its reliance on wind speed, which results in lower
production costs and zero emissions. As wind power can-
not meet the entire demand for electricity, it is preferable to
connect it to other sources of power to create a stable supply.
The power dispatch to the grid is impacted by thewind power
uncertainty, which is explored further below.

2.1 Wind power uncertainty functions

The term“dispatchable energy sources of electricity” describes
those sources that can produce electricity when it is needed.
But what makes it challenging to integrate the wind units
with the grid is the uncertainty of wind sources caused by
wind speed. The Weibull PDF is frequently used to depict
wind speed, as demonstrated in (1).

Frand(Vwind) = k

d

(
Vwind
d

)k−1

× e
−
(
Vwind

d

)k

(1)

Fig. 1 The single line diagram of the IEEE-57 bus system with
Thermal-CHP-wind–solar–EV

where initial velocity ofwind defined by Vwind; randomvalue
signifies with ran; k > 0 denotes the shape factor whereas
d > 0 signifies scale factor. A representation of the cumula-
tive density function (CDF) is shown in Fig. 2.

frand(Vwind) = 1 − e
−
(
Vwind

d

)k

(2)

Several researchers have assessed a linear model to estimate
wind power (see (3)) by utilizing wind velocity.

Pwind =

⎧
⎪⎨

⎪⎩

0 Vwind < Vin or Vwind > Vout
Pwrated(Vwind−Vin)

Vrated−Vin
Vin ≤ Vwind < Vrated

Pwrated Vrated ≤ Vwind < Vout

(3)

where Pwind and Pwrated are signify the wind output power
and rated power; rated wind velocity denotes with Vrated; cut-
in and cut-out velocity of wind represent with Vin and Vout;
representation of PDF of Pwind illustrated in (4).

FPwind (Pwind) = ku

dPwrated

(
Vin + u Pwind

Pwrated

d

)k−1

×e
−
⎛

⎝
Vin+u

Pwind
Pwrated
d

⎞

⎠

k

(4)
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Fig. 2 Weibul based wind velocity PDF

where u = Vrated − Vin
The two discrete probabilitieswhen Pwind equals 0 or Pwrated,
the continuous probability is represented as follows:

⎧
⎨

⎩

Srated (Pwind = 0) = Srated (V < Vin) + Srated (V > Vout)

= 1 − e
−
(
Vin
d

)k

+ e
−
(
Vout
d

)k (5)

⎧
⎨

⎩

Srated(Pwind = Pwrated) = Srated (Vrated ≤ V < Vout)

= e
−
(
Vrated

d

)k

− e
−
(
Vout
d

)k (6)

CDF of Pwind is obtained by integrating Eqs. (5) and (6),
which is illustrated in (7).

fPwind (Pwind) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 Pwind < 0

ku
dPwrated

(
Vin+u

Pwind
Pwrated
d

)k−1

× e
−
⎛

⎝
Vin+u

Pwind
Pwrated
d

⎞

⎠

k

0 ≤ Pwind < Pwrated

1 Pwind ≥ Pwrated

(7)

2.2 Determination of wind cost.

The unpredictability of the wind will affect when to schedule
wind power generating units into the system during times of
peak load. Uncertainty in electricity generation is brought on
by the unpredictable nature of thewind speed along the coast.
Weibull’s probability density function shown in Fig. 2 will be
used to examine the anticipated uncertainty costs associated

with wind energy. Overestimation and underestimation serve
as definitions for this function (8).

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

TotalCostwind =
Nwind∑

m=1
Costwindm (Pwindm)

=
Nwind∑

m=1

(
CostOwindm + CostUwindm

) (8)

where TotalCostwind represents the total wind cost and
Nwind denotes the total number of wind units.

2.2.1 Wind overestimation cost calculation

When the actual power is lower than the intended generated
power, the cost of overestimation is described. This indicates
that the wind-generated power will not be sufficient to meet
the load requirement. The excess power needed to meet the
load demand will be supplied by the spinning reserve. The
cost of overestimation can be calculated from (9).
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CostOwindm = PfOwindm × Pwindm[

1 − e
−
(
Vin
s

) j

+ e
−
(
Vout
s

) j
]

+
(
PwratedmVin
Vrated−Vin

+ Pwindm
)

⎡

⎢⎢⎢
⎣
e
−
(
Vin
c

) j

− e
−
⎛

⎝
Vin+Pwindm

Vrated−Vin
Pwrated

s

⎞

⎠

j⎤

⎥⎥⎥
⎦

+
(

Pwrateds
Vrated−Vin

)
⎡

⎣ζ

⎧
⎨

⎩
1 + 1

j ,

(
Vin+Pwindm

Vrated−Vin
Pwrated

s

) j
⎫
⎬

⎭

−ζ

{
1 + 1

j ,
(
Vin
s

) j
}]

(9)

2.2.2 Wind underestimation cost calculation

Underestimation costs are incurred when actual wind energy
is greater than anticipated. Batteries will be used to store any
additional electrical energy generated by wind turbines since
otherwise it will be lost of generated power. The formulation
to calculate the underestimation cost is represented as below
(10):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CostUwindm = PfUwindm × (Pwrated − Pwindm)[

e
−
(
Vrated

s

) j

− e
−
(
Vout
s

) j
]

+
(

PwratedVin
Vrated−Vin

+ Pwindm
)

⎡

⎢
⎢
⎣e

−( vrated
s

) j − e
−
(

Vin+Pwindm
vrated−vin
Pwrated

s

) j
⎤

⎥
⎥
⎦

+ Pwrateds
Vrated−Vin

⎡

⎣ζ

⎧
⎨

⎩
1 + 1

j ,

(
Vin+Pwindm

Vrated−Vin
Pwrated

s

) j
⎫
⎬

⎭

−ζ

{
1 + 1

j ,
(
Vrated
s

) j
}]

(10)

In the above equations overestimation and underestimation
cost ofmthwind unit signifiedwithCostOwindm andCostUwindm;
rated output power and rated velocity denoted by Pwrated and
Vrated; Vin and Vout are cut-in and cut-out velocity of wind;
PfUwindm is underestimation andPfOwindm is overestimation cost
co-efficient, respectively.

2.3 Details of solar power

The lognormal-based solar irradiance-based probability dis-
tribution function is displayed in Fig. 3. The following
Eq. (11) shows the generation of solar power due to solar
irradiance ird.

fsolar(ird) = 1

irdd
√
2π

e
−(ln ird−M)2

(2d)2 for ird > 0 (11)

Below is an expression of the power output of a solar unit
as a function of ird.

⎧
⎨

⎩

Psolar = Psr
(

ird2

ird,sdRC

)
f or 0 < ird < RC

= Psr
(

ird
ird,sd

)
for ird > RC

(12)

where SR and S are the rated and output power of solar unit;
solar standard irradiance and specific irradiance point are
signifies with ird,sd (=1000 w/m2) and RC (= 150 w/m2).

2.3.1 Solar cost calculation

The cost of electricity production for a solar unit is computed
using the sum of three different cost functions, which are as
follows [31]:

Costsolarl (Psolarl) = Costdsolarl + CostOsolarl + CostUsolarl (13)

In the above equation direct cost, overestimation cost and
underestimation cost are denoted with Costdsolarl, Cost

O
solarl

and CostUsolarl of the lth solar unit.
2.3.1.1. Solar direct cost: Direct costs are the costs

incurred during the production of solar energy. If the sys-
tem operator owns the solar farm, this sentence is absent.
The equation below provides the solar energy’s direct cost.

Costdsolarl = dsolarl Psolarshl, where l = 1, 2, 3.., ns (14)

Here, dsl represents direct cost coefficients and Psolarshl
and schedule power of the lth solar.

2.3.1.2. Solar overestimation cost: If the amount of solar
power available is less than what is scheduled, the overesti-
mation cost is calculated using the formula below.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CostOsolarl = PFOsolarl (Psolarshl − Psolaravl)

= PFOsolarl
Pvsolarshl∫

0
(Psolarshl − Psolar)

× fPsolar (Psolar) dPsolar

(15)

where PDF of the power output of solar unit signifies with
f ps(Psolar); Psolarshl, Psolaravl and PFOsolarl are the scheduled
power, average power and overestimation penalty cost coef-
ficient of the lth solar unit.

2.3.1.3. Solar underestimation cost: The underestimating
cost of the lth solar unit is determined as follows if the solar
power that is available is greater than the power that is sched-
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Fig. 3 Weibul-based wind velocity PDF

uled.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CostUsolarl = PFUsolarl (Psolaravl − Psolarshl)

= PFU
solarl

Psolarrl∫

Psolarshl

(Ps − Psolarshl)

× f ps(Psolar) dPSolar

(16)

where Psrl and PFUsl are the rated power and underestimation
panalty cost coefficient of the lth solar unit.

2.4 Details of EVs

Electric vehicles (EVs) consumeelectricity from the grid dur-
ing the valley load period and provide electricity for the grid
at peak load. The amount of time that EVs spend charging,
discharging, and driving can be used to represent the entirety
of a 24-h period. The following two equations illustrate how
EVs express their charging and discharging power.

Pcharge
I ,t = −

Nl∑

v=1

Minimum
(
0, EEV,t

)
(17)

Pdischarge
I ,t =

Nl∑

v=1

Maximum
(
0, EEV,t

)
(18)

The fleet size is reflected by the number of vehicles Nl ; rep-
resentation of the electrical vehicle fleet index is I ; t is the
time index; EEV,t represents the EVs’ power to charge and
discharge to the grid.

The state of charge in relation to the battery’s capacity, or
SOC, is what allows an electric motor to accelerate a vehicle.
In addition to preventing battery losses, SOC safeguards the
battery from excessive charging and draining. The SOC of

EV is depicted as follows.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

SOCEV,t = SOCinit − 1
CEV

t∑

q=1
[
Minimum

(
0, EEV,q

) × ηcharging
] − 1

CEV

t∑

q=1[
Maximum

(
0, EEV,q

) × ηdischarging + Edrv
EV,q

]

(19)

The SOC of EV at time t is represented by socEV,t ; ini-
tial value of state of charging is denoted by socinitial; CEV

signifies the capacity of EV battery. In EV, battery ηcharging
and ηdischarging signify charging and discharging efficiency;

driving power of vehicle at qth time is denoted by Edriving
EV,q .

2.4.1 Stochastic model of EVs

This study suggests using a stochastic model of EVs to
calculate their potential energy storage capacity. With the
following PDF, V2G power exhibits a normal distribution:

fPEV (PEV) = 1√
2πσ 2

e−(PEV−m)2/2σ2 (20)

where fPEV (PEV) corresponds the PDF of the power output
of EV unit; m is mean and σ is standard deviation of the
normal distribution function.

2.4.2 Electric vehicle (EV) cost calculation:

For the lth EVunit, there are three costs associatedwith using
electric vehicles. and it is formulated as follows:

CostEVl (PEVl) = CostdEVl + CostOEVl + CostUEVl (21)

where CostdEVl, CostOEVl and Cost
U
EVl are the direct cost, the

overestimation cost and the underestimation cost of the lth
EV unit, respectively.
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2.4.2.1. EV direct cost: The direct cost of lth EV unit may
be computed as follows:

CostdEVl = dEVl PEVshl, where l = 1, 2, 3.., nv (22)

where dEVl implies direct cost coefficients for the lth EV unit;
nEV is the number of EV units; PEVshl is the scheduled power
of the lth EV unit.

When the available EV power is greater than the intended
power, themiscalculation cost becomes apparent. The under-
estimate penalty cost is calculated using V2G power as
follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CostUEVl =
+∞∫

PEVshl

PFUEVl (PEVl − PEVshl)

× fPEV (PEVl) dPEVl

= PFU
EVl
2 (m − PEVshl)×[

1 + G f
(
m−PEVshl√

2σ

)
+ PFU

EVl.σ√
2π

e− (m−PEVshl)
2

2σ2

]

(23)

In the above equation G f (∗) signifies the function of Gauss
error; PEVl and PFUEVl are the output power and underesti-
mated panalty factor of the lth EV unit.

2.4.2.3. EV overestimation cost When the available EV
power is greater than the projected power, the overestimation
cost becomes apparent. The overestimation costs of the lth
EV unit are defined as follows.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

CostOEVl =
PEVshl∫

0

PFOEVl (PEVl − PEVshl) . fPEV (PEVl) dPEVl

= PFO
EVlσ√
2π

(
e−m2

/2σ2 − e−(m−PEVshl)
2
/2σ2

)
+

PFO
EVl
2 (m − PEVshl) ×

[
G f

(
m√
2σ

)
− G f

(
m−PEVshl√

2σ

)]

(24)

where PFOEVl is the overestimated panalty factor of the lth EV
unit.

3 Problem formulation

The problem formulation of CHPED-based OPF in IEEE-57
bus system is an important optimization approach to supervi-
sion the power system operation. The problem formulation
of the CHPED scheduling is to less utilization of thermal
units for optimal power generation while satisfying the all
constraints of generation and load balanced equation. The
renewable energy sources also incorporated in the load bal-
anced problem formulation of CHPED-based OPF system
for economic power generation with less emission. The ana-
lytical form of cost equation, power balanced equation with

and without renewable energy sources, equality and inequal-
ity constraints are illustrated as follows.

3.1 Objective function

3.1.1 Case 1: CHPED-based OPF system

The main purpose of proposed CHPED-based OPF system
is represented by (25):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Minimum Cost =
Npou∑

i=1
Costpoui

(
Ppoui

)

+
Nchp∑

i=1
Costchpi

(
Pchpi, Hchpi

) +
Nhou∑

i=1
Costhoui (Hhoui)

(25)

where fuel cost of the power generator is manifested by
Costpoui

(
Ppoui

)
; generation cost of co-generation and heat

unit manifested with Costci
(
Pchpi, Hchpi

)
and Costhoui

(Hhoui); Ppoui and Hhoui signified the power and heat of i th
unit; number of power, co-generation and heat only units
manifested by Npou, Nchp, Nhou.

The thermal cost function is described in the following
equation and is expressed as a quadratic cost function.

Costpoui
(
Ppoui

) = αpoui
(
Ppoui

)2 + βpouiPpoui + γpoui (26)

where αpoui, βpoui and γpoui express the cost coefficients of
the i th thermal unit.

By taking into account the valve point loading in in (27),
the cost function equation examined in studied in (26) has
been updated.

{
Cpoui

(
Ppoui

) = αpoui
(
Ppoui

)2 + βpouiPpoui + γpoui

+
∣∣∣δpouiSin

{
εpoui ×

(
Pmin
poui − Ppoui

)}∣∣∣
(27)

Due to sinusoidal terms from the quadratic equation and
sinusoidal terms from the valve point loading, Eq. (27)
becomes more nonlinear and non-differentiable. The valve
point effects coefficients of the i th unit defined by δpoui and
εpoui; the equation shown in (28) and (29) define the cost
function of heat-only units and co-generation units.

{
Costchpi

(
Pchpi, Hchpi

) = αchpi
(
Pchpi

)2 + βchpiPchpi
+γchpi + δchpi

(
Hchpi

)2 + εchpiHchpi + κchpiHchpiPchpi
(28)

Costhoui (Hhoui) = αhoui(Hhoui)
2 + βhouiHhoui + γhoui (29)

In above expression, Costchpi
(
Pchpi, Hchpi

)
and Costhoui

(Hhoui) define the cost equation of the i th co-generation unit
and heat only unit, respectively.
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3.1.2 Case 2: CHPED based OPF with wind–Solar

The cost function of wind-based CHPED problem is pre-
sented by (30).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimum Cost =
Npou∑

i=1
Costpoui

(
Ppoui

)

+
Nchp∑

i=1
Costchpi

(
Pchpi, Hchpi

)

+
Nhou∑

i=1
Costhoui (Hhoui)

+
Nwind∑

i=1
Costwindi (Pwindi) +

Nsolar∑

i=1
Costsolari (Psolari)

(30)

In the above equation, Costwindi (Pwindi) denotes the wind
generation cost; number of wind units represented by Nwind

respectively.

3.1.3 Case 3: CHPED-based OPF with wind–Solar–EV

The cost function of wind-based CHPED problem is pre-
sented by (31).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimum Cost =
Npou∑

i=1
Costpoui

(
Ppoui

)

+
Nchp∑

i=1
Costchpi

(
Pchpi, Hchpi

)

+
Nhou∑

i=1
Costhoui (Hhoui) +

Nwind∑

i=1
Costwindi (Pwindi)

+
Nsolar∑

i=1
Costsolari (Psolari) +

NEV∑

i=1
CostEVi (PEVi)

(31)

In the above equation, Costwindi (Pwindi) denotes the wind
generation cost; number of wind units represented by Nwind

respectively.

3.1.4 Emission minimization

The second single objective function’s goal is to reduce
emissions while ignoring cost minimization. Equation (32)
is a mathematical depiction of thermal plant emission
(emissionpou ).

Minimum emissionpou =
T∑

t=1

Npou∑

i=1[
bi0 + bi1P

t
poui + bi2(P

t
poui)

2 + bi3 exp(bi4P
t
poui)

]
(32)

In (32), bi0, bi1, bi2, bi3 and bi4 denote emission coefficients
whereas P t

poui is the thermal power output.

3.1.5 Active power loss

Inherent resistance causes active power loss in transmission
lines. Active power loss that has to be minimized is repre-
sented in (33):

PL =
NL∑

n=1

Gn(pq)

(
V 2
p + V 2

q − 2VpVq cosϕpq

)
(33)

Gn(pq): transfer conductance of nth line connected between
buses p and q. NL: total number of transmission line. φpq :
voltage angle between buses p and q.

3.1.6 Voltage deviation

To keep good voltage profile at load buses, voltage deviation
at load buses has to be minimized and it is given by (34) :

VD =
NB∑

l=1

|Vl − 1| (34)

3.1.7 L-index

Under normal operating circumstances, it is crucial to main-
tain a consistent, appropriate bus voltage at each bus. The
voltage stability indicator L-index is minimized in this work
in order to improve voltage stability. The indicator values
range from 0 to 1, with variations. Below, a quick discussion
of a power system’s L-index is provided. The relationship
between the load and generator buses’ voltage and current
for a multi-node system can be described as follows (35) :

[
Il ′
Ig′

]
=
[
yl ′ l ′ yl ′ g′

yg′ l ′ yg′ g′

][
Vl ′
Vg′

]
(35)

By matrix inversion, the above equation may be rear-
ranged as follows (36):

[
Vl ′
Ig′

]
=
[
Zl ′ l ′ Fl ′ g′

Kg′ l ′ Yg′ g′

][
Il ′
Vg′

]
(36)

The sub-matrix Fl ′ g′ may be expressed as under (37):

Fl ′ g′ = −[y11]
−1

[
yl ′ g′

]
(37)

The voltage stability index of the K th bus may be expressed
by (38).

Lk = |1 −
Ng∑

j=1

Fkj
Vj

Vk
|k = 1, 2, ......, Nl (38)
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3.1.8 Multi-objective function

Formerly single-objective functions are individually mini-
mized. However in order to assess the effectiveness of the
suggested method in a multi-objective context, two multi-
objective functions are considered in this simulation study.
Initially, employing penalty factor of ε1, two single objective
functions namely, cost and emission are transformed into a
single fitness functions and it is illustrated as under (39):

F1 = Minimum (Cost + ε1 × Emission) (39)

Here, in this simulation study, ε1 is taken as 1200.
Furthermore, another multi-objective function is cre-

ated to optimize the generation cost and L-index (i.e. Lk

simultaneously with the proper penalty factor ε2. The afore-
said multi-objective fitness function may be described as
below 40:

F2 = Minimum (Cost + ε2 × Lk) (40)

where ε2 is taken as 100,000 in the present simulation study.

3.2 Constraints

3.2.1 Equality constraints

The constraints of CHPED-based OPF and CHPED-based
OPF with wind are illustrated as given below.

3.2.1.1. Constraints of power balance for CHPED-based
OPF Constraints of power balance for CHPED-based OPF
system are given by:

Npou∑

i=1

Ppoui +
Nchp∑

i=1

Pchpi = PD + PL (41)

PL =
Npou∑

i=1

Npou∑

j=1

PpouiBi j Ppouj +
Npou∑

i=1

Nchp∑

j=1

PpouiBi j Pchpj

+
Nchp∑

i=1

Nchp∑

j=1

PchpiBi j Pchpj (42)

Nchp∑

i=1

Hi+
Nh∑

i=1

Hchpi = HD (43)

Equation (41) representation of power balance; transmission
losses shown in Eq. (42); Eq. (43) represents heat balance.
Thermal demand defined by HD and Bim , Bi j , Bjr are power
loss coefficients.

3.2.1.2. Power balance constraints for CHPED-based
OPF with wind

CHPED-based OPF with wind power balance equation is
defined by (44):

Npou∑

i=1

Ppoui +
Nchp∑

i=1

Pchpi +
Nwind∑

i=1

Pwindi = PD + PL (44)

The power balance Eq. (41) is extended to a new solution as
represented in (44), where wind power is incorporated with
CHPED.

Power flow equation is shown in Eq. (45):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ns∑

c=1
(PGc − PLc) =

Ns∑

c=1

Ns∑

d=1
|Vc| |Vd | |Ycd | cos (ϕcd − βcd )

N s∑

c=1
(QGc − QLc) = −

Ns∑

c=1

Ns∑

d=1
|Vc| |Vd | |Ycd | sin (ϕcd − βcd )

(45)

where PLc and QLc is the active & reactive power demand of
the cth bus; PGc and QGc are the active and reactive power of
generation and demand, respectively, of the cth bus;Ycd is the
admittance of transmission line connected between the cth
and the dth bus; ϕcd is the admittance angle of transmission
line connected between the cth and the dth bus; Ns is the
number of buses.

3.2.2 Constraint of inequality

3.2.2.1. Constraints of capacity For steady operation, the
limiting range of heat and power for power alone units, co-
generation units, andheat only units is presented in (46)–(52).
The voltage of power and co-generation units are displayed
in (53)–(54). The constraints of load bus, transmission line
and transformer tap changers are illustrated in (55)–(57). :

Pmin
poui ≤ Ppoui ≤ Pmax

poui where, i = 1, 2, 3, ..., Npou (46)

Pmin
chpi

(
Hchpi

) ≤ Pchpi ≤ Pmax
chpi

(
Hchpi

)
where, i = 1, 2, 3, ..., Nchp

(47)
Pmin
windi ≤ Pwindi ≤ Pmax

windi where, i = 1, 2, 3, ..., Nwind (48)
Pmin
Solari ≤ PSolari ≤ Pmax

Solari where, i = 1, 2, 3, ..., NSolar (49)
Pmin
EVi ≤ PEVi ≤ Pmax

EVi where, i = 1, 2, 3, ..., NEV (50)
Hmin
chpi

(
Pchpi

) ≤ Hchpi ≤ Hmax
ci

(
Pchpi

)
where, i = 1, 2, 3, ..., Nchp

(51)
Hmin
houi ≤ Hhoui ≤ Hmax

houi where, i = 1, 2, 3, ..., Nhou (52)
Vmin
poui ≤ Vpoui ≤ Vmax

poui where, i = 1, 2, 3, ..., Npou (53)

Vmin
chpi ≤ Vchpi ≤ Vmax

chpi where, i = 1, 2, 3, ..., Nchp (54)

(ii) Load bus constraints:

Vmin
Lb ≤ VLb ≤ Vmax

Lb b ∈ NBL (55)

(iii) Transmission line constraints:

SLb ≤ Smax
Lb b ∈ NLT (56)
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(iv) Transformer tap constraints:

Tmin
b ≤ Tb ≤ Tmax

b b ∈ NT (57)

There are shown the minimum and maximum power lim-
its for i th power alone units and i th co-generation units are
Pmin
poui, P

max
poui , P

min
chpi

(
Hchpi

)
and Pmax

chpi

(
Hchpi

)
; Pmin

windi is the
minimumpower production of i th wind Pmax

windi is shownmax-
imum power production of i th wind, Hmin

chpi and Hmin
houi are the

minimum heat limit of the i th co-generation and heat unit;
Hmax
chpi and Hmax

houi are depicted the maximum heat limit of the
i th co-generation heat unit.

where Vmin
Gb , Vmax

Gb indicate respectively lower and upper
voltage limits, for the bth generator bus; Pmin

Gb , Pmax
Gb are the

lower and upper bounds of active power generation, respec-
tively, of the bth bus; Qmin

Gb , Qmax
Gb are respective minimum

and maximum reactive power generation margins of the bth
bus; Vmin

Lb , Vmax
Lb are the smallest and highest voltage edges,

respectively, of the bth load bus, SLbmin, Smax
Lb are the least

apparent power flow and extreme apparent power flow limit,
respectively, of the bth branch; Tmin

b , Tmax
b are the bottom

and extreme tap setting limits, respectively, of the bth regu-
lating transformer; respectively.

4 Algorithm for optimization

4.1 DTBO

DTBO is introduced byDehghani et al. [32]. Theway driving
instructor trains learners in a driving school, the scheme of
DTBOmimics it. There are three phases in the mathematical
structure of DTBO: (1) training by the driving instructor, (2)
patterning of students from instructor skills, and (3) practice.
In the process of driving training, intelligence of beginner
is involved for being trained and acquiring the skill of driv-
ing. In the driving school, a learner driver can take lesson
from numerous instructors. A learner develops its driving
skill by following instructor’s guidance and by its own prac-
tice. These interactions between learner and instructor and
self-practice for developing driving skill are the fundamen-
tal base of Mathematical modeling of DTBO. DTBO is a
metaheuristic method based on population. The DTBO pop-
ulationmatrix (58)where each rowmember represents one of
the solutions of the given problem is represented as follows:

Z =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z1
.

.

Z p

.

.

ZN

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

N×m

=

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z11 . . z1q . z1m
. . . . . .

. . . . . .

z p1 . . z pq . z pm
. . . . . .

. . . . . .

zN1. . . zNq . zNm

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

N×m

(58)

Z is the DTBO population,Z p . is the pth member of the
population i.e. pth candidate solution of the problem, z pq
is the qth variable of the pth solution of the problem, N is
population size, m denotes no of problem variables. At the
beginning of DTBO implementation, the starting position
of DTBO members (i.e. candidate solutions) is initialized
randomly as given below (59):

z pq = zmin
pq

+r ∗
(
zmax
pq − zmin

pq

)
f or p = 1 to N ς q = 1 to m

(59)

where zmax
pq , zmin

pq are the upper and lower limit, respectively,
of the qth variable of the considered problem; r is a unbiased
random value within 0 and 1. For every individual candidate
solution, the value of the objective function is computed and
it is represented as follows (60):

F =

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1
.

.

Fp

.

.

FN

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

N×1

=

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (Z1)

F
(
Z p

)

F (ZN )

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

N×1

(60)

The computed values of the objective function become the
key criteria to judge the quality of the considered solutions.
The candidate solution that produces best objective function
value is taken as best member. With the iteration progress,
bestmember is updated. The process of updating of candidate
solution in DTBO follows three steps as follows:
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Step 1 Training by the driving instructor (Exploration)
From the population of DTBO, few best mem-
bers are taken as driving instructors while the other
members are considered as learner drivers. Selec-
tion of instructors and acquiring the instructor’s skill
provides the ability of global search to achieve opti-
mal area for DTBO. In each iteration, comparing
the values of objective function, L number (62) of
DTBO members is chosen as instructors which are
expressed as driving matrix DI (61)as follows:

DI =

⎡

⎢⎢
⎢
⎢⎢
⎢⎢
⎢
⎣

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

DI1
.

.

DIp

DIL

⎤

⎥⎥
⎥
⎥⎥
⎥⎥
⎥
⎦

L×m

=

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢
⎣

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DI11 . . DI1q . DI1m
. . . . .

. . . .

DIp1 . . DIpq . DIpm
. . . . .

. . . . .

DIL1. . . DILq . DILm

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥
⎦

L×m

(61)

DIp is pth driving instructor. DIpq is qth variable
of pth instructor.

L =
⌊
0.1 × N ×

(
1 − s

S

)⌋
(62)

s denotes current iteration and S is maximum iter-
ation. In this step, the modified position of DTBO
population member is obtained as given below (63):

zst1pq =
{

z pq + r .
(
DIkpq − I .z pq

)
, FDIkp < Fp

z pq + r .
(
z pq − DIkpq

)
, otherwise

(63)

Using Eq. (64), previous position is replaced by new
position while it improves the objective function
value.

Z p =
{

Z st1
p , F st1

p < Fp

Z p, otherwise
(64)

Z st1
p is newly computed pth candidate solution at step

1 of DTBO, zst1pq is its qth problem variable, F st1
p is

its objective function value, I is a random number
in the set 1,2, r is random value within 0 and 1. In
DIkpq , k is randomly selected from the set 1, 2, ....L
i.e. kth driving instructor and FDI kp is its objective
function value, p indicates pth member of the pop-
ulation which is being trained by kth instructor.

Step 2 Patterning of the instructor skills of the student driver
(Exploration) In the second step, instructor’s skills
and activities are imitated by learner driver for the
improvement of solution inDTBO.Through this pro-
cess DTBO members travel to different region of
the search space. It enhances the power of DTBO’s

exploration. Through a linear combination among
the DTBOmembers and instructors a modified posi-
tion is created which is mathematically represented
byEq. (65).UsingEq. (66), the newposition replaces
the preceding position if the value of the objective
function is improved than former.

zst2pq = ξ.z pq + (1 − ξ) .DIkpq (65)

Z p =
{{

Z st2
p , F st2

p < Fp

Z p, otherwise
(66)

Z st2
p is the modified pth candidate solution on sec-

ond stage of DTBO, zst2pq is its qth variable, F st2
p is

corresponding value of objective function. ξ is called
patterning index described by Eq. (67):

ξ = 0.01 + 0.9
(
1 − s

S

)
(67)

Step 3 Personal practice (Exploitation) In this step, the driv-
ing skills of the learner drivers are upgraded on the
basis of personal practice. It is similar to exploit
the power of local search of DTBO. Every learner
tries to discover a better position in the vicinity of
current position. New positions are created close to
the current position by Eq. (68). If the new position
improves objective function value than earlier then
it replaces the earlier by Eq. (69).

zst3p,q = z pq + (1 − 2r) .R.
(
1 − s

S

)
.z pq (68)

Z p =
{{

Z st3
p , F st3

p < Fp

Z p, otherwise
(69)

Z st3
p is the updated pth candidate solution at third

step of DTBO, zst3p,q is its qth variable, correspond-
ing objective function value is F st3

p , r is a random
value between 0 and 1, R is 0.05, s is current itera-
tion and S is the maximum iteration.
Through step 1 to step 3 population members of
DTBO is updated which completes one DTBO itera-
tion. After that next iteration starts with new updated
population and this process continues [throughEqs. (61)
to (69)] till final iteration is completed. At the end of
final iteration best candidate solution is recorded as
the solution of the problem.

4.2 Chaotic-based learning (CBL)

The majority of evolutionary algorithms take their cue from
the population’s constant search for the ideal solution and
its random initialization. However, DTBO is still unable
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to outperform other methods in locating the global opti-
mal solution, which also influences the rate of convergence.
The CDTBO is created by fusing chaos behavior with the
DTBO in order to lessen this effect. The unpredictable and
non-repeating properties of chaos allow for faster overall
searches, which can be crucial for accelerating a metaheuris-
tic algorithm’s convergence.

To control the parameters of DTBO, different chaotic
maps are integrated with DTBO in CDTBO technique. The
chaotic set combination of ten chaotic maps with different
behavior. For optimal solution the initial value taken as 0.7
within the range of 0 to 1. The various chaotic maps has been
discussed in Table 2. The local optimal problem has been
eliminated and provides global optimal solution using these
chaotic maps.

4.3 Opposite number

The opposite number (70) is used in the candidate solution’s
mirror position. For a one-dimensional search space, the cor-
responding opposite number Xo of a randomly generated
candidate solution X with interval [a, b] is denoted as fol-
lows:

Xo = a + b − X (70)

where the search space’s minimum and maximum limits
are a and b, respectively. The preceding statement is stated
similarly for n-dimensional search space by the following
Eq. (71):

Xok = ak + bk − Xk (71)

where k = 1, 2, ...., n and Xk = X1, X2, ...., Xn

4.4 Jumping rate

A new solution that outperforms the existing one in terms
of fitness value is provided by jumping rate (72). The quasi-
opposite solution is established following the development of
new solutions using the jumping rate equation. The algorithm
is assisted in finding the globally best solution by the choice
of the jumping rate, which is between [0, 0.6].

jR = ( jvR,Max

− jR,Min) − ( jR,Max − jR,Min)

(
fMax − f

fMax

)
(72)

where jR is jumping rate; jR,Max denotes maximum jump-
ing rate; minimum jumping rate is denoted by jR,Min; f is
function for current iteration and fMax is maximum number
of iteration.

4.5 Use CODTBO in obtaining CHPED-based OPF
solution

As it is mentioned that DTBO is integrated with CBL and
OBL (known as CODTBO) in this work to enhance the effi-
ciency of the technique, the flow chart of CODTBO is given
in Fig. 4 and the steps of CODTBO algorithm applied on
OPF are explained below :

Step 1 Randomlygenerate initial population Z which rep-
resents independent variables of the OPF problem
such as all generator’s active powers (excluding
slack bus), voltages, and regulating transformers’
tap settings. Z should not violate equality and
inequality constraints.

Step 2 The chaotic map is used to initialize the random
value. The chaotic number is updated using the
chaotic map equation.

Step 3 Accomplish load flow by Newton–Raphson (NR)
process [33] and evaluate entire dependent vari-
ables like slack bus active power, load voltages,
etc from the Z and chaotic map.

Step 4 Compute the value of objective function for Z and
chaotic map.

Step 5 Arrange the Z and chaotic map from best to worst
according to value of the objective function.

Step 6 Choose N number of fittest members from Z and
chaotic map to form new Z .

Step 7 Start DTBO
Step 8 Training by the driving instructor (Exploration)
Step 9 Comparing the value of objective function, obtain

the driving instructor matrix DI.
Step 10 Chose a driving instructor in a random fashion

from DI matrix.
Step 11 Using Eq. (63), find the new position for pth

DTBO member.
Step 12 Verify if the constraints are within the limits or not

by NR process
Step 13 Considering Eq. (64), the position of pth DTBO

member is updated. The learner driver imitates the
instructor’s driving techniques (Exploration)

Step 14 Use Eq. (67) to compute the patterning index.
Step 15 Evaluate a new position for pth DTBOmember by

Eq. (65).
Step 16 Check if the constraints are within the limits or not

by NR process
Step 17 Use Eq. (66), to update the position of pth DTBO

member.
Step 18 Personal practice (Exploitation)
Step 19 Compute the new position of pth DTBO member

by (68).
Step 20 Confirm if the constraints are within the limits or

not by NR process
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Table 2 List of various chaotic
maps

Sl. no. Name Chaotic map

N1 Circle rk+1 = rk+b − (a/2π) sin (2πk)mod (2)

N2 Cubic r j+1 = ar j
(
1 − r j 2

)

N3 Chebyshev map r j+1 = cos
(
kcos−1 (rk)

)

N4 Logistic map rk+1 = ark (1 − rk)

N5 Gussian map rk+1 = rk+1

{
0 , rk = 0 , 1

rk
mod (1) = 1

rk
−
[
1
rk

]

N6 Liebovitch map rk+1 = ark (1 − rk)

N7 Iterative map rk+1 = Sin
( aπ
rk

)
,α ∈ (U,1)

N8 Sine Xi+1 = a/4
(
sin

∏
x
)

N9 Sinusoidal Xi+1 = a (Xi ) 2
(
sin

∏
xi
)

N10 Tent Xi+1 =
{

Xi
0.7 ; Xi < 0.7
10
3 (1 − Xi ) ;Xi ≥ 0.7

Fig. 4 Flowchart of CODTBO optimization technique

Step 21 Use Eq. (69), to update the position of pth DTBO
member.

Step 22 End DTBO
Step 23 After generating new populations by DTBO, the

COL is calculated and fitness value COL is calcu-
lated.

Step 24 Go to step 5 for next iteration till stopping criterion
is reached

Step 25 Output: The best candidate solution achieved by
CODTBO.

5 Simulation result

5.1 CEC benchmark system

A variety of benchmark functions are included in the IEEE
CEC Benchmark System, which is intended to assess the
behavior and performance of different multi-objective com-
binatorial optimization tasks (MCTs). The MCTs’ capacity
to investigate various solutions, intensify toward ideal solu-
tions, and converge successfully is evaluated using these
functions. There are various configuration options for the
IEEE CEC Benchmark System, including 10D, 30D, 50D,
and 100D dimensions. However, we specifically use 30D and
50D dimensions to analyze the IEEE CEC 2017 benchmark
system in this study. Numerous functions that fall into the
categories of unimodal, multi-modal, hybrid, and composite
are present in the IEEE CEC 2017 benchmark system. These
functions are taken from [34]. The ability of the optimiza-
tion process to intensify toward a single optimal solution is
evaluated using unimodal functions. Multi-modal functions
assess how well the algorithm explores different solutions.
Multimodal and unimodal features are united to make hybrid
functions. Two or more unimodal & multimodal functions
are merged to form composite functions. We set a maximum
limit of function assessments at 104 × D for every exper-
iment function in both the IEEE CEC benchmark systems,
and we fully appraise the algorithm’s performance through
30 separate runs. As previously stated, the test functions of
the benchmark system under examination might be divided
in various groups: F1 − F3, F4 − F16, F17 − F22, and
F23 − F30 are unimodal, multimodal, hybrid & composite
functions, respectively. It is noteworthy to emphasize that F2
is excluded from the IEEE CEC 2017 benchmark system due
to its unstable properties, as documented in [34]
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Table 3 Statistical comparison of the proposed CODTBOwith BWM_HS, CVnew, SGSADE,HGSO, LSHADE-cnEpSin and LSHADE-SPACMA
on CEC 2017 with 30D considering F1–F16

CEC 2017 (D = 30)

LSHADE LSHADE
Function BWM_HS CVnew SGSADE HGSO -cnEpSin -SPACMA CODTBO

Unimodal

Mean 3.824E+03 1.223E+10 3.559E−08 5.524E+03 0.000E+00 2.966E−08 3.524E−08

F1 SD 4.837E+03 0.000E+00 3.957E−08 1.123E+03 0.000E+00 2.054E−08 2.032E−08

Sign + + − − − −
Mean 1.215E−07 1.523E+02 1.341E+02 5.962E+02 2.122E−08 3.306E−08 2.012E−07

F3 SD 4.523E−08 9.463E+01 1.182E+02 2.883E+02 2.225E−08 2.056E−08 2.112E−07

Sign + + + + + +
Multi-modal

Mean 6.821E+01 1.562E+01 1.423E+01 4.732E+02 4.355E+01 3.221E−08 2.792E−08

F4 SD 3.077E+01 2.855E+01 2.621E+01 3.024E+02 2.930E+00 2.432E−08 1.242E−08

Sign + + + + + −
Mean 5.023E+01 1.325E+02 8.862E+01 6.223E+02 1.456E+01 3.721E+00 3.065E+01

F5 SD 1.892E+01 2.774E+01 1.806E+01 9.921E+00 2.442E+00 2.642E+00 1.011E+01

Sign + + + + − −
Mean 1.224E−05 2.113E+01 2.252E−08 5.972E+02 1.098E−08 1.321E−08 8.142E+00

F6 SD 2.153E−05 8.112E+00 1.542E−08 7.662E+00 1.456E−08 1.332E−08 1.021E−07

Sign − + − + − −
Mean 5.992E+01 2.326E+02 1.315E+02 8.421E+02 4.902E+01 3.551E+01 5.994E+00

F7 SD 9.663E+00 2.112E+01 1.654E+01 6.232E+01 2.221E+00 8.224E−01 5.378E−01

Sign + + + + + +
Mean 4.994E+01 1.226E+02 8.321E+01 8.221E+02 1.301E+01 3.750E+00 3.291E+00

F8 SD 1.284E+01 2.697E+01 1.584E+01 2.583E+01 2.816E+00 1.758E+00 2.623E+00

Sign + + + + + =
Mean 1.122E+01 2.201E+03 5.963E−08 1.758E+03 0.224E+00 0.361E+00 0.000E+00

F9 SD 8.0023E+01 8.473E+02 6.012E−08 2.383E+02 0.225E+00 0.685E+00 5.223E−08E+00

Sign + + + + + +
Mean 2.723E+03 4.512E+03 5.124E+03 5.223E+03 1.098E+03 1.877E+03 4.002E+02

F10 SD 4.778E+02 3.023E+02 5.527E+02 3.122E+02 2.421E+02 3.555E+02 8.912E+01

Sign + + + + + +
Mean 9.462E+01 3.674E+01 5.022E+01 1.433E+03 1.776E+01 4.202E+00 3.427E+00

F11 SD 3.223E+01 1.928E+01 3.112E+01 2.884E+01 2.012E+01 3.692E+00 1.815E+00

Sign + + + + + =
Mean 5.023E+05 5.112E+09 1.893E+04 5.045E+04 4.227E+02 4.997E+02 4.993E+00

F12 SD 4.492E+05 5.928E+09 6.994E+03 3.112E+04 1.492E+02 2.793E+02 4.012E+00

Sign + + + + + +
Mean 1.892E+04 7.995E+01 2.993E+02 5.436E+04 2.227E+01 0.988E+01 7.342E−01

F13 SD 2.202E+04 2.887E+01 3.042E+02 2.114E+03 0.998E+01 5.023E+00 4.068E−01

Sign + + + + + +
Mean 4.023E+03 5.056E+01 6.141E+01 2.321E+03 1.998E+01 2.783E+01 3.112E−01

F14 SD 3.272E+03 7.118E+00 8.873E+00 1.768E+00 2.493E+00 2.112E+00 0.692E−01

Sign + + + + + +
Mean 8.016E+03 3.815E+01 4.992E+01 3.774E+03 4.002E+00 4.653E+00 4.112E+01
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Table 3 continued

CEC 2017 (D = 30)

LSHADE LSHADE
Function BWM_HS CVnew SGSADE HGSO -cnEpSin -SPACMA CODTBO

F15 SD 8.886E+03 8.772E+00 3.012E+01 5.008E+02 2.055E+00 2.992E+00 1.334E+01

Sign + = + + − −
Mean 4.992E+02 7.456E+02 5.066E+02 3.322E+03 2.692E+01 4.213E+01 5.882E+00

F16 SD 1.998E+02 2.023E+02 1.778E+02 3.402E+02 2.996E+01 5.774E+01 3.054E+00

Sign + + + + + +

5.1.1 CEC 2017 (30D)

In the perspective of 30 dimensions (30D), Table 3 dis-
plays statistical findings illustrating the best mean error
values and standard deviations (SD) attained by the suggested
CODTBO and other MCTs for together unimodal and multi-
modal benchmark functions. It is worth mentioning that for
all participating MCTs, mean error values less than 10e-08
are regarded as 0. Table 3 reveals unequivocally that our sug-
gested MCT beats most of the other state-of-the-art MCTs
used in thiswork for the bulk of the test functionswith respect
to mean error values. This better performance in achieving
optimal values for unimodal and multimodal test functions
indicates that, in comparison to the other MCTs under con-
sideration, the changes we have made to our suggested MCT
have successfully improved its capacity for intensification
and diversification. Additionally, it is clear from looking at
the SD values in Table 3 that the suggested CODTBO has the
best degree of precision out of all the MCTs that are taken
into consideration. The comparison of the best mean error
values and SD produced by various MCTs for hybrid and
composite functions is shown in Table 4. In contrast to the
other MCTs in the experiment, the results in Table 4 demon-
strates that the suggested CODTBO performs better in terms
of mean error values and SD, indicating its potential to pro-
duce extremely accurate and high-quality solutions. In order
to examine the statistical significance, the mean error values
of the suggestedMCT and the otherMCTs for each test func-
tion are compared using a Wilcoxon signed-rank test with a
significance level of 0.05 [35]. Based on the signed-rank test
findings, the competing MCTs are allocated “+”, “=”, and
“−” signs according to how well they perform statistically
against the proposedCODTBO.The “+”, “=”, and “−” indi-
cations denotewhether the performanceof anMCT is inferior
to, equal to, or superior than the suggested CODTBO. This
is an essential distinction to make. The statistical robustness
of the proposed CODTBO over its competitors is confirmed
by Table 4, which shows that the proposed MCT obtains the
most “+” signs in comparison to other participating MCTs.
To further evaluate the overall statistical performance of the
suggested MCT, the Friedman rank test [35] is performed.

The suggested CODTBO ranks first out of all the MCTs that
are taken into consideration based on the Friedman rank.

5.1.2 CEC 2017 (50D)

The best mean error values and standard deviations (SD)
attained by the suggested CODTBO and additional partic-
ipating MCTs for the 50D case are shown in Table 4. The
performance of the proposed CODTBO is clearly extremely
competitive across most uni-modal and multi-modal func-
tions, as can be seen from the best mean error values given in
Table 4.Moreover, it is evident from looking at the SD values
that the suggested technique regularly performs better than
the other approaches that are being considered. When eval-
uating the best mean error values and SD for the majority of
hybrid and composite functions, the suggested method per-
forms better than other methods, as shown in Table 4. The
Wilcoxon signed-rank test findings, which are displayed in
Table 5, further support the statistical superiority of the sug-
gested CODTBO since it obtains more “+” signs than the
other qualified MCTs. Lastly, there is clear evidence from
Table 5’s bottom row that the suggested CODTBO ranks top
among all participating MCTs based on the Friedman rank
test.

5.2 Optimal power flow-based CHPED

For optimal power flow in the transmission line with the best
possible objective function solution, CHPED is combined
with the IEEE 57 bus system in the current study. Two test
systems are used in the current simulation investigation for
the CHPED–OPF problem of the power system. On these
test systems, the CODTBO algorithm is used to demonstrate
the usefulness and efficiency of CHPED. By comparing the
results with tested DTBO, ODTBO on the suggested sys-
tem, the superiority of the provided CODTBO algorithm has
been demonstrated. Doing the simulation in MATLAB 2014
allows for testing. A newer core i5 CPU with internal mem-
ory rated at 2.5 GHz and 8 GB of RAM powers the PC used
to run MATLAB. In this part, the suggested algorithm’s sim-
ulation results and calculation times for test systems 1, 2
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Table 4 Statistical comparison of the proposedCODTBOwithBWM_HS,CVnew, SGSADE,HGSO,LSHADE-cnEpSin andLSHADE-SPACMA,
on CEC 2017 with 30D considering F17–F30

CEC-2017 (D = 30)

LSHADE LSHADE
Function BWM_HS CVnew SGSADE HGSO -cnEpSin -SPACMA CODTBO

Hybrid

Mean 3.123E+02 2.023E+02 8.114E+01 2.007E+03 3.232E+01 2.998E+01 1.972E+01

F17 SD 1.947E+02 6.887E+01 2.212E+01 1.997E+01 4.997E+00 7.338E+00 1.086E+01

Sign + + − + − −
Mean 1.483E+05 4.012E+01 1.996E+03 0.997E+04 1.992E+01 3.765E+01 1.792E+03

F18 SD 5.886E+04 6.993E+00 1.786E+03 5.675E+04 6.872E−01 2.002E+00 1.777E−01

Sign + − = + − −
Mean 7.884E+03 1.934E+01 2.227E+01 1.978E+03 4.453E+00 8.198E+00 7.552E−01

F19 SD 9.872E+03 3.096E+00 6.203E+00 2.893E+03 1.869E+00 2.242E+00 6.173E+00

Sign + + + + + +
Mean 1.842E+02 1.756E+02 0.883E+02 1.675E+03 2.466E+01 7.756E+01 3.162E+02

F20 SD 8.889E+01 9.552E+01 4.888E+01 2.997E+02 6.432E+00 4.162E+01 2.025E+01

Sign + + + + = +
Mean 2.586E+02 1.765E+02 2.776E+02 2.965E+03 1.912E+02 1.834E+02 6.122E+00

F21 SD 1.496E+01 2.678E+01 2.223E+01 2.512E+01 2.769E+00 3.432E+00 1.012E+00

Sign + + + + + +
Mean 1.876E+03 1.234E+03 1.765E+02 3.971E+03 2.888E+02 2.592E+02 1.267E+01

F22 SD 1.621E+03 1.844E+03 1.223E+01 8.340E+02 1.503E+01 2.844E+01 8.342E+00

Sign + + = + = =
Composite

Mean 4.023E+02 3.786E+02 3.972E+02 1.882E+03 2.658E+02 2.142E+02 4.042E+01

F23 SD 4.987E+01 4.677E+00 2.719E+01 5.432E+01 2.993E+01 3.453E+01 1.129E+00

Sign + + + + + +
Mean 5.023E+02 4.476E+02 3.123E+04 2.121E+03 4.112E+02 1.887E+01 2.425E+02

F24 SD 2.228E+01 2.564E+02 2.223E+01 8.645E+01 2.453E+00 1.675E+00 3.778E+01

Sign + + + + + +
Mean 3.874E+02 3.586E+02 4.112E+02 2.978E+02 2.342E+02 1.987E+01 1.828E+01

F25 SD 2.387E+00 7.234E−01 4.889E+00 2.986E+01 7.334E−03 1.768E−02 1.556E−03

Sign + + + + + +
Mean 2.675E+03 3.678E+02 2.876E+03 4.675E+03 9.251E+02 9.741E+02 1.127E+02

F26 SD 6.345E+02 3.123E+01 2.032E+02 1.987E+02 4.665E+01 3.570E+01 3.027E+01

Sign + + + + + +
Mean 5.573E+02 5.256E+02 5.512E+02 3.654E+03 5.117E+02 5.231E+02 4.212E+02

F27 SD 1.382E+01 9.867E+00 1.786E+00 1.132E+02 6.568E+00 1.823E+01 1.675E+00

Sign = = = + = =
Mean 4.455E+02 3.265E+02 3.564E+02 3.198E+03 2.864E+02 2.998E+02 8.675E+01

F28 SD 6.453E+01 3.876E+01 5.132E+01 7.475E+01 3.912E+01 5.785E+01 3.274E+01

Sign + + + + + +
Mean 5.114E+02 8.342E+02 6.432E+02 3.786E+03 4.346E+02 3.894E+02 6.941E+02

F29 SD 1.765E+02 1.231E+02 6.543E+01 1.346E+02 7.128E+00 4.012E+01 1.234E+02

Sign + + + + + +
Mean 1.022E+04 2.342E+03 2.643E+03 9.765E+03 1.475E+03 8.754E+02 8.224E+02

F30 SD 5.743E+03 5.123E+02 9.368E+02 3.542E+03 4.302E+03 9.123E+02 2.781E+02

Sign = − − = − −

123



Electrical Engineering

Table 5 The results of the Wilcoxon signed-rank test and Friedman rank test, considering the mean error value for CEC 2017 (D = 50)

Sign CODTLBO Vs. BWM_HS CVnew SGSADE HGSO LSHADE LSHADE
-cnEpSin -SPACMA

+/=/− 27/00/02 22/02/05 26/00/03 28/00/01 17/04/08 18/03/08

Statistical Rank BWM_HS CVnew SGSADE HGSO LSHADE LSHADE CODTBO

-cnEpSin -SPACMA

Friedman Rank 5.618 4.804 5.191 7.122 2.870 2.436 1.427

Overall Rank 6 4 5 7 3 2 1

Table 6 Cost and emission
coefficients of thermal units for
IEEE 57-bus system

Generator Bus a b c d e α β γ ω μ

TG1 (POU) 1 0 2 0.00375 18 0.037 4.091 −5.554 6.49 0.0002 2.857

TG2 (POU) 2 0 1.75 0.0175 16 0.038 2.543 −6.047 5.638 0.0005 3.333

TG3 (CHP) 3 0 3 0.025 13.5 0.041 6.131 −5.555 5.151 0.00001 6.677

TG6 (CHP) 6 0 2 0.00375 18 0.037 3.491 −5.754 6.39 0.002 2.667

TG8 (CHP) 8 0 1 0.0625 14 0.04 4.258 −5.094 4.586 0.000001 8

TG9 (CHP) 9 0 1.75 0.0195 15 0.039 2.754 −5.847 5.238 0.0004 2.88

TG12 (CHP) 12 0 3.25 0.00834 12 0.045 5.326 −3.555 3.38 0.002 2.00

Table 7 Generation limits and
cost co-efficient of HOU

UNIT Bus Hmin (MWTh) Hmax (MWTh) α β γ

HOU 31 0 2695.2 0.038 2.0109 950

and 3 are provided. Also, it is explained how realistic an
feasible range the various co-generation units’ power and
heat production falls under. The current CODTBO algorithm
achieves the greatest results in the shortest amount of time at
population size 50. There are 100 iterations for each popula-
tion for each case. Cost and emission coefficients of thermal
units for IEEE 57-bus system are depicted in Table 6. Gen-
eration limits and cost co-efficient of HOU are displayed in
Table 7. Wind and solar parameters are shown in Table 8.
Moreover, CODTBO has been used in all three test systems
once the renewable sources have been added. For test systems
using renewable energy sources, the simulation outcomes of
CODTBO, ODTBO and DTBO are contrasted. Table 9 lists
the fifteen various situations over single and multi-objective
functions of three systems that are examined in this paper.
The simulation results indicate that using renewable sources

lowers generation costs compared to OPF-CHPED systems
based on non-renewable energy.

5.3 Test system 1

With IEEE-57 buses, test system 1 comprises of four
power, two CHP, and one heat units. There are 80 branches
that connect the 57 buses. Four power units are installed in
buses 1, 2, 3, and 6 while two CHP units are associated to
buses 9 and 12 and one heat only unit connect with bus 58.
The total amount of load demand is 1250.8 MW whereas
reactive power and heat demand are 336.4 MVar and 175
MWth. Seven scheduled active power, seven total gener-
ator bus voltages, fifteen tap-changing transformers, three
compensation devices and three heat-only units are used as
the control variables. For 24 buses, the load voltage is mea-
sured between 0.94 and 1.06 p.u. An overview of IEEE 57

Table 8 Wind speed and solar irradiance distribution parameters, rated power of wind and solar plants and associated cost coefficients

Wind power generators plants Solar power system

Cost coefficient ($/MWh)

Wind farm No. of. turbines Rated power Pwr
(MW)

Weibull PDF
parameters

Reserve, KRw Penalty, KPw Rated power
(MW)

lognormal
parameters

WG5 (bus 5) 25 75 ξ = 9, κ = 2 3 1.5 0.96 0.96

WG11 (bus 11) 20 60 ξ = 10, κ = 2 3 1.5 0.96 50 (bus 13) 0.96 ε = 6, λ = 0.6

123



Electrical Engineering

Table 9 Various case-studies investigated in this article

Case Single objective Multi-objective Considered objectives Constraints Test system

1 � Total Cost minimization with valve point
effects

Equality and non-equality

2 � Emission minimization Equality and non-equality

3 � Simultaneous minimization of Cost and
Emission

Equality and non-equality

4 � Voltage stability minimization Equality and non-equality

5 � Simultaneous minimization of Cost with
voltage stability

Equality and non-equality IEEE 57 Bus

6 � Total Cost minimization with valve point
effects for thermal, wind and solar
energy

Equality and non-equality

7 � Emission minimization Equality and non-equality

8 � Simultaneous minimization of Cost with
Emission

Equality and non-equality

9 � Voltage stability minimization Equality and non-equality

10 � Simultaneous minimization of Cost with
voltage stability

Equality and non-equality Wind–solar
based IEEE 57
Bus

11 � Total Cost minimization with valve point
effects for thermal, wind, solar and EV

Equality and non-equality

12 � Emission minimization Equality and non-equality

13 � Simultaneous minimization of Cost with
Emission

Equality and non-equality

14 � Voltage stability minimization Equality and non-equality

15 � Simultaneous minimization of Cost with
voltage stability

Equality and non-equality Wind–solar–EV
based IEEE 57
Bus

Table 10 An overview of IEEE 57 bus for OPF-based CHPED system

Items Quantity Details

Buses 57 [ref]

Branches 80 [ref]

Thermal generators 7 5 power only units (buses 1,2,3,6 and 8), 2 CHP units (buses 9 and 12) and 1
heats only unit (bus 58)

Tap changing transformer 15 Branches:19, 20, 31, 37, 41, 46, 54, 58, 59, 65, 66, 71, 73, 76 and 80

Scheduled real power for 6 Nos. Generators; bus voltages of all generator
buses (7 Nos.)

Control variables 34 Transformer tap setting (15 nos), compensation devices (3 Nos.), 3 heat units.

Load demand, Heat demand 1250.8 MW, 336.4 MVAr, 175 MWth

Range of load bus voltage 24 [0.94-1.06] p.u.

Compensation devices 2 Buses: 18, 25 and 53

bus for OPF-based CHPED system has been displayed in
Table 10. Co-generation units’ capacity to produce both heat
and power located in feasible operating region displayed in
Fig. 5. The proposed test system 1 has discussed a total
of five scenarios for single- and multi-objective functions.
The single-objective functions includeminimizing total cost,
emissions and stability -index. The multi-objective functions

include minimizing cost with emission and cost with voltage
stability simultaneously. Using DTBO the obtained optimal
cost is 31,876.80 ($/h), emission 1.7641 (t/h) and L-index
is 0.2443, whereas for multi-objective function simultane-
ously minimized total cost and emission are 32,919.8 ($/h)
and 2.5318 (t/h). Again simultaneously minimized total cost
with voltage stability are 33,828.42 ($/h) and 0.2605. After

123



Electrical Engineering

Fig. 5 Feasible region of CHP units

that CODTBO method has been tested the obtained optimal
cost is 30,863.9779 ($/h), emission 1.7585 (t/h) and L-index
is 0.2391 whereas for multi-objective function simultane-
ously minimized total cost and emission are 31161.2468
($/h) and 2.5114 (t/h). Again simultaneouslyminimized total
cost with voltage stability are 32,347.5352 ($/h) and 0.2584.
The results has been displayed in Table 11 which justified
the effectiveness of CODTBO over ODTBO and DTBO to
obtained the optimal solution in all respect. The variation of
control variables for five cases has been illustrated in Fig. 6.
Five cases of the OPF with CHPED system were evaluated
with DTBO, ODTBO and CODTBO, and comparisons were
done to judge the superiority of the CODTBO technique.
The different comparison of CHPED-based OPF system on
cost and stability index are displayed in Figs. 7 and 8. The
convergence graph of the presented CODTBO, ODTBO and
DTBO optimization techniques illustrated in Fig. 9 The opti-
mal solution using CODTBOof different objectives has been
reached within less iterations rather than DTBO. This com-
parison studies established the fastness of computational time
of CODTBO for integrating the chaotic-based learning with
DTBO optimization technique. The comparison of statistical
analysis after 100 iterations with minimum value, maximum
value and average value of proposed DTBO, ODTBO and
CODTBO has been displayed in Table 15. The difference of
minimum value, maximum value and average value is much
closer using CODTBO respect to DTBO which is the evi-
dence of robustness of suggested CODTBO technique.

5.3.1 Test system-2

Furthermore to get the effective solution over cost min-
imization and emission minimization with optimal power
flow in transmission line renewable sources like wind and
solar energy are integrated with proposed CHPED-based
OPF system. The system became more complex due to
presence of uncertainties of wind speed. In CHPED sys-
tem four-power only units, two co-generation units and one
heat only unit are integrated. In this proposed wind and
solar-based CHPED–OPF system one power only unit is
replacedwithwind unit and another power only unit replaced
with solar unit. In IEEE-57 bus system bus-2 and bus-3 are
connected with wind and solar generating unit. The total
amount of load demand is 1250.8 MW, whereas reactive
power and heat demand are 336.4 MVar and 175 MWth.
An overview of IEEE 57 bus system for wind, solar-based
OPF-CHPED is depicted in Table 12. The simulation results
of DTBO and CODTBO and optimal setting of control vari-
ables are illustrated in Table 13. The DTBO, ODTBO and
CODTBO has been applied on the proposed renewable-
based CHPED–OPF system and analogy study to judge the
excellency of the proposed optimization method on single-
objective and multi-objective functions. Using DTBO the
obtained optimal cost is 30,237.2572 $/h, emission 1.6822
(t/h) and L-index is 0.2379, whereas for multi-objective
function simultaneously minimized cost and emission are
30589.546 $/h and 2.5145 (t/h) again simultaneously mini-
mized cost with stability index are 32018.1764 and 0.2571.
After the CODTBO method has been tested, the obtained
optimal cost is 30,057.0093 $/h, emission 1.6598 (t/h),
and reduced L-index is 0.2362, whereas for multi-objective
function simultaneously minimized cost and emission are
30,337.5731 $/h and 2.4672 (t/h). After that simultaneously
minimized cost with stability index are 31,654.4568 $/h and
0.2521. The statistical analysis has been done using DTBO,
ODTBO and CODTBO on a renewable-based OPF-CHPED
system and displayed in Table 15 which is the evidence of
the robustness of the proposed CODTBO technique. The
comparison of DTBO, ODTBO, CODTBO on emission
of wind–solar CHPED-based OPF system is displayed in
Fig. 10. The convergence characteristics of different objec-
tive functions are shown in Fig. 11, when the CODTBO
optimisation technique yields results that converge to the
optimumvalue in every situationmuch earlier than theDTBO
and ODTBO techniques. From simulation result it has been
observed that after incorporating renewable energy sources
withCHPED-basedOPF systemCODTBOmethod provided
optimal solution than other tested techniques, it also proved
that proposed CODTBO has better dealing capability with
nonlinear functions.
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Fig. 6 Optimal value of control variables for case 1 to case 5 of test system-1 using CODTBO technique

Table 12 An overview of IEEE 57 bus system for wind–solar–EV based CHPED–OPF

Items Quantity Details

Buses 57 [ref]

Branches 80 [ref]

Thermal generators 5 5 power only units (buses 1,2, 3, 6 and 8), 2 CHP units (buses 9, and 12) and
1 heat only unit

Wind generators (WG1) 1 Buses:2

Solar unit (PV) 1 Buses:3

Electric vehicle (EV) 1 Buses:6

Tap changing transformer 15 Branches:19, 20, 31, 37, 41, 46, 54, 58, 59, 65, 66, 71, 73, 76 and 80

Scheduled real power for 6 Nos. generators:

Control variables 34 Bus voltages of all generator buses (7 Nos.) transformer tap setting (15 nos),
and compensation devices (3 nos), 3 heat units.

Load demand, Heat demand 1250.8 MW, 336.4 MVAr, 175 MWth

Range of load bus voltage 24 [0.94–1.06] p.u.

Compensation devices 3 Buses:18, 25 and 53

Fig. 7 Cost comparison study for test system-1 of CHPED-based OPF

5.3.2 Test system-3

Additionally EV also integrated with wind and solar, on
CHPED-based OPF system to judge the performances of

proposed CODTBO technique on more nonlinear-based sys-
tem. Again use of more renewable sources, utility of thermal
units get reduces which cause optimal solution over cost and
emission during power generation. In this proposed wind–
solar–EV-based IEEE-57 bus system wind unit is connected
with onbus number 2, solar is connectedwith bus 3 andEVon
bus 6. The total amount of load demand is 1250.8 MWMW,
whereas reactive power and heat demand are 336.4 MVar
and 175 MWth. An overview of IEEE 57 bus system for
wind–solar–EV-based OPF-CHPED is depicted in Table 12.
The simulation results of DTBO and CODTBO and optimal
setting of control variables are illustrated in Table 14. The
DTBO, ODTBO and CODTBO has been applied on the pro-
posed renewable-based CHPED–OPF system and analogy
study to judge the excellency of the proposed optimization
method on single objective and multi-objective functions.
The obtained optimal cost on wind–solar–EV-based system

123



Electrical Engineering

Fig. 8 Comparison studyof stability index for test system-1 ofCHPED-
based OPF

Fig. 9 Cost convergence graph for test system-1 of CHPED-based OPF

using CODTBO is 29,791.3288 $/h, emission 1.6053 (t/h),
and reduced L-index is 0.235, whereas for multi-objective
function simultaneously minimized cost and emission are
29,917.7694 $/h and 2.4244 (t/h). After that simultaneously
minimized cost with stability index are 31,241.7366 $/h and
0.2545 . The obtained results using CODTBO technique are
much better than other tested optimization techniques which
is the evidence of superiority of CODTBOoptimization tech-
nique. The statistical analysis has been done using DTBO,
ODTBO and CODTBO on a renewable-based OPF-CHPED
system and displayed in Table 13 which is the evidence of
the robustness of the proposed CODTBO technique. The dif-
ferent comparison of CHPED-based OPF system on cost
is displayed in Fig. 12. The convergence characteristics of
different objective functions are shown in Fig. 13. When
the CODTBO optimisation method, unlike the DTBO and
ODTBO optimisation procedures, achieves results in all cir-

Fig. 10 Emission comparison studyofwind–solar-basedCHPED–OPF

cumstances that smoothly converge to the optimal value in
less than 30 iterations. From the above discussion it has been
proved that the effectiveness of CODTBO technique is much
better than other tested techniques.

The comparison of minimum cost using CODTBO for
three different test systems is displayed in Fig. 14 where
it has been observed the cost get reduces with incorporat-
ing more number of renewable sources (RESs). The voltage
profile for without and with renewable-based CHPED–OPF
has been displayed in Fig. 15 where it has been observed
that voltage deviation is improved in wind–solar–EV-based
CHPED–OPF system than other systems using CODTBO
technique. From above discussion it has been proved that
proposed CODTBO technique can deal with more nonlinear
functions. It is the evidence of superiority of the proposed
CODTBO technique (Table 15).

6 Conclusions and future scopes

In this paper, the main goal of this presentation is to illus-
trate how to schedule CHPED-based OPF using renewable
energy sources and to show how effective the CODTBOopti-
misation technique is to fulfill the load demand for economic
generation, less emission and less power losses with main-
taining the load bus voltages within permissible limits. The
main contributions of the proposed work are listed below:

• Integrating optimal power flow (OPF) in CHPED system
• Scheduling OPF-based CHPED with wind–solar–EVs.
• Solving both single- and multi-objective functions using
newly developed CODTBO approach.

• Implementation of CODTBO in IEEE CEC benchmark
functions

In the first part of the simulation study, it is found that
use of CODTBO has significantly reduced the fuel cost
with emission and fuel cost with L-index simultaneously
for single- and multi-objective functions in comparison with
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Fig. 11 Cost convergence graph for test system-2 of CHPED-based
OPF with wind and solar

Fig. 12 Cost comparison study for test system-3 of CHPED based OPF
with wind–solar–EV)

Fig. 13 Cost convergence graph for test system-3 of CHPED based
OPF with wind, solar and EV

Fig. 14 Different test systems result using CODTBO technique)

Fig. 15 Voltage profile for three different test systems using CODTBO
technique

other optimization techniques and all the system constrains
are also been satisfied. The overall fuel cost and emission are
lowered by 3.48% and 5.1%, respectively, and the L-index is
enhanced by 21.6% in the second phase when wind–solar–
EVsare integratedwithCHPED–OPF. It has been established
that the suggested CODTBO can effectively handle nonlin-
ear functions as a result. The fuel cost is further decreased
by 1.65% and computational speed is increased by 45%
when chaotic-oppositional-based learning (CO) is combined
with DTBO (CODTBO). Henceforth, CODTBO has the bet-
ter exploration capability and better searching ability due to
improved version of DTBO. The proposed wind–solar–EV
with CHPED-based OPF brings both environmental benefits
and economic operation to the power grid. By doing statis-
tical analysis on three systems with obtaining least variation
of mean and optimal values of cost, emission and voltage
deviation with the tolerance of less than 0.025%, the robust-
ness of the suggested CODTBO has been judged. Thus, it
may be concluded that the CODTBO is much superior to the
other tested optimization techniques in all respect. In future
it may be extended to more nonlinear-based system and may
be applied on real-time-based problems for optimal solution.
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