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Abstract
This paper introduces a new image encryption technique, leveraging the combined effects of a chaotic neural network and 
a 5D-Hyperchaotic system (HCS). The proposed method involves chaotic image matrix generation through the integration 
of the Ikeda map within an artificial neural network, followed by diffusion and confusion to enhance security. The 5D-HCS 
generates chaotic sequences using image data and a cryptographic key, which are then incorporated to produce a highly secure 
encrypted image. The proposed algorithm is rigorously validated through comprehensive testing like NIST suite evalua-
tions, correlation analysis, key sensitivity assessment, and venerability to various attacks, yielding notable results such as an 
entropy value of 7.9992, an NPCR of 99.6, and an UACI of 33.463 for the encrypted Lena image. This study promises the 
method’s efficacy in safeguarding sensitive visual data and positions it as an avenue for future research in image encryption 
as an emerging technology.

Keywords  Neural network · Hyperchaotic system · Lyapunov exponents · Ikeda map · Encryption · Decryption

1  Introduction

The increasing reliance on the sharing of digital data and 
the widespread use of the internet have led to a growing 
concern about data security. Among various forms of digi-
tal data, images play a crucial role in many applications, 
ranging from personal photographs to medical images as 
well as military surveillance. Proper design of a crypto-
system can only ensure the confidentiality, integrity, and 
authenticity of shared images through the transmission 
channel. Image encryption is the process of transforming 
an image into its encrypted form so that only authorized 
parties can access the original content within it. Only effi-
cient encryption techniques provide a solution to this prob-
lem, and the effectiveness of these techniques has been 
demonstrated through various studies. Conventional image 
encryption techniques are often used to encrypt the data 
transmission of images, including well-known algorithms 
such as the Data Encryption Standard (DES) [1] and the 
Advanced Encryption Standard (AES) [2]. However, in the 
current age of advanced computational power, the main-
tenance of key security and resistance against differential 
attacks is encountering significant obstacles. Techniques 
such as homomorphic encryption enable computations on 
encrypted images while maintaining their confidentiality; 
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however, they often face challenges in terms of computa-
tional overhead and practicality [3]. Leveraging machine 
learning, some approaches deploy Generative Adversarial 
Networks (GANs) and chaotic systems to encrypt images in 
novel ways, yet they may require large datasets and intensive 
training [4]. For hardware-oriented solutions, FPGA-based 
encryption schemes have been devised to secure images 
using the Advanced Encryption Standard (AES), although 
these solutions might be constrained by hardware resources 
[5]. Quantum image encryption explores the intriguing pos-
sibilities of harnessing quantum properties to enhance secu-
rity, but its practical implementation remains a challenging 
job [6–10]. Additionally, while DNA-based encryption lev-
erages the inherent properties of DNA sequences to protect 
image content, its application in real-world scenarios may 
be limited due to the complex biological processes involved 
[11–14]. Along with blockchain-enhanced encryption [15, 
16], chaotic maps fused with neural networks[17–20], sparse 
representation techniques [21, 22], and deep learning-based 
approaches [23, 24], these new methods are part of an excit-
ing landscape of new image encryption methods. Despite 
their promises, these techniques also come with new chal-
lenges that must be addressed to fully realize their potential 
in reshaping the paradigm of image security and privacy 
in the digital age. Neural network and hyperchaos-based 
image encryption techniques offer promising avenues for 
securing digital images by leveraging the unique properties 
of chaos theory and neural networks [25–28]. These tech-
niques can enhance security and computational efficiency 
compared to traditional encryption methods, making them 
suitable for a wide range of image encryption applications. 
The utilization of chaotic behaviour in dynamical systems 
and neural networks allows the generation of pseudo-random 
sequences that can serve as encryption keys or efficiently 
do the confusion-diffusion operations to enhance the secu-
rity of the encrypted images. Additionally, the complex and 
unpredictable behaviour of the chaotic systems makes it 
challenging for adversaries to reverse engineer or decipher 
the encrypted images. However, there are several research 
challenges that need to be addressed in the context of NN 
and HCS-based image encryption. First, the security analy-
sis of these techniques needs to be rigorously performed 
against various types of attacks to understand their strengths 
and weaknesses. This includes analysing the resistance of 
chaotic NN and HCS-based image encryption techniques 
to statistical attacks, brute force attacks, and cryptanalysis 
attacks. Second, optimizing the neural network architecture 
and HCS parameters is crucial to achieving high security 
and computational efficiency. Further research is needed 
to develop optimized chaotic NN architectures and HCS 
parameters that strike the right balance between security 
and efficiency. Additionally, efficient and secure key man-
agement mechanisms need to be developed to ensure the 

confidentiality and integrity of the encryption keys, and 
mechanisms for image authentication and integrity verifi-
cation need to be incorporated to ensure the authenticity and 
integrity of encrypted images. Considering the above facts, 
we have designed a chaotic neural network by seamlessly 
integrating the Ikeda map with an artificial neural network. 
Details about the design of a chaotic neural network can 
be found in Sect. 2. Furthermore, our encryption algorithm 
incorporates a 5D-HCS, as expounded upon in Sect. 3, to 
enhance the security of encrypting sample images. The 
details of the encryption procedure are discussed in Sect. 5. 
Section 6 consists of the test parameters and their results, 
and lastly, the conclusion.

2 � Chaotic neural network

A chaotic neural network is a type of artificial neural net-
work that incorporates chaos theory into the training pro-
cess. It uses the chaotic map to introduce randomness and 
unpredictability within the weights and biases of the net-
work. The chaotic behaviour helps to avoid getting stuck in 
local minima during training and can improve the network’s 
ability to generalize the new data set. In our case, we have 
implemented the Ikeda map to incorporate chaos into the 
training process. This network consists of 3 nodes (I) as the 
input layer, 30 nodes (N) as hidden layers, and 3 nodes (M) 
as the output layer, with the input of dimension D the same 
as that of the test image. The output of the hidden layer is 
obtained by applying the Ikeda map to the linear combi-
nation of the input data and the bias term for each hidden 
node. The role of the Ikeda map in this implementation of 
a neural network is to introduce chaos and randomness into 
the training process. It is a nonlinear map that generates a 
chaotic time series from a given input value. The bifurcation 
diagram and the trajectory of this map are shown in Fig. 1. 
In this implementation, the said map is used to transform the 
output of the hidden layer (basically the linear combination 
of the input data and bias term for each hidden node) into 
a more complex and chaotic representation. The Ikeda map 
is defined as:

where x and y are the inputs, c = 0.92 is the scaling param-
eter, and u and v are the outputs. Using the following linear 
transformation of the hidden layer (h), the output of the net-
work (y) is obtained.

where W2 is a M x N dimensional weight matrix and b2 is 
a M-dimensional bias vector. During training, the weights 

(1)
u = 1 + c(x cos y − y sin x)

v = c(x sin y + y cos x)

}

(2)y = W2h + b2
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and biases are updated using back propagation with a learn-
ing rate of � . The error(e) for the output layer is defined as:

where t is the target output. The error e for the hidden layer 
is defined as:

where �u
�x

 is the partial derivative of u with respect to x and 
is given by (5):

The weights and biases are updated as follows:

where Δ2 is a M x N matrix, Δ1(i) is a N x D matrix for each 
hidden node i, x is the input data, h is the output of the hid-
den layer, W1(i) is the weight matrix for hidden node i, and 
b1(i) is the bias term for hidden node i. In the constructor of 
the chaotic neural network, the weights and biases are set to 
random values, and the random number generator is seeded 

(3)e = t − y

(4)e(i) = e
�u

�x

(5)
�y

�x
= c(cos y − x sin y)

(6)
Δ2 = �ehT

W2 = W2 + Δ2

b2 = b2 + �e

⎫⎪⎬⎪⎭

(7)
Δ1(i) = �e(i)xT

W1(i) = W1(i) + Δ1(i)

b1(i) = b1(i) + �e(i)

⎫⎪⎬⎪⎭

with four hash keys derived from the SHA-256 hash of the 
input image to make sure that the training process is random. 
The purpose of using the hash keys is to ensure that the 
weights and biases are different for each input image, which 
helps the network learn more effectively. The code then 
generates a random sequence matrix of image dimensions 
and applies the neural network to the data to reconstruct 
a chaotic image. The chaotic image is created by iterating 
over each pixel in the random sequence matrix and passing 
it as input to the network. The output of the network is then 
used to update the corresponding pixel in the chaotic image.

3 � Hyperchaotic system

Hyperchaotic systems are those chaotic systems that have 
at least two positive Lyapunov exponents and are a topic of 
great interest in the fields of nonlinear dynamics and chaos 
theory. The concept of hyperchaos was first introduced by 
Otto Rössler in 1979 [29], and since then, many new hyper-
chaotic systems have been proposed. One such 5D-HCS [30] 
has been used in our work, and the dynamical equations of 
the system are formulated as

where x, y, z, u, and v are the state variables, and for a = 23, 
b = 3, c = 18, m = 12, and h = 4, the Lyapunov exponents of 

(8)

ẋ = a(y − x)

ẏ = (c − a)x − cy + v − xz

ż = −bz + xy

u̇ = mv

v̇ = −y − hu

⎫⎪⎪⎬⎪⎪⎭

Fig. 1   Bifurcation diagram (left) and trajectory of the Ikeda map (right)
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this system are L1 = 0.8732, L2 = 0.1282, L3 = − 0.0013, L4 
= − 0.5770, and L5 = − 8.4231. The values of the system’s 
Lyapunov exponents reveal important information about the 
nature of the system’s stability and predictability. Two posi-
tive Lyapunov’s exponents indicate that the system is highly 
sensitive to initial conditions, making its behaviour difficult 
to predict. Negative exponents, on the other hand, suggest 
that the system’s behaviour will eventually converge to a 
stable state. The chaotic attractors of the system for different 
phase spaces are shown in Fig. 2.

4 � Image encryption

The suggested encryption method uses chaotic sequences 
from the new chaotic neural network described in Sect. 2 
and hyperchaotic sequences from the system described 
in Sect. 3. The randomness of these sequences is rigor-
ously evaluated using the NIST SP 800-22 test, the results 
of which are shown in Table 1. An overview of the entire 
encryption procedure is illustrated below, and the flowchart 
of it is shown in Fig. 3.

Step 1: A color image (P) of dimension M × N × 3 is 
taken as input. The pixel intensity of each color channel of 
the image P is transformed into bytes of 8 bits. Subsequently, 

the SHA-256 function is used to compute the SHA-256 hash 
for each channel of the image.

Step 2: The 256-bit hash key generated from image P, 
along with the Ikeda map function, is used in a chaotic 
neural network to obtain the chaotic image C of dimension 
M × N × 3.

Step 3: A bit-wise XOR operation between the pixel 
values of the original image P and the corresponding pixel 
values of the chaotic image C present at the same location 
is performed. This process results in the generation of the 
first encrypted image ‘I’ of the same dimension as that of 
P and C.

Step 4: Iterative Block-Based Image Rotation begins 
with the smallest block size (S), increasing block size until 
it reaches the image’s (P’s) dimensions. In doing so, we have 
adopted the following steps: 

a.	 Checking whether the image’s height and width are 
divisible by S.

b.	 If yes, then reshape the image into blocks of size (S, S, 
3); otherwise, apply zero padding.

c.	 Rotate the pixel positions within the blocks anticlock-
wise by 90 degrees.

d.	 Reshape the rotated blocks back to the original image 
shape.

Fig. 2   Chaotic attractors of the 5D-HCS in a xyz, b uzu, c zuv, d uvx, and e vxy phase space
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e.	 Updating a pixel’s information for the next step of itera-
tion by doubling S. This process repeats several times 
till the dimension reaches its maximum value, i.e., the 
image dimension M × N × 3, and finally obtains the 
desired image IR.

Step 5: A diffused image IS ( xf  , yf  ) is generated by further 
shuffling of the pixel value of the image IR ( xi , yi ) by iterat-
ing the following modified equations of the Ikeda map 10 
times:

Step 6: Using Eq. (8), the dynamical equations of a 5D-HCS 
are used to make 5 sets ( k1 , k2 , k3 , k4 , and k5 ) of M × N cha-
otic sequences. This is done after 107 sequences are thrown 
away to make the system stable. The initial values of the 
variables in the system equation are generated by processing 
the 32-bit character key with a hash function.

Step 7: Three sets of chaotic sequences of dimension M 
× N are generated by taking the bit XOR operation as given 
below.

kr = k1
⨁

k2
⨁

k3
kg = k2

⨁
k3

⨁
k4

kb = k3
⨁

k4
⨁

k5
Step 8: The final encrypted image IE is obtained by taking 

the bit XOR operation of the elements of the red, green, and 
blue channels of IS with kr , kg , and kb , respectively.

To revert the final encrypted image back to its original form, 
we have implemented the inverse algorithm, depicted in Fig. 4. 

(9)

u = 1 + d(xi cos bn − yi sin bn)

v = d(xi sin bn − yi cos bn)

xf = a + cu cos v

yf = cu sin v

⎫⎪⎬⎪⎭

The encryption and decryption procedures we introduced have 
undergone rigorous testing through Python code implementa-
tion. Remarkably swift, the entire process concludes within a 
few seconds, showcasing its efficiency and effectiveness. This 
is elaborated upon in Sect. 6.

5 � Randomness test

The NIST SP800-22 test is a comprehensive tool for assess-
ing image encryption pseudorandom number generator 
performance. This NIST test evaluates the randomness 
and unpredictability of a pseudorandom number generator-
generated binary sequence using fifteen rigorous subtests 
[31]. These tests determine if a chaotic binary sequence can 
encrypt images securely. The NIST SP800-22 test measures 
sequence unpredictability using the P-value. P-values of 
0.01 or higher indicate a random sequence that passes the 
test [32]. A P-value below 0.01, however, indicates a non-
random sequence and fails the test. A P-value of 1 indicates 
a fully random sequence, while 0 indicates a non-random 
sequence. We used the NIST SP800-22 test suite to evalu-
ate the chaotic neural network and HCS outputs for image 
encryption. Table 1 shows that the chaotic neural network 
and HCS’s binary stream pass all sub-tests, proving their 
image encryption suitability.

6 � Security and statistical analysis 
of the cryptosystem

This section entails conducting comprehensive experi-
ments and security analyses utilizing Python 3.9 on a 
Windows 11 operating system, installed on a computer 

Fig. 3   Structure of the image 
encryption scheme
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furnished with an AMD Ryzen-7 5700U processor and 8.0 
GB of RAM. A set of seven images of size 256 × 256 × 3 
have been selected from the USC-SIPI image database, 
which have undergone rigorous testing and are presented 

in Fig. 5. The purpose of selecting these images is to 
evaluate the robustness of the proposed image encryption 
scheme by encrypting them and subjecting them to vari-
ous tests.

6.1 � Histogram

Histogram plotting is a fundamental tool in the context of 
image encryption, allowing for the analysis and optimiza-
tion of encryption algorithms. In image encryption, histo-
grams depict the frequency distribution of pixel intensities 
in an image. The goal of image encryption is to produce 
ciphertext that appears random and contains no discern-
ible patterns or structures in the histogram plot. There-
fore, an encryption algorithm should produce a uniform or 
flat histogram that has no peaks or valleys. By analysing 
the histogram of encrypted images, cryptographers can 
detect any patterns or biases that may indicate potential 
weaknesses in the encryption algorithm. Furthermore, 
histogram analysis can be used to optimize encryption 
algorithms by identifying regions of an image that are 
particularly vulnerable to attack and adjusting the encryp-
tion process accordingly. We conducted a comprehensive 
analysis of the histograms for all sample images and their 
corresponding encrypted counterparts, out of which the 
histogram plot of three sample images is shown in Fig. 6. 
Our findings vividly demonstrate that the histogram plots 
of the encrypted images exhibit a significantly higher level 
of uniformity compared to the original images.

Fig. 4   Structure of the decryp-
tion scheme

Table 1   NIST test results

Statistical Test Chaotic NN output 5D-HCS output

P-value Result P-value Result

Frequency (Monobit) 0.095137 Success 0.691420 Success
Frequency (in block) 0.097551 Success 0.576690 Success
Cumulative Sums 0.150344 Success 0.756337 Success

0.032423 0.414524
Runs 0.890195 Success 0.620032 Success
Longest run of ones 0.118797 Success 0.241511 Success
Rank 0.262103 Success 0.605581 Success
Discrete Fourier transform 

(DFT)
0.743672 Success 0.027083 Success

Nonperiodic template 
matchings

0.463707 Success 0.434718 Success

Overlapping template 
matchings

0.654313 Success 0.314892 Success

Universal statistical 0.970234 Success 0.973872 Success
Approximate entropy 0.767046 Success 0.746128 Success
Random excursions 0.886128 Success 0.839246 Success
Random excursions variant 0.747654 Success 0.615842 Success
Serial 0.142092 Success 0.293375 Success

0.478756 0.043164
Linear complexity 0.689723 Success 0.642218 Success
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6.2 � Texture analysis

Mathematical formulas that are used to measure dissimilar-
ity (DIS), homogeneity (HOM), contrast (CON), and energy 

(ENE) are given by Eqs. (10), (11), (12). and (13) respectively 
and are commonly used to analyse image texture analytically. 
When comparing the original image and the encrypted image, 
these measures can provide valuable insights into how the 

Fig. 5   Sample images and their corresponding encrypted and decrypted images

Fig. 6   Histogram plots of original image (top) and corresponding encrypted image (bottom)
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texture of the image has changed. The measurement of tex-
ture is based on the grey-level co-occurrence matrix (GLCM) 
of the image, which describes the occurrence of pairs of pix-
els with a certain spatial relationship. Dissimilarity measures 
the degree of difference between pairs of pixels in an image. 
Homogeneity, on the other hand, measures the similarity of 
neighbouring pixels. Contrast measures the difference in inten-
sity between neighbouring pixels. Finally, energy measures the 
overall uniformity of the texture. The results of texture analysis 
for all channels of both the original and encrypted images are 
displayed in Table 2. Our findings reveal notable changes: the 
dissimilarity and contrast values of the encrypted images have 
increased, while the values of homogeneity and energy have 
shown a significant decrease. These shifts in values underscore 
the enhanced robustness of the encryption algorithm.

6.3 � Correlation analysis

In a 2D image, adjacent pixels tend to have a strong correla-
tion with one another, regardless of their orientation—hori-
zontal, vertical, or diagonal. To ensure effective encryption, 
it is crucial to break these pixel correlations in the original 
image and produce encrypted images that appear to be random 
noise with low levels of correlation [33, 34]. To measure the 
degree of correlation between pixels, correlation coefficients 
are calculated using specific methods, such as Eqs. (14), (15), 
(16). and (17).

(10)DIS =

N−1∑
i,j=0

Pi,j|i − j|

(11)HOM =

N−1∑
i,j=0

Pi,j

1 + (i − j)2

(12)CON =

N−1∑
i,j=0

Pi,j(i − j)2

(13)ENE =

(
N−1∑
i,j=0

(Pi,j

)2

)1∕2

(14)rxy =
cov(x, y)√
Dx

√
Dy

(15)Ex =
1

N

N∑
i=1

xi

Here, N represents the total number of pixel pairs analysed 
from the test image, where x and y denote the values of 
adjacent pixels. Table 3 illustrates different test images for 
each color component, along with correlation coefficients in 
various orientations. Pixel correlation provides a measure of 
the interdependence between adjacent pixels in an image. 
Since a color image consists of three-color components, cor-
relation analysis is performed separately in the horizontal, 
vertical, and diagonal directions for each color component. 
The scatter plot of correlation for all three channels is shown 
in Fig. 7 for the Lena image, considering both the original 
and encrypted images in different orientations. These scatter 
plots demonstrate that nearby pixels in a plain image have 
a strong association, while the correlation coefficient in an 
encrypted image rapidly decreases.

6.4 � Entropy

The level of randomness in an information system can be 
measured quantitatively using entropy. This concept was first 
introduced by Shannon [35]. To determine the information 
entropy of a given information source (m), Eq. (18) is used:

Here, P(mi) represents the probability of the symbol (mi). 
If E(m) = N , the output of a source that emits 2N symbols 
will be completely random. Since each symbol in our system 
corresponds to an 8-bit number, the ideal value for E(m) is 
8, which denotes the highest level of randomness. Table 4 
displays the entropy analysis results for the three-color com-
ponents of the test images, showing that the entropy values 
are quite close to the ideal value of 8. Table 5 displays the 
overall information entropy of the original and encrypted 
images.

6.5 � Key space

The suggested technique utilises the capabilities of a 
5D-HCS and a chaotic neural network. The behaviour of 
this dynamic system is determined by five initial conditions, 
which confer upon it a notable susceptibility to even lit-
tle modifications in its original state. Notably, five of these 
initial conditions are derived from the 32-characters com-
prising the encryption key. Once input into the 5D-HCS, 

(16)Dx =
1

N

N∑
i=1

(xi − E(x))2

(17)cov(x, y) =
1

N

N∑
i=1

(xi − E(x))(yi − E(y))

(18)E(m) =

2N−1∑
i=0

P(mi) log2
1

P(mi)
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these conditions generate intricate and unpredictable chaotic 
sequences that serve as the foundation for our encryption 
process. The size of the key space, denoting the total num-
ber of possible keys, is of paramount importance in ensur-
ing security. In our case, the key space is a staggering 2256 , 
equivalent to an astonishing 1.158 × 1077 unique keys. This 
colossal key space renders any brute force attack futile, as 

the sheer magnitude of possible keys defies computational 
feasibility.

6.6 � Key sensitivity

The sensitivity of a cryptographic key is a pivotal aspect 
of a dependable encryption system, encompassing two 

Table 2   Texture analysis results 
for original and encrypted 
images

Image Channel DIS HOM CON ENE

Airplane R 0.39180453 0.84343355 0.86934743 0.42346105
G 0.58063725 0.79047329 1.62910539 0.36725482
B 0.54666054 0.79318739 1.37662377 0.35217834

Airplane encrypted R 5.34895833 0.16683933 42.99978554 0.06217896
G 5.32218137 0.1672262 42.64485294 0.06210477
B 5.31060049 0.16882532 42.53498775 0.062177

Baboon R 1.16393995 0.57460164 2.96599265 0.13692842
G 1.1783701 0.57320181 3.0640625 0.14887511
B 0.96248468 0.62948601 2.21848958 0.14654955

Baboon encrypted R 5.36971507 0.1662715 43.32501532 0.0621357
G 5.30070466 0.16868448 42.37466299 0.06215718
B 5.31680453 0.16757083 42.54027267 0.06214483

Couple R 0.33262868 0.84766749 0.4901348 0.44269637
G 0.28953738 0.87023668 0.45991115 0.43699461
B 0.34001225 0.84899247 0.54666054 0.34589861

Couple encrypted R 5.2928462 0.16960899 42.3136489 0.06220649
G 5.29393382 0.16882031 42.26216299 0.06218777
B 5.33316483 0.16688771 42.75813419 0.06221603

House R 0.68526348 0.74093308 1.69797794 0.23227593
G 0.68615196 0.73804778 1.64739583 0.24068622
B 0.71132047 0.72159653 1.57838542 0.21240962

House encrypted R 5.33509498 0.16725023 42.8930913 0.06219809
G 5.30730699 0.16781966 42.42311581 0.0621695
B 5.34105392 0.16740182 42.87356005 0.06217165

Jelly beans R 0.2214614 0.90750798 0.41744792 0.37804207
G 0.26240809 0.89726902 0.58535539 0.53912703
B 0.21780025 0.90630086 0.37616422 0.52290837

Jelly beans encrypted R 5.31885723 0.167517077 42.56643689 0.06215734
G 5.33609069 0.16798348 42.84310662 0.06222251
B 5.31778493 0.1668237 42.52973346 0.0622154

Lena R 0.36038603 0.8414029 0.5942402 0.28471669
G 0.39117647 0.83551308 0.74632353 0.22163925
B 0.37449449 0.83702741 0.64557292 0.26244054

Lena encrypted R 5.30481005 0.1699276 42.56207108 0.06218822
G 5.29420956 0.16860198 42.27092525 0.06219422
B 5.32573529 0.16779047 42.67913603 0.06215536

Splash R 0.28809743 0.88746335 0.70283395 0.46022706
G 0.35637255 0.85238297 0.76868873 0.3041013
B 0.1629136 0.92457502 0.22792586 0.33839027

Splash encrypted R 5.33612132 0.16731615 42.88740809 0.06216897
G 5.31937806 0.16759906 42.61591605 0.06216972
B 5.31479779 0.16853227 42.58223039 0.06216356
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critical facets. Firstly, even inconsequential changes to 
the key during the encryption process can have a pro-
found impact on the resulting encrypted image. Sec-
ondly, even the slightest alteration to the key during the 
decryption process can prevent the accurate retrieval 
of the original image. To vividly illustrate this point, 
we conducted an experiment using the Lena image, as 

depicted in Fig. 8a. For the purpose of testing the vari-
ation in the encrypted image, we employed two encryp-
tion keys: “knj9t3rt5%eml@Z71!@#y5q &*90AsD2x” 
and “tnj9t3rt5%eml@Z71!@#y5q &*90AsD2x”, with 
only a single character differing. The resulting images in 
Fig. 8b and c exhibited a disparity of 99.63% on average 
across RGB channels. Figure 8d visually represents the 

Table 3   Correlation coefficients 
for original and encrypted 
images in different directions

Image Channel H-Direction V-Direction D-Direction

Airplane R 0.9345690 0.9117624 0.8850341
G 0.9203948 0.9234021 0.8745225
B 0.9251186 0.9201730 0.8690371

Airplane encrypted R 0.0076107 − 0.0192912 0.0028263
G 0.0017101 0.0029046 0.0029308
B − 0.0144390 0.0018197 − 0.0154175

Baboon R 0.9059377 0.8971365 0.8564896
G 0.8465771 0.8113468 0.7632593
B 0.9371826 0.9118230 0.8920743

Baboon encrypted R − 0.0007625 0.0027948 − 0.0018353
G − 0.0169830 0.0031779 − 0.0067467
B 0.0070239 − 0.0078114 0.0016794

Couple R 0.9208100 0.9447263 0.8980410
G 0.9346264 0.9525040 0.9119269
B 0.9522548 0.9565993 0.9248416

Couple encrypted R 0.0066018 − 0.0063299 0.0036854
G 0.0016663 − 0.0027105 − 0.0016429
B 0.0013420 − 0.0075149 − 0.0092458

House R 0.9516401 0.9497270 0.9158934
G 0.9017517 0.9204760 0.8523106
B 0.9233780 0.9233068 0.8750320

House encrypted R − 0.0179320 − 0.0022608 0.0023506
G 0.0043441 − 0.0012247 − 0.0018743
B 0.0016586 0.0010722 − 0.0018984

Jelly beans R 0.9750035 0.9776799 0.9523614
G 0.9683100 0.9742402 0.9440366
B 0.9704770 0.9751283 0.9461865

Jelly beans encrypted R 0.0015510 0.0083369 0.0062765
G − 0.0016572 − 0.0001394 0.0029197
B 0.0034284 0.0009420 − 0.0018277

Lena R 0.9166174 0.9434061 0.8810268
G 0.9424681 0.9694078 0.9160111
B 0.9450341 0.9698716 0.9172975

Lena encrypted R − 0.0044834 0.0096281 − 0.0021769
G 0.0010658 0.0022176 − 0.0003758
B 0.0004583 − 0.0018965 − 0.0027091

Splash R 0.9677143 0.9693644 0.9392239
G 0.9640653 0.9783153 0.9465369
B 0.9861851 0.9967107 0.9838430

Splash encrypted R − 0.0057074 − 0.0059156 0.0061765
G − 0.0015000 − 0.0087373 0.0010622
B − 0.0165272 0.0101702 − 0.0040932



Evolutionary Intelligence	

Fig. 7   Correlation scattered plot for Lena image original (top) and encrypted (bottom)

Table 4   Entropy of the original 
and encrypted images for 
different channels

Image Original image Encrypted image

R G B R G B

Airplane 6.2207 6.8399 6.7396 7.9972 7.9974 7.9974
Baboon 7.6842 7.3827 7.6204 7.9969 7.9971 7.9972
Couple 5.9309 5.9641 6.2499 7.9972 7.9972 7.9977
House 7.4373 7.2442 7.4163 7.9970 7.9966 7.9968
Jelly beans 6.7986 6.2195 5.7919 7.9975 7.9975 7.9973
Lena 6.9716 7.5976 7.2688 7.9972 7.9977 7.9974
Splash 6.0758 6.9391 6.9507 7.9973 7.9977 7.9975

Table 5   Overall entropy of 
the sample images and their 
corresponding encrypted images

Airplane Baboon Couple House Jelly beans Lena Splash

Original 6.6908 7.6947 6.2945 7.4877 6.8527 7.7508 7.2561
Encrypted 7.9990 7.9990 7.9990 7.9990 7.9991 7.9992 7.9992

Fig. 8   Key sensitivity analysis of Lena image
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image formed from the difference values of the images 
in Fig. 8b and c. Notably, when the encrypted image is 
decrypted using the same key, the original image is suc-
cessfully retrieved, as demonstrated in Fig. 8e. However, 
even a minor discrepancy of one character in the decryp-
tion key from the original key resulted in a distinctly dif-
ferent image, as illustrated in Fig. 8f. This compellingly 
illustrates that the proposed encryption algorithm is highly 
sensitive to the key, with only the precise and exact key 
enabling successful decryption, and even the slightest 
deviations from the correct key yielding unrecognizable 
images.

6.7 � Differential attack

Normalized Pixel Change Rate (NPCR) and Unified 
Average Changing Intensity (UACI) are important met-
rics used in image and video cryptography to evaluate 
encryption algorithms. NPCR measures the percentage 
of pixel value changes between the original encrypted 
image and the encrypted image obtained by changing one 
plain image pixel. Higher NPCR values, near 100, indicate 
greater image pixel diffusion. However, UACI measures 
the average intensity change in encrypted images, with a 
value near 33.33 indicating higher diffusion. NPCR and 
UACI are widely used to evaluate encryption algorithms’ 
robustness, security, and image quality, providing valuable 
insights into cryptographic techniques’ resilience to dif-
ferential and brute-force attacks. The formulas for NPCR 
and UACI are:

Here, L is the total number of pixels in the image. E1 and E2 
are the two encrypted images corresponding to the original 

(19)NPCR =
1

L

∑
i,j

D(i, j) × 100%

(20)UACI =
1

L

∑
i,j

|E1(i, j) − E2(i, j)|
255

× 100%

image and original image with change in one pixel value. 
D(i, j) is defined as:

In this experiment, a random pixel of the original image was 
modified and tested 10 times with one encryption round. 
Table 6 shows the average NPCR and UACI values. Notably, 
the suggested approach produces mean NPCR values above 
99 percent, indicating effective pixel value diffusion. The 
encrypted images’ UACI values are close to 33.3%, indicat-
ing a significant intensity change. These results show that 
the proposed image encryption method is robust and effec-
tive, supporting its use for secure data transmission and dif-
ferential and brute-force protection.

6.8 � Noise attack

Noise attack analysis is an important aspect of evaluat-
ing the strength and robustness of encryption and decryp-
tion algorithms, particularly in the context of encrypted 
images. In this study, we applied different types of noise 
to encrypted images, including Poisson noise with � values 
5, 15, and 30, salt and pepper noise with probabilities of 
0.01, 0.05, and 0.15, and speckle noise with strengths of 
0.01, 0.05, and 0.15. We obtained corresponding decrypted 
images, which are shown in Fig. 9, and calculated the Peak 
Signal-to-Noise Ratio (PSNR), and Mean Squared Error 
(MSE) values for both the original and decrypted images. 
The PSNR, and MSE data are shown in Table 7. By ana-
lysing the effects of noise on the decryption process and 
evaluating the PSNR, and MSE values, we were able to 
assess the effectiveness and robustness of the decryption 
algorithm. Our findings can help inform the development 
of more secure and reliable encryption and decryption 
methods to protect sensitive data in various applications.

(21)D(i, j) =

{
1 for E1(i, j) ≠ E2(i, j)

0 for E1(i, j) = E2(i, j)

Table 6   NPCR and UACI test 
results

Image NPCR(%) UACI(%)

R G B R G B

Airplane 99.60 99.59 99.59 33.46 33.47 33.47
Baboon 99.60 99.63 99.59 33.46 33.45 33.47
Couple 99.62 99.65 99.62 33.46 33.45 33.46
House 99.60 99.59 99.60 33.46 33.47 33.46
Jelly Beans 99.60 99.61 99.58 33.46 33.46 33.47
Lena 99.61 99.59 99.60 33.46 33.47 33.46
Splash 99.57 99.62 99.62 33.48 33.46 33.46
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6.9 � Occlusion

In the occlusion attack analysis conducted in this study, we 
cropped out some portion of different dimensions of the 
encrypted image to simulate the effects of partial occlusion. 
We then obtained the corresponding decrypted images, which 
are shown in Fig. 10. To assess the impact of occlusion on 
the decryption process, we calculated the Peak Signal-to-
Noise Ratio (PSNR), and Mean Squared Error (MSE) values 
with respect to the original image. By analysing the effects of 
occlusion on the decryption process and evaluating the PSNR, 
and MSE values, as shown in Table 8, we were able to assess 
the robustness and effectiveness of the decryption algorithm 
against occlusion attacks. Following are the equations for cal-
culating MSE and PSNR.

(22)MSE =
1

M × N

∑
i,j

[O(i, j) − D(i, j)]2

where, O(i, j) and D(i, j) represent the pixel values at the ith 
row and jth column of the original and decrypted images, 
respectively.

6.10 � Computational complexity

The computational complexity of encryption and decryp-
tion algorithms determines cryptosystem feasibility and 
effectiveness. The complexity of algorithms affects pro-
cessing time, memory usage, and resource needs. Encryp-
tion uses substitution, permutation, and mixing to encrypt 
images. Speed and resistance to attacks are often used to 
evaluate encryption algorithms. Decryption algorithms 
reverse the encryption process, so their complexity must 
be balanced to recover the original image easily while 
maintaining security. Encryption and decryption take 

(23)PSNR = 10[
I2
max

MSE
]

Fig. 9   Decrypted Lena images 
with different noises: Salt & 
Pepper noise with probabil-
ity 1(a) 0.01, 1(b) 0.05, and 
1(c) 0.15; Speckle noise with 
strength 2(a) 0.01, 2(b) 0.05, 
and 2(c) 0.15: Poison noise with 
lambda value 3(a) 5, 3(b) 15, 
and 3(c) 30
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longer with a neural network in our cryptosystem. This 
trade-off requires careful evaluation to find the best bal-
ance between robust security and practical computing 
burden. We performed 20 encryption and decryption 
iterations to fully evaluate the effect. Table 9 shows the 
sample image average encryption and decryption times. 
This information helps us understand time-related factors 
when applying our approach in real-world situations. In a 
neural network-based cryptosystem, higher-configuration 
computers can reduce computational complexity. This 
could optimise processing time and performance.

7 � Relative analysis

In order to evaluate the reliability and effectiveness of 
our suggested encryption mechanism, we performed a 
comparison analysis by comparing the parameter values 
used in our tests with those used in other current tech-
niques that are relevant to our study. The analysis, with 
a special emphasis on the correlation coefficient for the 
Lena image, is thoroughly shown in Table 10, including 
the relevant results from other recent studies. Table 11 

Fig. 10   Decrypted images “(b)” for occlusion size: 1(a) 32 × 32, 2(a) 64 × 64, 3(a) 96 × 96, 4(a) 128 × 128, 5(a) 50% left side, 6(a) 50% right 
side, 7(a) 50% top, and 8(a) 50% bottom
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presents a comparative analysis of the information entropy 
of encrypted Lena in relation to some of the recently 
reported works. Table 12 presents a comparison of the 
NPCR and UACI values for the Lena image, along with 
those obtained from other approaches. Upon conducting 
a comparative analysis, it has been determined that the 
results obtained from our technique exhibit a significant 
similarity to the findings of previous studies. This outcome 
serves as a validation of the effectiveness and suitability of 
our work toward the goal of image encryption.

8 � Conclusion and future scope

The use of a chaotic neural network in conjunction with 
a 5D-HCS gives promising results in encrypting color 
images. Our proposed approach leverages the inherent 
complexity of a chaotic neural network to enhance the 

Table 7   PSNR and MSE results for different noises incorporated to 
Lena encrypted image

Noise Type Parameter PSNR (dB) MSE

Poisson � = 5 (Low) 20.09 637.61
� = 15 (Moderate) 15.59 1795.26
� = 30 (High) 12.96 3290.01

Salt and Pepper Prob. = 0.01 (Low) 28.71 87.59
Prob. = 0.05 (Moderate) 21.66 443.45
Prob. = 0.15 (High) 16.89 1329.66

Speckle Strength = 0.01 (Low) 27.13 125.91
Strength = 0.05 (Moderate) 20.15 628.01
Strength = 0.15 (High) 15.73 1736.42

Table 8   PSNR, and MSE results for different occlusion for Lena 
image

Occlusion size PSNR MSE

32x32 26.53 144.56
64x64 20.66 558.46
96x96 14.69 2209.62
128x128 11.13 5010.64

Table 9   Encryption and decryption time for the sample images

Image Encryption time (s) Decryption time (s)

Airplane 12.9018 12.5179
Baboon 12.8013 12.2928
Couple 12.8271 12.3186
House 13.2781 12.8478
Jelly Beans 13.0768 12.5574
Lena 12.5923 12.1041
Splash 12.9638 12.5266

Table 10   Comparison of the correlation coefficient of Lena encrypted 
image

Methods Channel Direction

Horizontal Vertical Diagonal

Ref. [19] R − 0.0050 − 0.0096 0.0018
G 0.0025 − 0.0032 0.0015
B 0.0035 −  0.0023 − 0.0042

Ref. [25] R 0.0221 0.0299 − 0.0120
G 0.0017 0.0001 0.0265
B 0.0073 0.0116 0.0077

Ref. [36] R − 0.0045 0.0149 − 0.0033
G 0.0026 0.0126 − 0.0013
B − 0.000089 0.0074 0.0021

Ref. [37] R − 0.0073 − 0.0051 − 0.0032
G − 0.0022 0.0056 0.0091
B − 0.0172 − 0.0072 0.0003

Ref. [38] R − 0.0049 − 0.0174 0.0045
G 0.0011 − 0.0156 − 0.0160
B − 0.0045 − 0.0175 0.0018

Ref. [39] 0.00144 − 0.00151 0.00795
Ref. [40] R − 0.003602 0.002683 0.001672

G − 0.002123 0.005589 − 0.00189
B − 0.00322 0.001406 − 0.000787

Ref. [41] 0.0098 0.0098 − 0.0006
Proposed R − 0.0044834 0.0096281 − 0.0021769

G 0.0010658 0.0022176 − 0.0003758
B 0.0004583 − 0.0018965 − 0.0027091

Table 11   Comparison of entropy for Lena encrypted image

Methods R G B Overall 
Encrypted 
image

Ref. [19] 7.9974 7.9975 7.9973 –
Ref. [25] 7.9994 7.9993 7.9992 –
Ref. [36] – – – 7.9924
Ref. [37] 7.9970 7.9970 7.9973 –
Ref. [38] 7.9967 7.9970 7.9978 7.9990
Ref. [39] 7.9972 7.9965 7.9962 –
Ref. [40] 7.9976 7.9980 7.9981 –
Ref. [41] – – – 7.9974
Proposed 7.9972 7.9977 7.9974 7.9992
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security of the encryption process incorporated with a 
HCS. Through extensive experimentation and analysis, we 
have observed the effectiveness of this combined system in 
achieving robust encryption, as evidenced by the altered 
texture analysis parameters, histograms, and correlation 
coefficients. The computational complexity of this method 
is slightly elevated due to the incorporation of a neural 
network, and to mitigate this challenge, computers with 
higher configurations are recommended.

Though the landscape of image security continues to 
evolve, we hope that our approach paves the way for exciting 
advancements in the field of color image encryption and can 
be adopted to cope with the ever-changing threat landscape 
and fit technological innovations.
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